
Mapreduce Programming at
Comet and HW2 Log Analysis

UCSB CS240A Tao Yang

2

Data Analysis from Web Server Logs

Startup code and data : /home/tyang/cs240sample/log
apache1.splunk.com
apache2.splunk.com
apache3.splunk.com

02/09/20103

Example line of the log file

10.32.1.43 - - [06/Feb/2013:00:07:00] "GET
/flower_store/product.screen?product_id=FL-DLH-02
HTTP/1.1" 200 10901
"http://mystore.splunk.com/flower_store/category.screen
?category_id=GIFTS&JSESSIONID=SD7SL1FF9ADFF2
" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.0.10)
Gecko/20070223 CentOS/1.5.0.10-0.1.el4.centos
Firefox/1.5.0.10" 4361 3217

66.249.64.13 - -
[18/Sep/2004:11:07:48 +1000]
"GET / HTTP/1.0" 200 6433 "-"
"Googlebot/2.1"

4

Log Format

66.249.64.13 - - [18/Sep/2004:11:07:48 +1000]
"GET / HTTP/1.0" 200 6433 "-" "Googlebot/2.1"

More Formal Definition of Apache Log

%h %l %u %t "%r" %s %b "%{Referer}i" "%{User-agent}i“

%h = IP address of the client (remote host) which made the request
%l = RFC 1413 identity of the client
%u = userid of the person requesting the document
%t = Time that the server finished processing the request
%r = Request line from the client in double quotes
%s = Status code that the server sends back to the client
%b = Size of the object returned to the client
Referer : where the request originated
User-agent what type of agent made the request.

http://www.the-art-of-web.com/system/logs/

6

Common Response Code

• 200 - OK
• 206 - Partial Content
• 301 - Moved Permanently
• 302 - Found
• 304 - Not Modified
• 401 - Unauthorised (password required)
• 403 - Forbidden
• 404 - Not Found.

7

LogAnalyzer.java

public class LogAnalyzer {
public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
if (args.length != 2) {

System.err.println("Usage: loganalyzer <in> <out>");
System.exit(2);

}
Job job = new Job(conf, "analyze log");
job.setJarByClass(LogAnalyzer.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);

}
}

8

Map.java

public class Map extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text url = new Text();
private Pattern p = Pattern.compile("(?:GET|POST)\\s([^\\s]+)");

@Override
public void map(Object key, Text value, Context context)

throws IOException, InterruptedException {
String[] entries = value.toString().split("\r?\n");
for (int i=0, len=entries.length; i<len; i+=1) {

Matcher matcher = p.matcher(entries[i]);
if (matcher.find()) {

url.set(matcher.group(1));
context.write(url, one);

}
}

}
}

9

Reduce.java

public class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable total = new IntWritable();

@Override
public void reduce(Text key, Iterable<IntWritable> values, Context

context)
throws IOException, InterruptedException {
int sum = 0;

for (IntWritable value : values) {
sum += value.get();

}
total.set(sum);
context.write(key, total);

}
}

10

Comet Cluster

• Comet cluster has 1944 nodes and each node has
24 cores, built on two 12-core Intel Xeon E5-2680v3
2.5 GHz processors

• 128 GB memory and 320GB SSD for local scratch
space.

• Attached storage: Shared 7 petabytes of 200
GB/second performance storage and 6 petabytes of
100 GB/second durable storage

§ Lustre Storage Area is a Parallel File System
(PFS) called Data Oasis.

– Users can access from
/oasis/scratch/comet/$USER/temp_project

Homelocal storage Login
node

/oasis

Hadoop installation at Comet

• Installed in /opt/hadoop/1.2.1
o Configure Hadoop on-demand with myHadoop:

§ /opt/hadoop/contrib/myHadoop/bin/myhadoop-
configure.sh

Home
LinuxHadoop connects local storage Login

node

Hadoop file system is built dynamically on the nodes
allocated. Deleted when the allocation is terminated.

Compile the sample Java code at Comet

Java word count example is available at Comet under
/home/tyang/cs240sample/mapreduce/.

• cp –r /home/tyang/cs240sample/mapreduce .

• Allocate a dedicated machine for compiling
§ /share/apps/compute/interactive/qsubi.bash -p compute --

nodes=1 --ntasks-per-node=1 -t 00:
• Change work directory to mapreduce and type make

§ Java code is compiled under target subdirectory

Home

Comet

Login
node

How to Run a WordCount Mapreduce Job

§ Use “compute” partition for allocation
§ Use Java word count example at Comet under

/home/tyang/cs240sample/mapreduce/.
§ sbatch submit-hadoop-comet.sh

– Data input is in test.txt
– Data output is in WC-output

§ Job trace is wordcount.1569018.comet-17-14.out

Home

Comet cluster
Login node
comet.sdsc.xsed
e.org

“compute” queue

Sample script (submit-hadoop-comet.sh)

#!/bin/bash
#SBATCH --job-name="wordcount"
#SBATCH --output="wordcount.%j.%N.out"
#SBATCH --partition=compute
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=24
#SBATCH -t 00:15:00
Export HADOOP_CONF_DIR=/home/$USER/cometcluster
export WORKDIR=`pwd`
module load hadoop/1.2.1

#Use myheadoop to build a Hadoop file system on allocated nodes
myhadoop-configure.sh
#Start all demons
start-all.sh Home

Linux Login
nodeHadoop

Sample script

#make an input directory in the hadoop file system
hadoop dfs -mkdir input
#copy data from local Linux file system to the Hadoop file system
hadoop dfs -copyFromLocal $WORKDIR/test.txt input/
#Run Hadoop wordcount job
hadoop jar $WORKDIR/wordcount.jar wordcount input/ output/
Create a local directory WC-output to host the output data
It does not report error even the file does not exist
rm -rf WC-out >/dev/null || true
mkdir -p WC-out
Copy out the output data
hadoop dfs -copyToLocal output/part* WC-out
#Stop all demons and cleanup
stop-all.sh
myhadoop-cleanup.sh Home

Linux Login
nodeHadoop

Sample output trace
wordcount.1569018.comet-17-14.out

starting namenode, logging to /scratch/tyang/1569018/logs/hadoop-tyang-namenode-comet-17-14.out
comet-17-14.ibnet: starting datanode, logging to /scratch/tyang/1569018/logs/hadoop-tyang-datanode-

comet-17-14.sdsc.edu.out
comet-17-15.ibnet: starting datanode, logging to /scratch/tyang/1569018/logs/hadoop-tyang-datanode-

comet-17-15.sdsc.edu.out
comet-17-14.ibnet: starting secondarynamenode, logging to /scratch/tyang/1569018/logs/hadoop-tyang-

secondarynamenode-comet-17-14.sdsc.edu.out
starting jobtracker, logging to /scratch/tyang/1569018/logs/hadoop-tyang-jobtracker-comet-17-14.out
comet-17-14.ibnet: starting tasktracker, logging to /scratch/tyang/1569018/logs/hadoop-tyang-tasktracker-

comet-17-14.sdsc.edu.out
comet-17-15.ibnet: starting tasktracker, logging to /scratch/tyang/1569018/logs/hadoop-tyang-tasktracker-

comet-17-15.sdsc.edu.out

Sample output trace
wordcount.1569018.comet-17-14.out

16/01/31 17:43:44 INFO input.FileInputFormat: Total input paths to process : 1
16/01/31 17:43:44 INFO util.NativeCodeLoader: Loaded the native-hadoop library
16/01/31 17:43:44 WARN snappy.LoadSnappy: Snappy native library not loaded
16/01/31 17:43:44 INFO mapred.JobClient: Running job: job_201601311743_0001
16/01/31 17:43:45 INFO mapred.JobClient: map 0% reduce 0%
16/01/31 17:43:49 INFO mapred.JobClient: map 100% reduce 0%
16/01/31 17:43:56 INFO mapred.JobClient: map 100% reduce 33%
16/01/31 17:43:57 INFO mapred.JobClient: map 100% reduce 100%
16/01/31 17:43:57 INFO mapred.JobClient: Job complete: job_201601311743_0001

comet-17-14.ibnet: stopping tasktracker
comet-17-15.ibnet: stopping tasktracker
stopping namenode
comet-17-14.ibnet: stopping datanode
comet-17-15.ibnet: stopping datanode
comet-17-14.ibnet: stopping secondarynamenode
Copying Hadoop logs back to /home/tyang/cometcluster/logs...
`/scratch/tyang/1569018/logs' -> `/home/tyang/cometcluster/logs'

Home
Linux Login

nodeHadoop

Sample input and output

$ cat test.txt
how are you today 3 4 mapreduce program
1 2 3 test send
how are you mapreduce
1 send test USA california new

$ cat WC-out/part-r-00000
1 2
2 1
3 2
4 1
USA 1
are 2
california 1
how 2
mapreduce 2
new 1
program 1
send 2
test 2
today 1
you 2

Shell Commands for Hadoop File System
• Mkdir, ls, cat, cp

§ hadoop dfs -mkdir /user/deepak/dir1
§ hadoop dfs -ls /user/deepak
§ hadoop dfs -cat /usr/deepak/file.txt
§ hadoop dfs -cp /user/deepak/dir1/abc.txt /user/deepak/dir2

• Copy data from the local file system to HDF
§ hadoop dfs -copyFromLocal <src:localFileSystem>

<dest:Hdfs>
§ Ex: hadoop dfs –copyFromLocal

/home/hduser/def.txt /user/deepak/dir1
• Copy data from HDF to local

§ hadoop dfs -copyToLocal <src:Hdfs>
<dest:localFileSystem>

http://www.bigdataplanet.info/2013/10/All-Hadoop-Shell-Commands-you-need-Hadoop-Tutorial-Part-5.html

Notes

• Java process listing “jps”, shows the following demons
NameNode (master), SecondaryNameNode, Datanode
(hadoop),JobTracker, TaskTracker

• To check the status of your job
squeue -u username

• To cancel a submitted job
scancel job-id

• You have to request *all* 24 cores on the nodes. Hadoop is
java based and any memory limits start causing problems.
Also, in the compute partition you are charged for the whole
node anyway.

Notes

• Your script should delete the outout directory if you want to
rerun and copy out data to that directory. Otherwise the
Hadoop copy back fails because the file already exists.

The current script forces to remove "WC-output".
• If you are running several Mapreduce jobs simultaneously,

please make sure you choose different locations for for the
configuration files. Basically change the line:

export HADOOP_CONF_DIR=/home/$USER/cometcluster

to point to different directories for each run. Otherwise the
configuration from different jobs will overwrite in the same
directory and cause problems.

