
CS240A, T. Yang

1

Parallel
Programming with

OpenMP

2

A Programmer’s View of OpenMP
• What is OpenMP?

• Open specification for Multi-Processing
• “Standard” API for defining multi-threaded shared-memory

programs
• openmp.org – Talks, examples, forums, etc.

• OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax

• Exact behavior depends on OpenMP implementation!
• Requires compiler support (C or Fortran)

• OpenMP will:
• Allow a programmer to separate a program into serial regions and

parallel regions, rather than T concurrently-executing threads.
• Hide stack management
• Provide synchronization constructs

• OpenMP will not:
• Parallelize automatically
• Guarantee speedup
• Provide freedom from data races

3

Motivation – OpenMP

int main() {

// Do this part in parallel

printf("Hello, World!\n");

return 0;
}

4

Motivation – OpenMP

int main() {

omp_set_num_threads(4);

// Do this part in parallel
#pragma omp parallel
{

printf("Hello, World!\n");
}

return 0;
}

Printf Printf Printf Printf

All OpenMP directives begin: #pragma

OpenMP parallel region construct
• Block of code to be executed by multiple threads in

parallel
• Each thread executes the same code redundantly

(SPMD)
• Work within work-sharing constructs is distributed among the

threads in a team
• Example with C/C++ syntax
#pragma omp parallel [clause [clause] ...] new-line

structured-block
• clause can include the following:

private (list)
shared (list)
• Example: OpenMP default is shared variables
To make private, need to declare with pragma:

#pragma omp parallel private (x)

OpenMP Programming Model - Review

• Fork - Join Model:

• OpenMP programs begin as single process (master thread) and
executes sequentially until the first parallel region construct is
encountered

• FORK: Master thread then creates a team of parallel threads
• Statements in program that are enclosed by the parallel region construct are

executed in parallel among the various threads
• JOIN: When the team threads complete the statements in the parallel region

construct, they synchronize and terminate, leaving only the master thread

6

Sequential
code

Thread 1
Thread 0
Thread 1

Thread 0

parallel Pragma and Scope – More Examples

#pragma omp parallel num_threads(2)
{
x=1;
y=1+x;
}

7

X=1;

y=1+x;
x=1;

y=1+x;

X and y are shared variables. There is a risk of data race

parallel Pragma and Scope - Review

#pragma omp parallel
{
x=1;
y=1+x;
}

8

X=1;

y=1+x;
x=1;

y=1+x;

X and y are shared variables. There is a risk of data race

Assume number of threads=2
Thread 0 Thread 1

parallel Pragma and Scope - Review

#pragma omp parallel num_threads(2)
{

x=1; y=1+x;
}

9

X=1;

y=x+1;
x=1;

y=x+1;

X and y are shared variables. There is a risk of data race

Divide for-loop for parallel sections

for (int i=0; i<8; i++) x[i]=0; //run on 4 threads

#pragma omp parallel
{
int numt=omp_get_num_thread();
int id = omp_get_thread_num(); //id=0, 1, 2, or 3
for (int i=id; i<8; i +=numt)

x[i]=0;

}

10

Id=0;
x[0]=0;
X[4]=0;

Id=1;
x[1]=0;
X[5]=0;

Id=2;
x[2]=0;
X[6]=0;

Id=3;
x[3]=0;
X[7]=0;

// Assume number of threads=4

Thread 0 Thread 1 Thread 2 Thread 3

Use pragma parallel for

for (int i=0; i<8; i++) x[i]=0;

#pragma omp parallel for
{

for (int i=0; i<8; i++)
x[i]=0;

}
System divides loop iterations to threads

11

Id=0;
x[0]=0;
X[4]=0;

Id=1;
x[1]=0;
X[5]=0;

Id=2;
x[2]=0;
X[6]=0;

Id=3;
x[3]=0;
X[7]=0;

OpenMP Data Parallel Construct: Parallel Loop
• Compiler calculates loop bounds for each thread directly

from serial source (computation decomposition)
• Compiler also manages data partitioning
• Synchronization also automatic (barrier)

13

Programming Model – Parallel Loops
• Requirement for parallel loops

• No data dependencies
(reads/write or write/write
pairs) between iterations!

• Preprocessor calculates loop
bounds and divide iterations
among parallel threads

?
for(i=0; i < 25; i++)
{

printf(“Foo”);

}

#pragma omp parallel for

Example

for (i=0; i<max; i++) zero[i] = 0;

• Breaks for loop into chunks, and allocate each to a
separate thread

• e.g. if max = 100 with 2 threads:
assign 0-49 to thread 0, and 50-99 to thread 1

• Must have relatively simple “shape” for an OpenMP-aware
compiler to be able to parallelize it

• Necessary for the run-time system to be able to determine how
many of the loop iterations to assign to each thread

• No premature exits from the loop allowed
• i.e. No break, return, exit, goto statements

14

In general,
don’t jump
outside of

any pragma
block

Parallel Statement Shorthand

#pragma omp parallel
{
#pragma omp for
for(i=0;i<max;i++) { … }
}
can be shortened to:
#pragma omp parallel for
for(i=0;i<max;i++) { … }

• Also works for sections
15

This is the
only directive
in the parallel

section

Example: Calculating π

16

Sequential Calculation of π in C

#include <stdio.h> /* Serial Code */
static long num_steps = 100000;
double step;
void main () {

int i;
double x, pi, sum = 0.0;
step = 1.0/(double)num_steps;
for (i = 1; i <= num_steps; i++) {
x = (i - 0.5) * step;
sum = sum + 4.0 / (1.0 + x*x);

}
pi = sum / num_steps;
printf ("pi = %6.12f\n", pi);

}
17

Parallel OpenMP Version (1)
#include <omp.h>
#define NUM_THREADS 4
static long num_steps = 100000; double step;

void main () {
int i; double x, pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
#pragma omp parallel private (i, x)
{
int id = omp_get_thread_num();
for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS)
{
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}
for(i=1; i<NUM_THREADS; i++)
sum[0] += sum[i]; pi = sum[0] / num_steps

printf ("pi = %6.12f\n", pi);
}

18

OpenMP Reduction

double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX; // bug

• Problem is that we really want sum over all threads!
• Reduction: specifies that 1 or more variables that are

private to each thread are subject of reduction operation at
end of parallel region:
reduction(operation:var) where

• Operation: operator to perform on the variables (var) at the end of the
parallel region

• Var: One or more variables on which to perform scalar reduction.

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX;

19

Sum+=A[0]
Sum+=A[1]

Sum+=A[2]
Sum+=A[3]

Sum+=A[0]
Sum+=A[1]

Sum+=A[2]
Sum+=A[3]

OpenMp: Parallel Loops with Reductions
• OpenMP supports reduce operation
sum = 0;
#pragma omp parallel for reduction(+:sum)
for (i=0; i < 100; i++) {
sum += array[i];
}

• Reduce ops and init() values (C and C++):
+ 0 bitwise & ~0 logical & 1
- 0 bitwise | 0 logical | 0
* 1 bitwise ^ 0

Calculating π Version (1) - review
#include <omp.h>
#define NUM_THREADS 4
static long num_steps = 100000; double step;

void main () {
int i; double x, pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
#pragma omp parallel private (i, x)
{
int id = omp_get_thread_num();
for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS)
{
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}
for(i=1; i<NUM_THREADS; i++)
sum[0] += sum[i]; pi = sum[0] / num_steps

printf ("pi = %6.12f\n", pi);
}

21

Version 2: parallel for, reduction
#include <omp.h>
#include <stdio.h>
/static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)

for (i=1; i<= num_steps; i++){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = sum / num_steps;

printf ("pi = %6.8f\n", pi);
}

22

Loop Scheduling in Parallel for pragma

#pragma omp parallel for
for (i=0; i<max; i++) zero[i] = 0;

• Master thread creates additional threads, each
with a separate execution context

• All variables declared outside for loop are
shared by default, except for loop index which is
private per thread (Why?)

• Implicit “barrier” synchronization at end of for
loop

• Divide index regions sequentially per thread
• Thread 0 gets 0, 1, …, (max/n)-1;
• Thread 1 gets max/n, max/n+1, …, 2*(max/n)-1
• Why?

23

Impact of Scheduling Decision
• Load balance

• Same work in each iteration?
• Processors working at same speed?

• Scheduling overhead
• Static decisions are cheap because they require no run-time

coordination
• Dynamic decisions have overhead that is impacted by

complexity and frequency of decisions
• Data locality

• Particularly within cache lines for small chunk sizes
• Also impacts data reuse on same processor

OpenMP environment variables
OMP_NUM_THREADS

§ sets the number of threads to use during execution
§ when dynamic adjustment of the number of threads is enabled, the

value of this environment variable is the maximum number of
threads to use

§ For example,
setenv OMP_NUM_THREADS 16 [csh, tcsh]
export OMP_NUM_THREADS=16 [sh, ksh, bash]

OMP_SCHEDULE

§ applies only to do/for and parallel do/for directives that
have the schedule type RUNTIME

§ sets schedule type and chunk size for all such loops
§ For example,
setenv OMP_SCHEDULE GUIDED,4 [csh, tcsh]
export OMP_SCHEDULE= GUIDED,4 [sh, ksh, bash]

26

Programming Model – Loop Scheduling
•schedule clause determines how loop iterations are

divided among the thread team
•static([chunk]) divides iterations statically between

threads
• Each thread receives [chunk] iterations, rounding as necessary

to account for all iterations
• Default [chunk] is ceil(# iterations / # threads)

•dynamic([chunk]) allocates [chunk] iterations per thread,
allocating an additional [chunk] iterations when a thread
finishes

• Forms a logical work queue, consisting of all loop iterations
• Default [chunk] is 1

•guided([chunk]) allocates dynamically, but [chunk] is
exponentially reduced with each allocation

Loop scheduling options

2(2)

28

Programming Model – Data Sharing
• Parallel programs often employ

two types of data
• Shared data, visible to all

threads, similarly named
• Private data, visible to a single

thread (often stack-allocated)

• OpenMP:
• shared variables are shared
• private variables are private

• PThreads:
• Global-scoped variables are

shared
• Stack-allocated variables are

private

// shared, globals

int bigdata[1024];

void* foo(void* bar) {

// private, stack

int tid;

/* Calculation goes

here */

}

int bigdata[1024];

void* foo(void* bar) {

int tid;

#pragma omp parallel \

shared (bigdata) \

private (tid)

{

/* Calc. here */

}

}

29

Programming Model - Synchronization
• OpenMP Synchronization

• OpenMP Critical Sections
• Named or unnamed
• No explicit locks / mutexes

• Barrier directives

• Explicit Lock functions
• When all else fails – may

require flush directive

• Single-thread regions within
parallel regions
• master, single directives

#pragma omp critical
{
/* Critical code here */

}

#pragma omp barrier

omp_set_lock(lock l);
/* Code goes here */
omp_unset_lock(lock l);

#pragma omp single
{
/* Only executed once */

}

Omp critical vs. atomic
int sum=0
#pragma omp parallel for
for(int j=1; j <n; j++){

int x = j*j;
#pragma omp critical
{

sum=sum+x;// One thread enters the critical section at a time.

}
* May also use

#pragma omp atomic
x += exper

• Faster, but can support only limited arithmetic operation such as
++, --, +=, -=, *=, /=, &=, |=

30

OpenMP Timing

• Elapsed wall clock time:
double omp_get_wtime(void);

• Returns elapsed wall clock time in seconds
• Time is measured per thread, no guarantee can be made that two

distinct threads measure the same time
• Time is measured from “some time in the past,” so subtract

results of two calls to omp_get_wtime to get elapsed time

31

Parallel Matrix Multiply: Run Tasks Ti in parallel on
multiple threads

T1

T1 T2

Parallel Matrix Multiply: Run Tasks Ti in parallel on
multiple threads

33

T2

T1 T2

Matrix Multiply in OpenMP

// C[M][N] = A[M][P] × B[P][N]
start_time = omp_get_wtime();
#pragma omp parallel for private(tmp, j, k)
for (i=0; i<M; i++){
for (j=0; j<N; j++){
tmp = 0.0;
for(k=0; k<P; k++){
/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/
tmp += A[i][k] * B[k][j];

}
C[i][j] = tmp;

}
}

run_time = omp_get_wtime() - start_time;

34

Outer loop spread across
N threads;

inner loops inside a single
thread

35

OpenMP Summary
• OpenMP is a compiler-based technique to create

concurrent code from (mostly) serial code
• OpenMP can enable (easy) parallelization of loop-based

code with fork-join parallelism
•pragma omp parallel
•pragma omp parallel for
•pragma omp parallel private (i, x)
•pragma omp atomic
•pragma omp critical
•#pragma omp for reduction(+ : sum)

• OpenMP performs comparably to manually-coded
threading

• Not a silver bullet for all applications

