-

Introduction to GPU (Graphics
Processing Unit) Architecture &
Programming

CS240A. 2017
T. Yang

Some of slides are from M. Hall of Utah

CS6235
UCSB

Overview

 Hardware architecture
 Programming model
 Example

Historical PC

CPU

i Front Side Bus

North

Bridge — Mlermeoxy

t PCI Bus

:

South
Bridge

I

Framebuffer
Memory

VGA

LAN UART _|/—/, Display

FIGURE A.2.1 Historical PC. VGA controller drives graphics display from framebuffer memory. Copyright © 2009 UCSB
Elsevier, Inc. All rights reserved. T

display

(b))

Intel/AMD CPU with GPU

x16 PCl-Express Link

SGPUuU
NMemory

Intel
CPuU

t Front Sid

e Bus

North DDR2
Bridge NMemory
x4 PCl-Express Link 128-bit
derivative 67 MT /s
South
Bridge
AMNMD
CPuU
CPuU
core
128-bit

intermnal bus i

North
Bridge

*

667 MT/s

DDR2
NMemory

x16 PCl-Express Link * HyperTransport 1.03

SGPuU
NMemory

Chipset

FIGURE A.2.2 Contemporary PCs with Intel and AMD CPUs. See Chapter 6 for an explanation of the components and [JCSB
interconnects in this figure. Copyright © 2009 Elsevier

>

' GPU Evolution

Highly parallel, highly multithreaded multiprocessor optimized for
graphic computing and other applications

* New GPU are being developed every 12 to 18 months

* Number crunching: 1 card ~= 1 teraflop ~= small cluster.

1980°s — No GPU. PC used VGA controller

1990°s — Add more function into VGA controller

1997 — 3D acceleration functions:
Hardware for triangle setup and rasterization
Texture mapping
Shading

2000 — A single chip graphics processor (beginning of GPU
term)

2005 — Massively parallel programmable processors
UCSB

'GPU Programming API

e CUDA (Compute Unified Device Architecture) : parallel
GPU programming API created by NVIDA

— Hardware and software architecture for issuing and
managing computations on GPU
» Massively parallel architecture. over 8000 threads is
common
« APl libaries with C/C++/Fortran language
 Numerical libraries: cuBLAS, cuFFT,
* OpenGL - an open standard for GPU programming

* DirectX — a series of Microsoft multimedia programming
interfaces

UCSB

' GPU Architecture

SP: scalar processor
‘CUDA core’

Executes one thread

SM

streaming
multiprocessor

32xSP (or 16, 48 or more)

Fast local ‘shared memory’ GLOBAL MEMORY
(shared between SPs) (ON DEVICE)

16 KiB (or 64 KiB)
HOST B

' « GPU:

»SMs

0 30xSM on GT200,
o0 14xSM on Fermi

»For example, GTX 480:

» 14 SMs x 32 cores
= 448 cores on a GPU

More Detailed GPU Architecture View

Bridge |—| System Memory I
GPU
I Host Interface I T L |
| Viewport/Clip/ [: ,/ SM
Setup/Raster/ /
I Input Assembler | ZCull / I_Cache
| |
- V4
Distrbution” Disgbitn Dt ! o MT Issue
| | | /
[[[[I |] Fa = C-Cache
TPC TPC TPC TPC TPC TPC TPC ¢ v
[I I I |} I I I z 1 7
| |l |1l |} ||l I ||l V4 ,"
SM SM SM SM SM SM SM SM SM SM SM
[1|11 1] |l 1{|1 1] |l |11 | | | | [| |
| |1 IR 1|1 1] |l |11 | | 1] |l | | | |
| I | S |{ i | IS || IS | || OS] OO | SO) SU_—| | _— L1
SRIEEHERIERIHIEREEER SR =2 =222 NER SRl ER SR EREE] [sPlsP]
SRIEEHERIERI ISR EEIER SR =2 =2 == = N EE R R R S [sPlsPl
SRR ERIERIIEREEER SR == === =2 N EE = R SR RS [sPlfsPl
SRIERHERIERIHIEREEIER SR S22 =22 NERI SR ERI SR EREE| [sPlsP]
0 O]
e | | e | e | || e | e | e [)| | ==
Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit Texture Unit ™ -
[TexLi T Textt T TexLt I Textt T Textd NI Textt W1 TexLt + < SFU | |SFU
| | | | | | | | | | | | | | . ~
(Interconnection Network 5\ Shared
| | | | | | | | I N
|rop | [12 | |[mop || 12 | [RoP || L2 | [ROP || L2 | | Display Interface | - iemony
| | | | | | | | |
| | | | | | | | |
DRAM DRAM DRAM DRAM . Display
L ce e - - e === -

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14
streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA

GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM

has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit{ C S B
and a shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved. g

' CUDA essentials

« developer.nvidia.com. Download
= Driver
= Toolkit (compiler nvcc)
= SDK (examples) (recommended)
= CUDA Programmers guide

Other tools:

 ‘Emulator’. Executes on CPU. Slow
* Simple profiler

* cuda-gdb (Linux)

UCSB

’ How To Program For GPUs

B Parallelization
B Decomposition to threads
B Memory

® shared memory, global
memory

B Enormous processing
power

B Thread communication GLOBAL MEMORY
m Synchronization, no (ON DEVICE)
iInterdependencies
HOST B

' Application Thread blocks

B Threads grouped in BLOCK 1 o
thread blocks

H 128, 192 or 256
threads in a block

* One thread block executes on one
SM
— All threads sharing the ‘shared memory’

— 32 threads are executed simultaneously
(‘warp’)

UCSB

' Application Thread blocks

BLOCK 1

B Blocks execute on SMs

- execute in parallel
- execute independently!

Blocks form a GRID
Thread ID

unique within block
Block ID

unique within grid

BLOCK O BLOCK 1 BLOCK 2

BLOCK 3 BLOCK 4 BLOCK 5

BLOCK 6 BLOCK 7 BLOCK 8
Grid

UCSB

Thread Batching: Grids and Blocks

A kernel is executed as a agrid

of thread blocks

= All threads share data
memory space

A thread block is a batch of
threads that can cooperate
with each other by:
= Synchronizing their execution
— For hazard-free shared
memory accesses
= Efficiently sharing data through a
low latency shared memory
Two threads from two
different blocks cannot
cooperate

Host

Kernel

1

Device

Grid 1

Kernel

2

» Block Block BI

(0, 0) (1, 0) (2, 0)

Block.” Block |
0.5 (1)

o
o
o
>

K 1
*" Grid 2 \

Block (1, 1)

UCSB

What Programmer Expresses in CUDA

=)

x Y

S) < > =5

— Interconnect LL

- O

8 between devices and =

memories (1]

- v T

 Computation partitioning (where to run)
= Declarations on functions __host , global , device
= Mapping of thread programs to device: compute <<<gs,
bs>>>(<args>)

 Data partitioning (where does data reside, who may access it and
how?)
* Declarations ondata __shared , device , constant , ...

' Data management and orchestration
« Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

' Concurrency management
= E.g. _synchthreads() UCSB

e

' Code that executes on GPU: Kernels

B Kernel
B a simple C function
B executes on GPU in parallel
M as many times as there are threads
B The keyword global tells the compiler nvce to
make a function a kernel (and compile/run it for the
GPU, instead of the CPU)

M |t's the functions that you may call from the host side
using CUDA kernel call semantics (<<<...>>>),

Device functions can only be called from other device or global
functions. _ device _ functions cannot be called from host code

UCSB

e

Minimal Extensions to C + API

 Declspecs

= global, device,
shared, local,
constant

 Keywords
= threadldx, blockldx

* Intrinsics
= _ syncthreads

* Runtime API

= Memory, symbol,
execution
management

* Function launch

__device float filter[N];

__global wvoid convolve (float *image)

{

__shared float region[M];

region[threadIdx] = imagel[i];
__syncthreads ()
image[]j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc (bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage) ;

UCSB

' Setup and data transfer

e cudaMemcpy

= transfer data to and from GPU (global memory)
e cudaMalloc

= Allocate memory on GPU (global memory)

« GPU is the ‘device’, CPU is the ‘host’

* Kernel call syntax

UCSB

NVCC Compiler’s Role: Partition Code and
Compile for Device

mycode.cu

int main_data;

__shared__ int sdata;

ETORE
__host_ hfunc () {
int hdata;

<<<gfunc(g,b,m)>>>();

}

__device__ dfunc() {

int ddata;
Y

Device Only Interface Host Only

Compiled by native Compiled by nvcc
compiler: gcc, icc, cc compiler

int main_data;

shared sdata;

Main() {}

__host_ hfunc () {
int hdata;

<<<gfunc(g,b,m)>>>

();

}

}

device dfunc() {
int ddata;

’ CUDA Programming Model: How Threads are
Executed

« The GPU is viewed as a compute device that:
= |s a coprocessor to the CPU or host
= Has its own DRAM (device memory)
= Runs many threads in parallel

« Data-parallel portions of an application are executed
on the device as kernels which run in parallel on
many threads

« Differences between GPU and CPU threads
= GPU threads are extremely lightweight

— Very little creation overhead

= GPU needs 1000s of threads for full efficiency

— Multi-core CPU needs only a few

UCSB

' Block and Thread IDs

Threads and blocks have
IDs

= So each thread can

decide what data to work
on

= Block ID: 1D or 2D
(blockldx.x, blockldx.y)

= Thread ID: 1D, 2D, or 3D
(threadldx.{x,y,z})
Simplifies memory
addressing when
processing
multidimensional data

Device

Grid 1

Block
(0, 0)

Block
(1,0)

Block
(2, 0)

Block

1)

Block
(1,1)

Block

(2,1)

Block (1, 1)

UCSB

Simple working code example

« What does it do?
= Scan elements of array of numbers (any of 0 to 9)
= How many times does “6” appear?

= Array of 16 elements, each thread examines 4
elements, 1 block in grid, 1 grid

o Jo Jads JoJoJee o4 Jad 4o J.

threadldx.x = 0 examines in_array elements 0, 4, 8, 12

0

threadldx.x = 1 examines in_array elements 1, 5, 9, 13 Known as a
cyclic data
threadldx.x = 3 examines in_array elements 3, 7, 11, 15 distribution
UCSB

CUDA Pseudo-Code

MAIN PROGRAM:

Initialization

HOST FUNCTION:

Allocate memory on device for
« Allocate memory on host copy of input and output

for input and output Copy input to device

 Assign random numbers to Set up grid/block

input array
_ Call global function
Call host function . .
Synchronize after completion

Calculate final output from

per-thread output Copy device output to host

Print result
6LOBAL FUNCTION: DEVICE FUNCTION:
Compare current element
Thread scans subset of array elements and “6"

Call device function to compare with "6" Return 1 if same, else O

Compute local result —

' Main Program: Preliminaries

MAIN PROGRAM: #include <stdio.h>
Initialization #Hdefine SIZE 16

- Allocate memo z on host for #Hdefine BLOCKSIZE 4

input and outpu

- A : .
.nf,i'?';r.",f‘a”ydm ARl int main(int argc, char **argv)

Call host function {

Calculate final output from int *in_array, *out_array;
per-thread output

Print result }

CS6235
UCSB

Main Program: Invoke Global Function

MAIN PROGRAM: #include <stdio.h>

Initialization (OMIT) #define SIZE 16

#define BLOCKSIZE 4
- Allocate memor?/ on host for . .
input and outpu host___ void outer_compute (int

x: M *x .
. in_arr, int “out_arr),
. A55|19n random numbers to — —arr)

inpuf array int main(int argc, char **argv)
Call host function {
Calculate final output from int *in_array, *out_array:
per-thread output /* initialization */ ..
Print result outer_compute(in_array, out_array);
}
CS6235

UCSB

Main Program: Calculate Output & Print Result

Hinclude <etdina hs
[AABA A" A A Twd | WAITNI o1 17

MAIN PROGRAM: #define SIZE 16
Thitialization (OMIT) #define BLOCKSIZE 4

- Alocate memory on hostfor. —fe 7 IS ET et O
input and outpu —= —arr).

: Assi19n random numbers to int main(int argc, char **argv)

inpuf array {
Call host function int *in_array, *out_array;
Calculate final output from int sum = O;
per-thread output /* initialization */ ..
Print result outer_compute(in_array, out_array);

for (int i=0; i<BLOCKSIZE; i++) {
sum+=out_array[i].

}
printf ("Result = %d\n",sum);

CS6235
UCSB

Host Function: Preliminaries & Allocation

HOST FUNCTION:

Allocate memory on device for
copy of input and output

Copy input to device

Set up grid/block

Call global function
Synchronize after completion
Copy device output to host

CS6235

host___ void outer_compute (int

~ *h_in_array, int *h_out_array) {

int *d_in_array, *d_out_array;

cudaMalloc((void **) &d_in_array,
SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array,
BLOCKSIZE*sizeof(int));

UCSB

Host Function: Copy Data To/From Host

HOST FUNCTION:

Allocate memory on device for
copy of input and output

Copy input to device

Set up grid/block

Call global function
Synchronize after completion
Copy device output to host

CS6235

- Fh_

host__ void outer_compute (int
in_array, int *h_out_array) {

int *d_in_array, *d_out_array;

cudaMaIIoci(voud **) &d_in_array,
SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array,
BLOCKSIZE*sizeof(int));

cudaMemc gx(d in_array, h_in_array,
SIZE*sizeof(int)
cudaMemcpyHos’rToDevnce)

.. do computation ...

cudaMemc gl)é h_out_array,d_out_array,
BLOCKSIZE*sizeof (int
cudaMemcpyDevice ToHost);

UCSB

Host Function: Setup & Call Global Function

nhost___ void outer_compute (int
~ *h_in_array, int *h_out_array) {

int *d_in_array, *d_out_array;

HOST FUNCTION:

Allocate memory on device for cudaMalloc((void **) &d_in_array,
copy of input and output SIZE™sizeof(int)):;

C input to devi cudaMalloc((void **) &d_out_array,
opY mpu. 0 gevice BLOC SIZE*gizec?T(in’F)): /
Set up grid/block cudaMemC@/(d_in array, h_in_array,

: SIZE™sizeof(int),
Call global function cudaMemcp)flz—loseroDevice):

Synchronize after completion compute«<(1,BLOCKSIZE)s>> (d_in_array,

Copy device output to host d_out_array); ,
cudaThreadSynchronize();

cudaMemcgl)(/gh out_array, d_out_array,
BLO fZE*sugofy int),
cudaMemcpyDevice ToHost);

CS6235

Global Function: How to distribute tasks?

global__ void compute(int *d_in,int
~*d_out

6LOBAL FUNCTION: ;| iithreadTdxx] = O:

Thread scans subset of array

elements for (int i=0; i«SIZE/BLOCKSIZE; i++) {
Call device function to int val = d_in[i(*BLOCKSIZE +
compare with "6" threadIdx.x].
Compute local result d_out[threadIdx.x] += compare(val, 6);
}
}

000800000000

threadldx.x = 0 examines in_array elements 0, 4, 8, 12
threadldx.x = 1 examines in_array elements 1, 5, 9, 13

Cyclic
distribution

threadldx.x = 3 examines in_array elements 3, 7, 11, 15 UCSB

Device Function

DEVICE FUNCTION: __device__int

compare(int a, int b) {
Compare current element

and "6 if (a==Db) return{;
Return 1 if same, else O return O;
}
CS6235

UCSB

' Summary of Lecture

 Introduction to CUDA: C + API supporting
heterogeneous data-parallel CPU+GPU execution

= Computation partitioning

= Data partititioning (parts of this implied by decomposition
into threads)

= Data organization and management

= Concurrency management

« Compiler nvcc takes as input a .cu program and
produces

= C Code for host processor (CPU), compiled by native C
compiler

= Code for device processor (GPU), compiled by nvcc
compiler

UCSB

