
1

CS240A: Applied Parallel
Computing

Introduction

2

CS 240A Course Information
• Web page:

http://www.cs.ucsb.edu/~tyang/class/240a17
• Class schedule: Tu/Th. 1pm-2:50pm Phelp 2510
• Instructor: Tao Yang (tyang at cs).

- Office Hours: Tu/Th 12-1pm(or email me for appointments or just stop by
my office). HFH building, Room 5113

3

Topics
• High performance computing

- Basics of computer architecture, clusters/cloud systems.
- Memory hierarchies,
- High throughput computing

• Parallel Programming Models and Machines.
Software/libraries

- Shared memory vs distributed memory
- Threads, OpenMP, MPI, MapReduce, Spark.
- SIMD

• Patterns of parallelism. Optimization techniques for
parallelization and performance

• Parallelism in Scientific Computing and Applications
- Core algorithms (Dense & Sparse Linear Algebra)

• Parallelism in data-intensive applications and systems

4

What you should get out of the course

In depth understanding of:

• How to maximize the use of CPU/cache for high
performance computing

• When is parallel computing useful?

• Understanding of parallel computing hardware options.
• Overview of programming models (software) and tools.
• Some parallel applications and the algorithms

• Performance analysis and tuning
• Exposure to various open research questions

5

Introduction: Outline

• Why powerful computers must be parallel computing

• Why parallel processing?
- Large Computational Science and Engineering (CSE) problems

require powerful computers
- Commercial data-oriented computing also needs.

• Basic parallel performance models
• Why writing (fast) parallel programs is hard

Including your laptops and handhelds

all

6

Metrics in Scientific Computing Worlds

• High Performance Computing (HPC) units are:
- Flop: floating point operation, usually double precision unless noted
- Flop/s: floating point operations per second
- Bytes: size of data (a double precision floating point number is 8)

• Typical sizes are millions, billions, trillions…
Mega Mflop/s = 106 flop/sec Mbyte = 220 = 1048576 ~ 106 bytes
Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes
Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes
Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes
Exa Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes
Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes
Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes

• Current fastest (public) machine ~ 27 Pflop/s
- Up-to-date list at www.top500.org

7

Revolution in Processors

• Chip density is continuing increase ~2x every 2 years
(Moore’s Law)

• Clock speed is not
• Number of processor cores may double instead
• Power is under control, no longer growing

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)

Frequency (MHz)

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)
Frequency (MHz)
Cores

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)
Frequency (MHz)
Power (W)
Cores

8

Impact of Parallelism
• All major processor vendors are producing multicore chips

- Every machine will soon be a parallel machine
- To keep doubling performance, parallelism must double

• Which commercial applications can use this parallelism?
- Do they have to be rewritten from scratch?

• Will all programmers have to be parallel programmers?
- New software model needed
- Try to hide complexity from most programmers – eventually

• Computer industry betting on this big change, but does not
have all the answers

9

Memory is Not Keeping Pace

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Memory density is doubling every three years; processor logic is every two

Question: Can you double concurrency without doubling memory?
• Strong scaling: fixed problem size, increase number of processors
• Weak scaling: grow problem size proportionally to number of

processors

• Listing the 500 most powerful computers
in the world

• Linpack performance
- Solve Ax=b, dense problem, matrix is random
- Dominated by dense matrix-matrix multiply

• Update twice a year:
- ISC’xy in June in Germany
- SCxy in November in the U.S.

• All information available from the TOP500
web site at: www.top500.org

The TOP500 Project

Rank Site System Cores
Rmax
(TFlop/s)

Rpeak
(TFlop/s)

Power
(kW)

1 National
Super
Computer
Center in
Guangzhou
China

Tianhe-2
(MilkyWay-2) -
TH-IVB-FEP
Cluster, Intel
Xeon E5-2692
12C 2.200GHz,
TH Express-2,
Intel Xeon Phi
31S1P
NUDT

3M 33,862.7 54,902.4 17,808

2 DOE/SC/O
ak Ridge
National
Laboratory
United
States

Titan - Cray XK7
, Opteron 6274
16C 2.200GHz,
Cray Gemini
interconnect,
NVIDIA K20x
Cray Inc.

560,640 17,590.0 27,112.5 8,209

From www.top500.org, Nov 2015

Rank Site System Cores
Rmax
(TFlop/s)

Rpeak
(TFlop/s)

Power
(kW)

1 Sunway
TaihuLight -
National
Supercompu
ting Center
in Wuxi
China

Sunway
TaihuLight -

Sunway MPP,
Sunway

SW26010
260C

1.45GHz

10.6M 15,371 125,435 15,371

4 Titan
DOE/SC/Oa
k Ridge
National
Laboratory
United
States

Cray XK7,
Opteron 6274
16C
2.200GHz,
Cray Gemini
interconnect,
NVIDIA K20x

560,640 17,590 27,112 8,209

From www.top500.org, June 2017

Moore’s Law reinterpreted

• Number of cores per chip will double every
two years

• Clock speed will not increase (possibly
decrease)

• Need to deal with systems with millions of
concurrent threads

• Need to deal with inter-chip parallelism as
well as intra-chip parallelism

14

Outline

• Why powerful computers must be parallel processors

• Large Computational Science&Engineering and
commercial problems require powerful computers

• Basic performance models

• Why writing (fast) parallel programs is hard

Including your laptops and handhelds

all

15

Some Particularly Challenging Computations
• Science

- Global climate modeling
- Biology: genomics; protein folding; drug design
- Astrophysical modeling
- Computational Chemistry
- Computational Material Sciences and Nanosciences

• Engineering
- Semiconductor design
- Earthquake and structural modeling
- Computation fluid dynamics (airplane design)
- Combustion (engine design)
- Crash simulation

• Business
- Financial and economic modeling
- Transaction processing, web services and search engines

• Defense
- Nuclear weapons -- test by simulations
- Cryptography

16

Economic Impact of HPC
• Airlines:

- System-wide logistics optimization systems on parallel systems.
- Savings: approx. $100 million per airline per year.

• Automotive design:
- Major automotive companies use large systems (500+ CPUs) for:

- CAD-CAM, crash testing, structural integrity and
aerodynamics.

- One company has 500+ CPU parallel system.
- Savings: approx. $1 billion per company per year.

• Semiconductor industry:
- Semiconductor firms use large systems (500+ CPUs) for

- device electronics simulation and logic validation
- Savings: approx. $1 billion per company per year.

• Energy
- Computational modeling improved performance of current

nuclear power plants, equivalent to building two new power
plants.

17

Drivers for Changes in Computational Science

Nature, March 23, 2006

“An important development in
sciences is occurring at the
intersection of computer science and
the sciences that has the potential to
have a profound impact on science.” -
Science 2020 Report, March 2006

• Continued exponential increase in computational
power ® simulation is becoming third pillar of
science, complementing theory and experiment

• Continued exponential increase in experimental data
® Big data analysis w/o machine learning,
visualization, and networked collaboration are
becoming essential in all data rich scientific
applications

18

Simulation: The Third Pillar of Science
• Traditional scientific and engineering method:

(1) Do theory or paper design
(2) Perform experiments or build system

• Limitations:
–Too difficult—build large wind tunnels
–Too expensive—build a throw-away passenger jet
–Too slow—wait for climate or galactic evolution
–Too dangerous—weapons, drug design, climate

experimentation

• Computational science and engineering paradigm:
(3) Use computers to simulate and analyze the phenomenon
- Based on known physical laws and efficient numerical methods
- Analyze simulation results with computational tools and

methods beyond what is possible manually

Simulation

Theory Experiment

19

$5B World Market in Technical Computing

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
1998 1999 2000 2001 2002 2003 Other

Technical Management and
Support
Simulation

Scientific Research and R&D

Mechanical
Design/Engineering Analysis
Mechanical Design and
Drafting
Imaging

Geoscience and Geo-
engineering
Electrical Design/Engineering
Analysis
Economics/Financial

Digital Content Creation and
Distribution
Classified Defense

Chemical Engineering

Biosciences

Source: IDC 2004, from NRC Future of Supercomputing Report

20

Supercomputing in Auto Industry
• NVIDIA Boosts IQ of Self-Driving Cars With World's First

In-Car Artificial Intelligence Supercomputer.

Jan 4, 2016.

21

Global Climate Modeling Problem
• Problem is to compute:

f(latitude, longitude, elevation, time) à “weather” =
(temperature, pressure, humidity, wind velocity)

• Approach:
- Discretize the domain, e.g., a measurement point every 10 km
- Devise an algorithm to predict weather at time t+dt given t

• Uses:
- Predict major events,

e.g., hurricane, El Nino
- Use in setting air

emissions standards
- Evaluate global warming

scenarios

22

Global Climate Modeling Computation
• One piece is modeling the fluid flow in the atmosphere

- Solve Navier-Stokes equations
- Roughly 100 Flops per grid point with 1 minute timestep

• Computational requirements:
- To match real-time, need 5 x 1011 flops in 60 seconds = 8 Gflop/s
- Weather prediction (7 days in 24 hours) à 56 Gflop/s
- Climate prediction (50 years in 30 days) à 4.8 Tflop/s
- To use in policy negotiations (50 years in 12 hours) à 288 Tflop/s

• To double the grid resolution, computation is 8x to 16x
• State of the art models require integration of

atmosphere, clouds, ocean, sea-ice, land models, plus
possibly carbon cycle, geochemistry and more

• Current models are coarser than this

Scalable Web Service/Processing
Infrastructure

23

•Infrastructure scalability:
Bigdata: Tens of billions of
documents in web search
Tens/hundreds of thousands of
machines.
Tens/hundreds of Millions of
users
Impact on response time,
throughput, &availability,

�Platform software
�Google GFS, MapReduce and
Bigtable .
�fundamental building blocks for
fast data update/access and
development cycles

…

Motif/Dwarf: Common Computational Methods
(Red Hot ® Blue Cool)

What do commercial and CSE applications have in common?

25

Outline

• Why powerful computers must be parallel processors

• Large CSE/commerical problems require powerful
computers

• Performance models

• Why writing (fast) parallel programs is hard

Including your laptops and handhelds

all

26

Principles of Parallel Computing
• Finding enough parallelism (Amdahl’s Law)

• Granularity
• Locality
• Load balance
• Coordination and synchronization

• Performance modeling

All of these things makes parallel programming
even harder than sequential programming.

27

“Automatic” Parallelism in Modern Machines
• Bit level parallelism

- within floating point operations, etc.

• Instruction level parallelism (ILP)
- multiple instructions execute per clock cycle

• Memory system parallelism
- overlap of memory operations with computation

• OS parallelism
- multiple jobs run in parallel on commodity SMPs

• I/O parallelism in storage level
Limits to all of these -- for very high performance, need
user to identify, schedule and coordinate parallel tasks

28

Finding Enough Parallelism
• Suppose only part of an application seems parallel

• Amdahl’s law
- let x be the fraction of work done sequentially, so

(1-x) is fraction parallelizable
- P = number of processors

Speedup(P) = Time(1)/Time(P)

<= 1/(x + (1-x)/P)

<= 1/s
• Even if the parallel part speeds up perfectly

performance is limited by the sequential part

9/29/17 29

Caveat: Amdahl’s Law

Gene Amdahl
Computer Pioneer

30

Overhead of Parallelism
• Given enough parallel work, this is the biggest barrier to

getting desired speedup
• Parallelism overheads include:

- cost of starting a thread or process
- cost of accessing data, communicating shared data
- cost of synchronizing
- extra (redundant) computation

• Each of these can be in the range of milliseconds
(=millions of flops) on some systems

• Tradeoff: Algorithm needs sufficiently large units of work
to run fast in parallel (i.e. large granularity), but not so
large that there is not enough parallel work

31

Locality and Parallelism

• Large memories are slow, fast memories are small
• Storage hierarchies are large and fast on average
• Parallel processors, collectively, have large, fast cache

- the slow accesses to “remote” data we call “communication”

• Algorithm should do most work on local data

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional
Storage
Hierarchy

Proc
Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

potential
interconnects

32

Load Imbalance
• Load imbalance is the time that some processors in the

system are idle due to
- insufficient parallelism (during that phase)
- unequal size tasks

• Examples of the latter
- adapting to “interesting parts of a domain”
- tree-structured computations
- fundamentally unstructured problems

• Algorithm needs to balance load
- Sometimes can determine work load, divide up evenly, before starting

- “Static Load Balancing”
- Sometimes work load changes dynamically, need to rebalance

dynamically
- “Dynamic Load Balancing”

33

Improving Real Performance

0.1

1

10

100

1,000

2000 2004
Te

ra
flo

ps
1996

Peak Performance grows exponentially,
a la Moore’s Law
● In 1990’s, peak performance increased 100x;

in 2000’s, it will increase 1000x

But efficiency (the performance relative to
the hardware peak) has declined
● was 40-50% on the vector supercomputers

of 1990s
● now as little as 5-10% on parallel

supercomputers of today
Close the gap through ...
● Mathematical methods and algorithms that

achieve high performance on a single
processor and scale to thousands of
processors

● More efficient programming models and tools
for massively parallel supercomputers

Performance
Gap

Peak Performance

Real Performance

34

Performance Levels
• Peak performance

- Sum of all speeds of all floating point units in the system
- You can’t possibly compute faster than this speed

• LINPACK
- The “hello world” program for parallel performance
- Solve Ax=b using Gaussian Elimination, highly tuned

• Gordon Bell Prize winning applications performance
- The right application/algorithm/platform combination plus years of work

• Average sustained applications performance
- What one reasonable can expect for standard applications

When reporting performance results, these levels are
often confused, even in reviewed publications

35

Performance Levels (for example on NERSC-5)
• Peak advertised performance (PAP): 100 Tflop/s

• LINPACK (TPP): 84 Tflop/s

• Best climate application: 14 Tflop/s
- WRF code benchmarked in December 2007

• Average sustained applications performance: ? Tflop/s
- Probably less than 10% peak!

• We will study performance
- Hardware and software tools to measure it
- Identifying bottlenecks
- Practical performance tuning (Matlab demo)

Coping with Failures
• 4 disks/server, 50,000 servers
• Failure rate of disks: 2% to 10% / year

-Assume 4% annual failure rate
• On average, how often does a disk fail?

a)1 / month
b)1 / week
c)1 / day
d)1 / hour

36

Coping with Failures
• 4 disks/server, 50,000 servers
• Failure rate of disks: 2% to 10% / year

-Assume 4% annual failure rate
• On average, how often does a disk fail?

a)1 / month
b)1 / week
c)1 / day
d)1 / hour

37

50,000 x 4 = 200,000 disks
200,000 x 4% = 8000 disks fail

365 days x 24 hours = 8760 hours
d

Dependability via Redundancy

• Redundancy so that a failing piece doesn’t make the whole
system fail

38

1+1=2 1+1=2 1+1=1

1+1=2
2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy

Dependability via Redundancy

• Applies to everything from datacenters to storage
to memory to instructors

- Redundant datacenters so that can lose 1 datacenter
but Internet service stays online

- Redundant disks so that can lose 1 disk but not lose
data (Redundant Arrays of Independent Disks/RAID)

- Redundant memory bits of so that can lose 1 bit but no
data (Error Correcting Code/ECC Memory)

39

40

What you should get out of the course

In depth understanding of:

• When is parallel computing useful?
• Understanding of parallel computing hardware options.
• Overview of programming models (software) and tools.
• Some important parallel applications and the algorithms

• Performance analysis and tuning
• Exposure to various open research questions

41

Course Deadlines (Tentative)
• Week 2: join Google discussion group. Open Comet cluster account.

• End of Oct
- HW1 (C programming)
- 1-page project proposal.

The content includes: Problem description, challenges (what is new?),
what to deliver, how to test and what to measure, milestones, and
references

- Meet with me

• Nov 20 week: Paper review presentation and project
progress.

• End of Nov
- . HW2 due. (Python or Java programming)

• Final Week. Take-home exam. Final project presentation/report.

• Weight distribution:
- CS/CE Track: Project 40%. Exam 40%. HW 20%
- Others: HW is not required, more Project Load (60%)

