
A Very Quick Introduction to CUDA

Burak Himmetoglu

Supercomputing Consultant

Enterprise Technology Services &
Center for Scientific Computing

University of California
Santa Barbara

e-mail: bhimmetoglu@ucsb.edu

mailto:bhimmetoglu@ucsb.edu

Hardware Basics

Control Unit
ALU ALU

ALUALU

Cache(s)

DRAM

DRAM

CPU GPU

• CPUs are latency oriented (minimize execution of serial code)
• GPUs are throughput oriented (maximize number of floating point operations)

CPU vs GPU threads

a
b
c

core 1 core 2

• If the CPU has n cores, each core processes 1/n elements
• Launching, scheduling threads adds overhead

a
b
c

• GPUs process one element per thread
• Scheduled by GPU hardware, not by OS

CUDA C
• Compute Unified Device Architecture
• NVIDIA GPUs can be programmed by CUDA, extension of C language (CUDA

Fortran is also available)
• CUDA C is compiled with nvcc
• Numerical libraries: cuBLAS, cuFFT, Magma, …

• Host —> CPU; Device —> GPU (They do not share memory!)
• The HOST launches a kernel that execute on the DEVICE
• A kernel is a data-parallel computation, executed by many threads.
• The number of threads are very large (~ 1000 or more)

Thread Organization

1 2 255 1 2 255 1 2 255 1 2 255

Block 0 Block 1 Block 2 Block n-1
Grid

CUDA C
• Threads are grouped into blocks.
• Each block shares memory.

Eg. Vector addition:

int main(void) {
…
vecAdd<<< blocksPerGrid, THREADS_PER_BLOCK >>> (d_A, d_B, d_C);
…

}

__global__ static void vecAdd (float *a, float *b, float *c){
…..

}

The __global__ qualifer alerts the compiler that the code block will run on the
DEVICE, but can be called from the HOST.

CUDA C
• Grids and threads can also be arranged in 2d arrays (useful for image

processing)

dim3 blocks(2,2)
dim3 threads(16,16)
….
kernel <<< blocks, threads >>>();
…

block(0,0) block(1,0)

block(0,1) block(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,15)

Thread
(1,15)

Code Example - 1

#include <stdio.h>

__device__ const char *STR = “HELLO WORLD!”;
const int STR_LENGTH = 12;

__global__ void hello(){
printf(“%c\n”, STR[threadId.x % STR_LENGTH]);

}

int main(void){
int threads_per_block = STR_LENGHT;
int blocks_per_grid = 1;

hello <<< blocks_per_grid, threads_per_block >>> ();

cudaDeviceSynchronize();

return 0;
}

Hello World!

Halt host thread execution on CPU until the device has finished
processing all previously requested tasks.

H
E
L
L
O

W
O
R
L
D
!

Output:

Code Example - 2
Vector Addition (Very large vectors)

e.g.: blockDim = 4, gridDim = 4

block 0

block 1

block 2

block 3

th 0 th 1 th 2 th 3

tid = th.id + blk.id * blk.dim
= 1 + 1 * 4
= 5

Code Example - 2
Vector Addition (Very large vectors)

+

=

a

b

c

e.g.: N = 256, blockDim = 2, gridDim = 2 —> offset = blockDim * gridDim

blockDim * gridDim

Code Example - 2
• Define arrays to be used on the HOST, and allocate memory.

• Copy arrays to the DEVICE

• Launch the kernel, then copy result from DEVICE to HOST

• Free memory

Code Example - 3
Dot product

• Recall, each Block shares memory!
• Each block will have a its own copy of cahce[], i.e. a partial result.
• Final step is reduction, i.e. summing all the partial results in cahce[] to obtain a

final answer.

vector for storing each block’s result
index used for storing

temp has the result within each block
For each block, there is a different cache
vector.
Wait until all threads finish!

Code Example - 3

Parallel reduction

Finally, write the final answer, with
one thread (serial).

+
+

+
+

BlockDim = 8Parallel reduction:
(Not the best one!)

Repeat for BlockDim/2
(i /=2); while (i !=0)

GPUs on Comet

•1944 Standard compute nodes
• 36 GPU Nodes:

•Intel Xeon E5-2680v3
•NVIDIA K80 GPUs (11GB)

GPU Examples:

/share/apps/examples/GPU

GPUs on Comet

#!/bin/bash
#SBATCH -p gpu-shared
#SBATCH —gres=gpu:1
#SBATCH —job-name=“hellocuda”
#SBATCH —output=“hellocuda.%j.%N.out”
#SBATCH -t 00:01:00
#SBATCH -A TG-SEE150004

cd ~/Working_directory

./hello_cuda.x

$ module load cuda
$ nvcc -o hello_cuda.x hello_cuda.cu

$ sbatch cuda.job

cuda.job

Exercise

• Vary THREADS_PER_BLOCK: 1, 2, 4, 8, 16, 32, 64, 128, 256
• Record the time printed

1. How many blocks are launched for each case?
2. Until what value the timing decreases linearly?
3. What is the explanation of the loss of the linear behavior after this value?

(Hint: search for “warps”)

Examine and run the code add_vec_times.cu and compare it with
add_vec_gpu_thd-blk.cu and answer the following questions:

