
Introduction to GPU (Graphics
Processing Unit) Architecture &
Programming

CS240A. 2017
T. Yang

Some of slides are from M. Hall of Utah
CS6235

Overview

• Hardware architecture
• Programming model
• Example

Historical PC

FIGURE A.2.1 Historical PC. VGA controller drives graphics display from framebuffer memory. Copyright © 2009
Elsevier, Inc. All rights reserved.

Intel/AMD CPU with GPU

FIGURE A.2.2 Contemporary PCs with Intel and AMD CPUs. See Chapter 6 for an explanation of the components and
interconnects in this figure. Copyright © 2009 Elsevier

GPU Evolution

• 1980’s – No GPU. PC used VGA controller
• 1990’s – Add more function into VGA controller
• 1997 – 3D acceleration functions:

Hardware for triangle setup and rasterization
Texture mapping
Shading

• 2000 – A single chip graphics processor (beginning of GPU
term)

• 2005 – Massively parallel programmable processors

Highly parallel, highly multithreaded multiprocessor optimized for
graphic computing and other applications
• New GPU are being developed every 12 to 18 months
• Number crunching: 1 card ~= 1 teraflop ~= small cluster.

GPU Programming API
• CUDA (Compute Unified Device Architecture) : parallel

GPU programming API created by NVIDA
– Hardware and software architecture for issuing and

managing computations on GPU
• Massively parallel architecture. over 8000 threads is

common
• API libaries with C/C++/Fortran language

• Numerical libraries: cuBLAS, cuFFT,
• OpenGL – an open standard for GPU programming
• DirectX – a series of Microsoft multimedia programming

interfaces

GPU Architecture

SM
streaming

multiprocessor
32xSP (or 16, 48 or more)

Fast local ‘shared memory’
(shared between SPs)

16 KiB (or 64 KiB)

GLOBAL MEMORY
(ON DEVICE)

SM
S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

SHARED
MEMORY

SP: scalar processor
‘CUDA core’

Executes one thread

HOST

GDDR memory
512 MiB - 6 GiB

• GPU:
ØSMs

o30xSM on GT200,
o14xSM on Fermi

ØFor example, GTX 480:
Ø14 SMs x 32 cores

= 448 cores on a GPU

GLOBAL MEMORY
(ON DEVICE)

SM
S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

SHARED
MEMORY

HOST

More Detailed GPU Architecture View

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14
streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA
GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM
has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit,
and a shared memory. Copyright © 2009 Elsevier, Inc. All rights reserved.

CUDA essentials

• developer.nvidia.com. Download
§ Driver
§ Toolkit (compiler nvcc)
§ SDK (examples) (recommended)
§ CUDA Programmers guide

Other tools:
• ‘Emulator’. Executes on CPU. Slow
• Simple profiler
• cuda-gdb (Linux)

How To Program For GPUs

n Parallelization
nDecomposition to threads

n Memory
n shared memory, global

memory

n Enormous processing
power

n Thread communication
nSynchronization, no

interdependencies

GLOBAL MEMORY
(ON DEVICE)

SM
S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

S
P

SHARED
MEMORY

HOST

Application Thread blocks

n Threads grouped in
thread blocks
n 128, 192 or 256

threads in a block

• One thread block executes on one
SM
– All threads sharing the ‘shared memory’
– 32 threads are executed simultaneously

(‘warp’)

BLOCK 1
THREAD

(0,0)
THREAD

(0,1)
THREAD

(0,2)

THREAD
(1,0)

THREAD
(1,1)

THREAD
(1,2)

Application Thread blocks

n Blocks execute on SMs
n - execute in parallel
n - execute independently!

BLOCK 1
THREAD

(0,0)
THREAD

(0,1)
THREAD

(0,2)

THREAD
(1,0)

THREAD
(1,1)

THREAD
(1,2)

Grid

BLOCK 0 BLOCK 1 BLOCK 2

BLOCK 3 BLOCK 4 BLOCK 5

BLOCK 6 BLOCK 7 BLOCK 8

• Blocks form a GRID
• Thread ID

unique within block
• Block ID

unique within grid

Thread Batching: Grids and Blocks
• A kernel is executed as a grid

of thread blocks
§ All threads share data

memory space
• A thread block is a batch of

threads that can cooperate
with each other by:
§ Synchronizing their execution

– For hazard-free shared
memory accesses

§ Efficiently sharing data through a
low latency shared memory

• Two threads from two
different blocks cannot
cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

What Programmer Expresses in CUDA

• Computation partitioning (where to run)
§ Declarations on functions __host__, __global__, __device__
§ Mapping of thread programs to device: compute <<<gs,

bs>>>(<args>)
• Data partitioning (where does data reside, who may access it and

how?)
• Declarations on data __shared__, __device__, __constant__, …

• Data management and orchestration
• Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

• Concurrency management
§ E.g. __synchthreads()

P

M

P

H
O

ST
 (

C
PU

)

M D
EV

IC
E

(G
PU

)

Interconnect
between devices and
memories

Code that executes on GPU: Kernels
n Kernel

n a simple C function
n executes on GPU in parallel

nas many times as there are threads
n The keyword __global__ tells the compiler nvcc to

make a function a kernel (and compile/run it for the
GPU, instead of the CPU)

n It's the functions that you may call from the host side
using CUDA kernel call semantics (<<<...>>>).

Device functions can only be called from other device or global
functions. __device__ functions cannot be called from host code

Minimal Extensions to C + API

• Declspecs
§ global, device,

shared, local,
constant

• Keywords
§ threadIdx, blockIdx

• Intrinsics
§ __syncthreads

• Runtime API
§ Memory, symbol,

execution
management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image)
{

__shared__ float region[M];
...

region[threadIdx] = image[i];

__syncthreads()
...

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

Setup and data transfer

• cudaMemcpy

§ transfer data to and from GPU (global memory)
• cudaMalloc

§ Allocate memory on GPU (global memory)

• GPU is the ‘device’, CPU is the ‘host’

• Kernel call syntax

NVCC Compiler’s Role: Partition Code and
Compile for Device

mycode.cu

__device__ dfunc() {
int ddata;

}

__global__ gfunc() {
int gdata;

}

Main() { }
__host__ hfunc () {

int hdata;
<<<gfunc(g,b,m)>>>();
}

D
ev

ic
e

O
nl

y
In

te
rfa

ce
H

os
t O

nl
y

int main_data;
__shared__ int sdata;

Main() {}
__host__ hfunc () {

int hdata;
<<<gfunc(g,b,m)>>>
();
}

__global__ gfunc() {
int gdata;

}

Compiled by native
compiler: gcc, icc, cc

__shared__ sdata;

__device__ dfunc() {
int ddata;

}

Compiled by nvcc
compiler

int main_data;

CUDA Programming Model: How Threads are
Executed

• The GPU is viewed as a compute device that:
§ Is a coprocessor to the CPU or host
§ Has its own DRAM (device memory)
§ Runs many threads in parallel

• Data-parallel portions of an application are executed
on the device as kernels which run in parallel on
many threads

• Differences between GPU and CPU threads
§ GPU threads are extremely lightweight

– Very little creation overhead
§ GPU needs 1000s of threads for full efficiency

– Multi-core CPU needs only a few

Block and Thread IDs

• Threads and blocks have
IDs
§ So each thread can

decide what data to work
on

§ Block ID: 1D or 2D
(blockIdx.x, blockIdx.y)

§ Thread ID: 1D, 2D, or 3D
(threadIdx.{x,y,z})

• Simplifies memory
addressing when
processing
multidimensional data

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

Simple working code example

• What does it do?
§ Scan elements of array of numbers (any of 0 to 9)
§ How many times does “6” appear?
§ Array of 16 elements, each thread examines 4

elements, 1 block in grid, 1 grid

3 6 57 3 5 26 0 9 639 1 72

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15

} Known as a
cyclic data
distribution

CUDA Pseudo-Code
MAIN PROGRAM:
Initialization
• Allocate memory on host

for input and output
• Assign random numbers to

input array

Call host function

Calculate final output from
per-thread output

Print result

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

GLOBAL FUNCTION:
Thread scans subset of array elements
Call device function to compare with “6”
Compute local result

DEVICE FUNCTION:
Compare current element

and “6”
Return 1 if same, else 0

Main Program: Preliminaries

MAIN PROGRAM:
Initialization
• Allocate memory on host for

input and output
• Assign random numbers to

input array
Call host function
Calculate final output from

per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4

int main(int argc, char **argv)
{
int *in_array, *out_array;
…

}

CS6235

Main Program: Invoke Global Function

MAIN PROGRAM:
Initialization (OMIT)
• Allocate memory on host for

input and output
• Assign random numbers to

input array
Call host function
Calculate final output from

per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute (int

*in_arr, int *out_arr);
int main(int argc, char **argv)
{

int *in_array, *out_array;
/* initialization */ …
outer_compute(in_array, out_array);
…

}

CS6235

Main Program: Calculate Output & Print Result

MAIN PROGRAM:
Initialization (OMIT)
• Allocate memory on host for

input and output
• Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output

Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute (int

*in_arr, int *out_arr);
int main(int argc, char **argv)
{

int *in_array, *out_array;
int sum = 0;
/* initialization */ …
outer_compute(in_array, out_array);
for (int i=0; i<BLOCKSIZE; i++) {

sum+=out_array[i];
}
printf (”Result = %d\n",sum);

}
CS6235

Host Function: Preliminaries & Allocation

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {

int *d_in_array, *d_out_array;

cudaMalloc((void **) &d_in_array,
SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array,
BLOCKSIZE*sizeof(int));

…
}

CS6235

Host Function: Copy Data To/From Host

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {
int *d_in_array, *d_out_array;

cudaMalloc((void **) &d_in_array,
SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array,
BLOCKSIZE*sizeof(int));

cudaMemcpy(d_in_array, h_in_array,
SIZE*sizeof(int),
cudaMemcpyHostToDevice);

… do computation ...
cudaMemcpy(h_out_array,d_out_array,

BLOCKSIZE*sizeof(int),
cudaMemcpyDeviceToHost);

}

CS6235

Host Function: Setup & Call Global Function

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {
int *d_in_array, *d_out_array;

cudaMalloc((void **) &d_in_array,
SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array,
BLOCKSIZE*sizeof(int));

cudaMemcpy(d_in_array, h_in_array,
SIZE*sizeof(int),
cudaMemcpyHostToDevice);

compute<<<(1,BLOCKSIZE)>>> (d_in_array,
d_out_array);

cudaThreadSynchronize();
cudaMemcpy(h_out_array, d_out_array,

BLOCKSIZE*sizeof(int),
cudaMemcpyDeviceToHost);

}
CS6235

Global Function: How to distribute tasks?

GLOBAL FUNCTION:
Thread scans subset of array

elements
Call device function to

compare with “6”
Compute local result

__global__ void compute(int *d_in,int
*d_out) {
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {

int val = d_in[i*BLOCKSIZE +
threadIdx.x];

d_out[threadIdx.x] += compare(val, 6);
}

}

3 6 57 3 5 26 0 9 639 1 72

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15

} Cyclic
distribution

Device Function

DEVICE FUNCTION:
Compare current element

and “6”
Return 1 if same, else 0

__device__ int
compare(int a, int b) {
if (a == b) return 1;
return 0;

}

CS6235

Summary of Lecture
• Introduction to CUDA: C + API supporting

heterogeneous data-parallel CPU+GPU execution
§ Computation partitioning
§ Data partititioning (parts of this implied by decomposition

into threads)
§ Data organization and management
§ Concurrency management

• Compiler nvcc takes as input a .cu program and
produces
§ C Code for host processor (CPU), compiled by native C

compiler
§ Code for device processor (GPU), compiled by nvcc

compiler

