
Shared Memory Programming
with Pthreads

T. Yang. UCSB CS240A.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Outline

• Shared memory programming: Overview
• POSIX pthreads
• Critical section & thread synchronization.

§ Mutexes.
§ Producer-consumer synchronization and

semaphores.
§ Barriers and condition variables.
§ Read-write locks.

• Thread safety.

C
hapter Subtitle

Processes/Threads in Shared Memory
Architecture

• A process is an instance of a running (or
suspended) program.

• Threads are analogous to a “light-weight” process.
• In a shared memory program a single process may

have multiple threads of control.

P1

shsh sh

foo

T1 Process hierarchy
A process T2

T4

T5 T3

shared code, data
and kernel context

Execution Flow on one-core or multi-core
systems

Concurrent execution on a single core system: Two threads run
concurrently if their logical flows overlap in time

Parallel execution on a multi-core system

Benefits of multi-threading

• Responsiveness

• Resource Sharing
§ Shared memory

• Economy

• Scalability
§ Explore multi-core CPUs

6

Thread Programming with Shared Memory
• Program is a collection of threads of control.
§ Can be created dynamically

• Each thread has a set of private variables, e.g., local stack
variables

• Also a set of shared variables, e.g., static variables, shared
common blocks, or global heap.
§ Threads communicate implicitly by writing and reading

shared variables.
§ Threads coordinate by synchronizing on shared

variables

PnP1P0

s s = ...
Shared memory

i: 2 i: 5 Private
memory

i: 8

7

Shared Memory Programming

Several Thread Libraries/systems
• Pthreads is the POSIX Standard

§ Relatively low level
§ Portable but possibly slow; relatively heavyweight

• OpenMP standard for application level programming
§ Support for scientific programming on shared memory
§ http://www.openMP.org

• Java Threads
• TBB: Thread Building Blocks

§ Intel
• CILK: Language of the C “ilk”

§ Lightweight threads embedded into C

8

Overview of POSIX Threads

• POSIX: Portable Operating System Interface for
UNIX
§ Interface to Operating System utilities

• PThreads: The POSIX threading interface
§ System calls to create and synchronize threads
§ In CSIL, compile a c program with gcc -lpthread

• PThreads contain support for
§ Creating parallelism and synchronization
§ No explicit support for communication, because

shared memory is implicit; a pointer to shared data
is passed to a thread

Creation of Unix processes vs. Pthreads

C function for starting a thread

Copyright © 2010, Elsevier
Inc. All rights Reserved

pthread.h

pthread_t

int pthread_create (
pthread_t* thread_p /* out */ ,
const pthread_attr_t* attr_p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg_p /* in */) ;

One object for
each thread.

A closer look (1)

Copyright © 2010, Elsevier
Inc. All rights Reserved

int pthread_create (
pthread_t* thread_p /* out */ ,
const pthread_attr_t* attr_p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg_p /* in */) ;

We won’t be using, so we just pass NULL.

Allocate before calling.

A closer look (2)

Copyright © 2010, Elsevier
Inc. All rights Reserved

int pthread_create (
pthread_t* thread_p /* out */ ,
const pthread_attr_t* attr_p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg_p /* in */) ;

The function that the thread is to run.

Pointer to the argument that should
be passed to the function start_routine.

Function started by pthread_create
• Prototype:

void* thread_function (void* args_p) ;

• Void* can be cast to any pointer type in C.

• So args_p can point to a list containing one or
more values needed by thread_function.

• Similarly, the return value of thread_function can
point to a list of one or more values.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Wait for Completion of Threads

pthread_join(pthread_t *thread, void
**result);

§ Wait for specified thread to finish. Place exit value
into *result.

• We call the function pthread_join once for each
thread.

• A single call to pthread_join will wait for the thread
associated with the pthread_t object to complete.

Copyright © 2010, Elsevier
Inc. All rights Reserved

Example of Pthreads

#include <pthread.h>
#include <stdio.h>
void *PrintHello(void * id){

printf(“Thread%d: Hello World!\n", id);
}

void main (){
pthread_t thread0, thread1;
pthread_create(&thread0, NULL, PrintHello, (void *) 0);
pthread_create(&thread1, NULL, PrintHello, (void *) 1);

}

Example of Pthreads with join

#include <pthread.h>
#include <stdio.h>
void *PrintHello(void * id){

printf(“Hello from thread %d\n", id);
}

void main (){
pthread_t thread0, thread1;
pthread_create(&thread0, NULL, PrintHello, (void *) 0);
pthread_create(&thread1, NULL, PrintHello, (void *) 1);
pthread_join(thread0, NULL);
pthread_join(thread1, NULL);

}

Some More Pthread Functions

• pthread_yield();

§ Informs the scheduler that the thread is willing to yield
• pthread_exit(void *value);

§ Exit thread and pass value to joining thread (if exists)
Others:
• pthread_t me; me = pthread_self();

§ Allows a pthread to obtain its own identifier pthread_t
thread;

• Synchronizing access to shared variables
§ pthread_mutex_init, pthread_mutex_[un]lock

§ pthread_cond_init, pthread_cond_[timed]wait

Compiling a Pthread program

Copyright © 2010, Elsevier
Inc. All rights Reserved

gcc −g −Wall −o pth_hello pth_hello . c −lpthread

link in the Pthreads library

Running a Pthreads program

Copyright © 2010, Elsevier
Inc. All rights Reserved

. / pth_hello

. / pth_hello

Hello from thread 0
Hello from thread 1

Hello from thread 1
Hello from thread 0

Difference between Single and Multithreaded
Processes
Shared memory access for code/data
Separate control flow -> separate stack/registers

CRITICAL SECTIONS

Copyright © 2010, Elsevier
Inc. All rights Reserved

Data Race Example

Thread 0

for i = 0, n/2-1
s = s + f(A[i])

Thread 1

for i = n/2, n-1
s = s + f(A[i])

static int s = 0;

• Also called critical section problem.
• A race condition or data race occurs when:

- two processors (or two threads) access the same variable,
and at least one does a write.

- The accesses are concurrent (not synchronized) so they
could happen simultaneously

Synchronization Solutions

1. Busy waiting
2. Mutex (lock)
3. Semaphore
4. Conditional Variables

Example of Busy Waiting

Thread 0
int temp, my_rank
for i = 0, n/2-1

temp0=f(A[i])
while flag!=my_rank;
s = s + temp0
flag= (flag+1) %2

Thread 1
int temp, my_rank
for i = n/2, n-1

temp=f(A[i])
while flag!=my_rank;
s = s + temp
flag= (flag+1) %2

static int s = 0;
static int flag=0

• A thread repeatedly tests a condition, but, effectively, does no
useful work until the condition has the appropriate value.
•Weakness: Waste CPU resource. Sometime not safe with
compiler optimization.

Mutexes (Locks)

• Code structure

• Mutex (mutual exclusion) is a special type of variable
used to restrict access to a critical section to a single
thread at a time.

• guarantee that one thread “excludes” all other threads
while it executes the critical section.

• When A thread waits on a mutex/lock,
CPU resource can be used by others.
• Only thread that has acquired the lock
can release this lock

Acquire mutex lock

Critical section

Unlock/Release mutex

Execution example with 2 threads

Acquire mutex lock

Critical section

Unlock/Release mutex

Acquire mutex lock

Critical section

Unlock/Release mutex

Thread 1 Thread 2

Mutexes in Pthreads

• A special type for mutexes: pthread_mutex_t.

• To gain access to a critical section, call

• To release

• When finishing use of a mutex, call

Copyright © 2010, Elsevier
Inc. All rights Reserved

Global sum function that uses a mutex (1)

Copyright © 2010, Elsevier
Inc. All rights Reserved

Global sum function that uses a mutex (2)

Copyright © 2010, Elsevier
Inc. All rights Reserved

Semaphore: Generalization from mutex
locks

• Semaphore S – integer variable
• Can only be accessed /modified via two
(atomic) operations with the following
semantics:

§ wait (S) { //also called P()
while S <= 0 wait in a queue;
S--;

}
§ post(S) { //also called V()

S++;
Wake up a thread that waits in the queue.

}

Why Semaphores?

• Examples of complex synchronization
§ Allow a resource to be shared among multiple

threads.
– Mutex: no more than 1 thread for one protected region.

§ Allow a thread waiting for a condition after a signal
– E.g. Control the access order of threads entering the

critical section.
– For mutexes, the order is left to chance and the system.

Synchronization Functionality/weakness
Busy waiting Spinning for a condition. Waste

resource. Not safe
Mutex lock Support code with simple mutual

exclusion
Semaphore Handle more complex signal-based

synchronization

Syntax of Pthread semaphore functions

Copyright © 2010, Elsevier
Inc. All rights Reserved

Semaphores are not part of Pthreads;
you need to add this.

Producer-consumer
Synchronization and
Semaphores

Copyright © 2010, Elsevier
Inc. All rights Reserved

Producer-Consumer Example

• Thread x produces a message for Thread x+1.
§ Last thread produces a message for thread 0.

• Each thread prints a message sent from its source.
• Will there be null messages printed?

§ A consumer thread prints its source message before
this message is produced.

§ How to avoid that?

T0 T1 T2

Flag-based Synchronization with 3 threads

Write a msg to #1

Set msg[1]

Thread 0

If msg[0] is ready

Print msg[0]

Write a msg to #2

Set msg[2]

Thread 1

If msg[1] is ready

Print msg[1]

Write a msg to #0

Set msg[0]

Thread 2

If msg[2] is ready

Print msg[2]

To make sure a message is received/printed, use busy waiting.

First attempt at sending messages using pthreads

Copyright © 2010, Elsevier
Inc. All rights Reserved

Produce a message for a destination
thread

Consume a message

Semaphore Synchronization with 3 threads

Write a msg to #1

Set msg[1]
Post(semp[1])

Thread 0

Wait(semp[0])
Print msg[0]

Write a msg to #2

Set msg[2]
Post(semp[2])

Thread 1

Wait(semp[1])
Print msg[1]

Write a msg to #0

Set msg[0]
Post(semp[0])

Thread 2

Wait(semp[2])
Print msg[2]

Message sending with semaphores

sprintf(my_msg, "Hello to %ld from %ld", dest, my_rank);
messages[dest] = my_msg;

sem_post(&semaphores[dest]);
/* signal the dest thread*/

sem_wait(&semaphores[my_rank]);
/* Wait until the source message is created */

printf("Thread %ld > %s\n", my_rank,
messages[my_rank]);

READERS-WRITERS PROBLEM

Copyright © 2010, Elsevier
Inc. All rights Reserved

Synchronization Example for Readers-Writers Problem

• A data set is shared among a number of concurrent
threads.
§ Readers – only read the data set; they do not perform any

updates
§ Writers – can both read and write

• Requirement:
§ allow multiple readers to read at the same time.
§ Only one writer can access the shared data at the same

time.
• Reader/writer access permission table:

Reader Writer

Reader OK No
Writer NO No

Readers-Writers (First try with 1 mutex lock)

• writer
do {

mutex_lock(w);
// writing is performed
mutex_unlock(w);

} while (TRUE);
• Reader

do {
mutex_lock(w);
// reading is performed
mutex_unlock(w);

} while (TRUE);

Reader Writer

Reader ? ?
Writer ? ?

Readers-Writers (First try with 1 mutex lock)

• writer
do {

mutex_lock(w);
// writing is performed
mutex_unlock(w);

} while (TRUE);
• Reader

do {
mutex_lock(w);
// reading is performed
mutex_unlock(w);

} while (TRUE);

Reader Writer

Reader no no
Writer no no

2nd try using a lock + readcount

• writer
do {

mutex_lock(w);// Use writer mutex lock
// writing is performed
mutex_unlock(w);

} while (TRUE);
• Reader

do {
readcount++; // add a reader counter.
if(readcount==1) mutex_lock(w);
// reading is performed
readcount--;

if(readcount==0) mutex_unlock(w);
} while (TRUE);

Readers-Writers Problem with semaphone

• Shared Data
§ Data set
§ Lock mutex (to protect readcount)
§ Semaphore wrt initialized to 1 (to

synchronize between
readers/writers)

§ Integer readcount initialized to 0

Readers-Writers Problem

• A writer
do {

sem_wait(wrt) ; //semaphore wrt

// writing is performed

sem_post(wrt) ; //
} while (TRUE);

Readers-Writers Problem (Cont.)

• Reader
do {

mutex_lock(mutex);
readcount ++ ;
if (readcount == 1)

sem_wait(wrt); //check if anybody is writing
mutex_unlock(mutex)

// reading is performed

mutex_lock(mutex);
readcount - - ;
if (readcount == 0)

sem_post(wrt) ; //writing is allowed now
nlock(mutex) ;

} while (TRUE);

Barriers

• Synchronizing the threads to make sure that they all
are at the same point in a program is called a barrier.

• No thread can cross the barrier until all the threads
have reached it.

• Availability:
§ No barrier provided by

Pthreads library and needs
a custom implementation

§ Barrier is implicit in
OpenMP

and available in MPI.
Copyright © 2010, Elsevier

Inc. All rights Reserved

Condition Variables

• Why?
• More programming primitives to simplify code for

synchronization of threads

Synchronization Functionality
Busy waiting Spinning for a condition. Waste resource.

Not safe
Mutex lock Support code with simple mutual

exclusion
Semaphore Signal-based synchronization. Allow

sharing (not wait unless semaphore=0)

Barrier Rendezvous-based synchronization

Condition
variables

More complex synchronization: Let
threads wait until a user-defined
condition becomes true

Synchronization Primitive: Condition Variables

• Used together with a lock
• One can specify more general waiting

condition compared to semaphores.
• A thread is blocked when condition is no

true:
§ placed in a waiting queue, yielding

CPU resource to somebody else.
§ Wake up until receiving a signal

Pthread synchronization: Condition
variablesint status; pthread_condition_t cond;

const pthread_condattr_t attr;

pthread_mutex mutex;

status = pthread_cond_init(&cond,&attr);

status = pthread_cond_destroy(&cond);

status = pthread_cond_wait(&cond,&mutex);

-wait in a queue until somebody wakes up. Then the mutex is
reacquired.

status = pthread_cond_signal(&cond);

- wake up one waiting thread.

status = pthread_cond_broadcast(&cond);

- wake up all waiting threads in that condition

§ Thread 1: //try to get into critical section and
wait for the condition

Mutex_lock(mutex);
While (condition is not satisfied)

Cond_Wait(mutex, cond);
Critical Section;

Mutex_unlock(mutex)

§ Thread 2: // Try to create the condition.
Mutex_lock(mutex);
When condition can satisfy, Signal(cond);
Mutex_unlock(mutex);

How to Use Condition Variables: Typical
Flow

Producer deposits data in a buffer for others to consume

Condition variables for in producer-
consumer problem with unbounded buffer

First version for consumer-producer problem
with unbounded buffer

• int avail=0; // # of data items available for consumption
• Consumer thread:

while (avail <=0); //wait
Consume next item; avail = avail-1;

§ Producer thread:

Produce next item; avail = avail+1;
//notify an item is available

Condition Variables for consumer-producer
problem with unbounded buffer

• int avail=0; // # of data items available for consumption
• Pthread mutex m and condition cond;
• Consumer thread:

multex_lock(&m)
while (avail <=0) Cond_Wait(&cond, &m);
Consume next item; avail = avail-1;
mutex_unlock(&mutex)

§ Producer thread:
mutex_lock(&m);
Produce next item; availl = avail+1;
Cond_signal(&cond); //notify an item is available
mutex_unlock(&m);

When to use condition broadcast?

• When waking up one thread to run
is not sufficient.

• Example: concurrent malloc()/free()
for allocation and deallocation of
objects with non-uniform sizes.

Running trace of malloc()/free()
• Initially 10 bytes are free.
• m() stands for malloc(). f() for free()

Thread 1:
m(10) – succ
f(10) –broadcast

m(7) – wait

Resume m(7)-wait

Thread 2:
m(5) – wait

Resume m(5)-succ

f(5) –broadcast

Thread 3:
m(5) – wait

Resume m(5)-succ

m(3) –wait

Resume m(3)-succ

Time

Issues with Threads: False Sharing,
Deadlocks, Thread-safety

Copyright © 2010, Elsevier
Inc. All rights Reserved

Problem: False Sharing
• Occurs when two or more processors/cores access

different data in same cache line, and at least one
of them writes.
§ Leads to ping-pong effect.

• Let’s assume we parallelize code with p=2:
for(i=0; i<n; i++)

a[i] = b[i];
§ Each array element takes 8 bytes
§ Cache line has 64 bytes (8 numbers)

False Sharing: Example (2 of 3)

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

cache line

Written by CPU 0
Written by CPU 1

Execute this program in two processors
for(i=0; i<n; i++)

a[i] = b[i];

False Sharing: Example

CPU0

CPU1

a[0]

a[1]

a[2] a[4]

a[3] a[5]

...inv data

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

cache lineWritten by CPU 0
Written by CPU 1

Two CPUs execute:
for(i=0; i<n; i++)

a[i] = b[i];

Matrix-Vector Multiplication with
Pthreads

Parallel programming book by Pacheco book P.159-162

Sequential code

Block Mapping for Matrix-Vector Multiplication

• Task partitioning
For (i=0; i<m; i=i+1)

Task graph

Mapping to
threads

Task Si for Row i
y[i]=0;
For (j=0; j<n; j=j+1)

y[i]=y[i] +a[i][j]*x[j]

S0 S1 Sm
...

S0 S1 ...
Thread 0

S2 S3

Thread 1

Using 3 Pthreads for 6 Rows: 2 row per
thread

Code for Si

S2, S3
S4,S5

S0, S1

Code for S0

Pthread code for thread with ID rank

Copyright © 2010, Elsevier
Inc. All rights Reserved

Task Si

i-th thread calls Pth_mat_vect(&i)
m is # of rows in this matrix A.
n is # of columns in this matrix A.
local_m is # of rows handled by
this thread.

Impact of false sharing on performance of
matrix-vector multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved

(times are in seconds)

Why is performance of
8x8,000,000 matrix bad?
How to fix that?

Deadlock and Starvation

• Deadlock – two or more threads are waiting
indefinitely for an event that can be only caused by
one of these waiting threads

• Starvation – indefinite blocking (in a waiting queue
forever).
■ Let S and Q be two mutex locks:

P0 P1

Lock(S); Lock(Q);
Lock(Q); Lock(S);

. .

. .

. .
Unlock(Q); Unlock(S);
Unlock(S); Unlock(Q);

Deadlock Avoidance

• Order the locks and always acquire the locks in
that order.

• Eliminate circular waiting
■ :

P0 P1

Lock(S); Lock(S);
Lock(Q); Lock(Q);

. .

. .

. .
Unlock(Q); Unlock(Q);
Unlock(S); Unlock(S);

Thread-Safety

• A block of code is thread-safe if it can be
simultaneously executed by multiple threads without
causing problems.

• When you program your own functions, you know if
they are safe to be called by multiple threads or not.

• You may forget to check if system library functions
used are thread-safe.
§ Unsafe function: strtok()from C string.h library
§ Other example.

– The random number generator random in stdlib.h.
– The time conversion function localtime in time.h.

Concluding Remarks

• A thread in shared-memory programming is analogous
to a process in distributed memory programming.
§ However, a thread is often lighter-weight than a full-

fledged process.
• When multiple threads access a shared resource

without controling, it may result in an error: we have a
race condition.
§ A critical section is a block of code that updates a

shared resource that can only be updated by one
thread at a time

§ Mutex, semaphore, condition variables
• Issues: false sharing, deadlock, thread safety

Copyright © 2010, Elsevier
Inc. All rights Reserved

