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Overview

• Hardware architecture
• Programming model
• Example



Historical PC

FIGURE A.2.1 Historical PC. VGA controller drives graphics display from framebuffer memory. Copyright © 2009 
Elsevier, Inc. All rights reserved.



Intel/AMD CPU with GPU

FIGURE A.2.2 Contemporary PCs with Intel and AMD CPUs. See Chapter 6 for an explanation of the components and 
interconnects in this figure. Copyright © 2009 Elsevier



GPU Evolution

• 1980’s – No GPU.  PC used VGA controller
• 1990’s – Add more function into VGA controller
• 1997 – 3D acceleration functions:

Hardware for triangle setup and rasterization
Texture mapping
Shading

• 2000 – A single chip graphics processor ( beginning of GPU 
term)

• 2005 – Massively parallel programmable processors

Highly parallel, highly multithreaded multiprocessor optimized for 
graphic computing and other applications
• New GPU are being developed  every 12 to 18 months
• Number crunching: 1 card ~= 1 teraflop ~= small cluster. 



GPU Programming API
• CUDA (Compute Unified Device Architecture) : parallel 

GPU programming API created by NVIDA 
– Hardware and software architecture for issuing and 

managing computations on GPU
• Massively parallel architecture. over 8000 threads is 

common
• API libaries with C/C++/Fortran language 

• Numerical libraries: cuBLAS, cuFFT, 
• OpenGL – an open standard for GPU programming
• DirectX – a series of Microsoft multimedia programming 

interfaces



GPU Architecture
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GDDR memory
512 MiB - 6 GiB

• GPU:
ØSMs

o30xSM on GT200, 
o14xSM on Fermi

ØFor example, GTX 480:
Ø14 SMs x 32 cores

= 448 cores on a GPU
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More Detailed GPU Architecture View

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 
streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA 
GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM 
has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, 
and a shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.



CUDA essentials

• developer.nvidia.com. Download
§ Driver
§ Toolkit  (compiler nvcc)
§ SDK  (examples) (recommended)
§ CUDA Programmers guide

Other tools:
• ‘Emulator’. Executes on CPU. Slow
• Simple profiler
• cuda-gdb (Linux)



How To Program For GPUs

n Parallelization
nDecomposition to threads

n Memory
n shared memory, global 

memory

n Enormous processing 
power

n Thread communication
nSynchronization, no 

interdependencies
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Application Thread blocks

n Threads grouped in 
thread blocks
n 128, 192 or 256 

threads in a block

• One thread block executes on one 
SM
– All threads sharing the ‘shared memory’
– 32 threads are executed simultaneously 

(‘warp’)
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Application Thread blocks

n Blocks execute on SMs
n - execute in parallel
n - execute independently!

BLOCK 1
THREAD

(0,0)
THREAD

(0,1)
THREAD

(0,2)

THREAD
(1,0)

THREAD
(1,1)

THREAD
(1,2)

Grid

BLOCK 0 BLOCK 1 BLOCK 2

BLOCK 3 BLOCK 4 BLOCK 5

BLOCK 6 BLOCK 7 BLOCK 8

• Blocks form a GRID
• Thread ID 

unique within block
• Block ID 

unique within grid



Thread Batching: Grids and Blocks
• A kernel is executed as a grid 

of thread blocks
§ All threads share data 

memory space
• A thread block is a batch of 

threads that can cooperate
with each other by:
§ Synchronizing their execution

– For hazard-free shared 
memory accesses

§ Efficiently sharing data through a 
low latency shared memory

• Two threads from two 
different blocks cannot 
cooperate
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What Programmer Expresses in CUDA 

• Computation partitioning (where to run)
§ Declarations on functions __host__, __global__, __device__
§ Mapping of thread programs to device: compute <<<gs, 

bs>>>(<args>)
• Data partitioning (where does data reside, who may access it and 

how?)
• Declarations on data __shared__, __device__, __constant__, …

• Data management and orchestration
• Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

• Concurrency management
§ E.g. __synchthreads()
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Code that executes on GPU: Kernels
n Kernel

n a simple C function 
n executes on GPU in parallel

nas many times as there are threads
n The keyword __global__ tells the compiler nvcc to 

make a function a kernel (and compile/run it for the 
GPU, instead of the CPU)

n It's the functions that you may call from the host side 
using CUDA kernel call semantics (<<<...>>>).

Device functions can only be called from other device or global 
functions. __device__ functions cannot be called from host code



Minimal Extensions to C + API

• Declspecs
§ global, device, 

shared, local, 
constant

• Keywords
§ threadIdx, blockIdx

• Intrinsics
§ __syncthreads

• Runtime API
§ Memory, symbol, 

execution 
management

• Function launch

__device__ float filter[N]; 

__global__ void convolve (float *image)  
{

__shared__ float region[M];
... 

region[threadIdx] = image[i]; 

__syncthreads()  
... 

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);



Setup and data transfer

• cudaMemcpy

§ transfer data to and from GPU      (global memory)
• cudaMalloc

§ Allocate memory on GPU     (global memory)

• GPU is the ‘device’, CPU is the ‘host’

• Kernel call syntax



NVCC Compiler’s Role: Partition Code and 
Compile for Device   

mycode.cu

__device__ dfunc() {
int ddata;

}

__global__ gfunc() {
int gdata;

}

Main() { }
__host__  hfunc () {

int hdata;
<<<gfunc(g,b,m)>>>();
}

D
ev

ic
e 

O
nl

y
In

te
rfa

ce
H

os
t O

nl
y

int main_data;
__shared__  int sdata; 

Main() {}
__host__  hfunc () {

int hdata;       
<<<gfunc(g,b,m)>>>
();
}

__global__ gfunc() {
int gdata;

}

Compiled by native
compiler: gcc, icc, cc

__shared__ sdata; 

__device__ dfunc() {
int ddata;

}

Compiled by nvcc
compiler

int main_data;



CUDA Programming Model: How Threads are 
Executed

• The GPU is viewed as a compute device that:
§ Is a coprocessor to the CPU or host
§ Has its own DRAM (device memory)
§ Runs many threads in parallel

• Data-parallel portions of an application are executed 
on the device as kernels which run in parallel on 
many threads

• Differences between GPU and CPU threads 
§ GPU threads are extremely lightweight

– Very little creation overhead
§ GPU needs 1000s of threads for full efficiency

– Multi-core CPU needs only a few



Block and Thread IDs

• Threads and blocks have 
IDs
§ So each thread can 

decide what data to work 
on

§ Block ID: 1D or 2D 
(blockIdx.x, blockIdx.y)

§ Thread ID: 1D, 2D, or 3D 
(threadIdx.{x,y,z}) 

• Simplifies memory
addressing when 
processing
multidimensional data
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Simple working code example

• What does it do?
§ Scan elements of array of numbers (any of 0 to 9)
§ How many times does “6” appear?
§ Array of 16 elements, each thread examines 4 

elements, 1 block in grid, 1 grid

3 6 57 3 5 26 0 9 639 1 72

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15

} Known as a
cyclic data 
distribution



CUDA Pseudo-Code
MAIN PROGRAM:
Initialization
• Allocate memory on host 

for input and output
• Assign random numbers to 

input array

Call host function

Calculate final output from 
per-thread output

Print result

HOST FUNCTION:
Allocate memory on device for 

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

GLOBAL FUNCTION:
Thread scans subset of array elements
Call device function to compare with “6”
Compute local result

DEVICE FUNCTION:
Compare current element  

and “6”
Return 1 if same, else 0



Main Program: Preliminaries

MAIN PROGRAM:
Initialization
• Allocate memory on host for 

input and output
• Assign random numbers to 

input array
Call host function
Calculate final output from 

per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4

int main(int argc, char **argv)
{
int *in_array, *out_array;
…

}

CS6235



Main Program: Invoke Global Function

MAIN PROGRAM:
Initialization (OMIT)
• Allocate memory on host for 

input and output
• Assign random numbers to 

input array
Call host function
Calculate final output from 

per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute (int 

*in_arr, int *out_arr);
int main(int argc, char **argv)
{

int *in_array, *out_array;
/* initialization */ …
outer_compute(in_array, out_array);
…

}

CS6235



Main Program: Calculate Output & Print Result

MAIN PROGRAM:
Initialization (OMIT)
• Allocate memory on host for 

input and output
• Assign random numbers to 

input array
Call host function
Calculate final output from 
per-thread output

Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute (int 

*in_arr, int *out_arr);
int main(int argc, char **argv)
{

int *in_array, *out_array;
int sum = 0;
/* initialization */ …
outer_compute(in_array, out_array);
for (int i=0; i<BLOCKSIZE; i++) {

sum+=out_array[i];
}
printf (”Result = %d\n",sum);

}
CS6235



Host Function: Preliminaries & Allocation

HOST FUNCTION:
Allocate memory on device for 

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int 
*h_in_array, int *h_out_array) {

int *d_in_array, *d_out_array;

cudaMalloc((void **) &d_in_array, 
SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array, 
BLOCKSIZE*sizeof(int));

…
}

CS6235



Host Function: Copy Data To/From Host

HOST FUNCTION:
Allocate memory on device for 

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int 
*h_in_array, int *h_out_array) {
int *d_in_array, *d_out_array;

cudaMalloc((void **) &d_in_array, 
SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array, 
BLOCKSIZE*sizeof(int));

cudaMemcpy(d_in_array, h_in_array,   
SIZE*sizeof(int), 
cudaMemcpyHostToDevice);

… do computation ...
cudaMemcpy(h_out_array,d_out_array, 

BLOCKSIZE*sizeof(int), 
cudaMemcpyDeviceToHost);

}

CS6235



Host Function: Setup & Call Global Function

HOST FUNCTION:
Allocate memory on device for 

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int 
*h_in_array, int *h_out_array) {
int *d_in_array, *d_out_array;

cudaMalloc((void **) &d_in_array, 
SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array, 
BLOCKSIZE*sizeof(int));

cudaMemcpy(d_in_array, h_in_array,   
SIZE*sizeof(int), 
cudaMemcpyHostToDevice);

compute<<<(1,BLOCKSIZE)>>> (d_in_array, 
d_out_array);

cudaThreadSynchronize();
cudaMemcpy(h_out_array, d_out_array, 

BLOCKSIZE*sizeof(int), 
cudaMemcpyDeviceToHost);

}
CS6235



Global Function: How to distribute tasks?

GLOBAL FUNCTION:
Thread scans subset of array 

elements
Call device function to 

compare with “6”
Compute local result

__global__ void compute(int *d_in,int 
*d_out) {
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++)  {

int val = d_in[i*BLOCKSIZE + 
threadIdx.x];  

d_out[threadIdx.x] += compare(val, 6);
}

}

3 6 57 3 5 26 0 9 639 1 72

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15

} Cyclic 
distribution



Device Function

DEVICE FUNCTION:
Compare current element  

and “6”
Return 1 if same, else 0

__device__ int 
compare(int a, int b) {
if (a == b) return 1;
return 0;

}

CS6235



Summary of Lecture
• Introduction to CUDA: C + API supporting 

heterogeneous data-parallel CPU+GPU execution
§ Computation partitioning
§ Data partititioning (parts of this implied by decomposition 

into threads)
§ Data organization and management
§ Concurrency management

• Compiler nvcc takes as input a .cu program and 
produces
§ C Code for host processor (CPU), compiled by native C 

compiler
§ Code for device processor (GPU), compiled by nvcc 

compiler


