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Classification

• Given:
– A description of an instance, x
– A fixed set of categories (classes):                          

C={c1, c2,…cn}
– Training examples

• Determine:
– The category of x: h(x)ÎC, where h(x) is a 

classification function

• A training example is an instance x, paired 
with its correct category c(x):         <x, c(x)>
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Sample  Learning Problem

• Instance space: <size, color, shape>
– size Î {small, medium, large}
– color Î {red, blue, green}
– shape Î {square, circle, triangle}

• C = {positive, negative}
• D: Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative
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General Learning Issues

• Many hypotheses are usually consistent with the 
training data.

• Bias
– Any criteria other than consistency with the training 

data that is used to select a hypothesis.
• Classification accuracy (% of instances classified 

correctly).
– Measured on independent test data.

• Training time (efficiency of training algorithm).
• Testing time (efficiency of subsequent 

classification).
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Text Categorization/Classification

• Assigning documents to a fixed set of categories.
• Applications:

– Web pages 
• Recommending/ranking
• category classification

– Newsgroup Messages 
• Recommending
• spam filtering

– News articles 
• Personalized newspaper

– Email messages 
• Routing
• Prioritizing 
• Folderizing
• spam filtering
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Learning for Classification

• Manual development of text classification 
functions is difficult.

• Learning Algorithms:
– Bayesian (naïve)
– Neural network
– Rocchio
– Rule based (Ripper)
– Nearest Neighbor (case based)
– Support Vector Machines (SVM)
– Decision trees
– Boosting algorithms
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Illustration of Rocchio method
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Rocchio Algorithm

Assume the set of categories is {c1, c2,…cn}
Training:
Each doc vector is the frequency normalized TF/IDF term vector.
For i from 1 to n

Sum all the document vectors in ci to get prototype vector  pi

Testing:  Given document x
Compute the cosine similarity of x with each prototype vector.
Select one with the highest similarity value and return its category
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Rocchio Anomoly   

• Prototype models have problems with 
polymorphic (disjunctive) categories.
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Nearest-Neighbor Learning Algorithm

• Learning is just storing the representations of the 
training examples in D.

• Testing instance x:
– Compute similarity between x and all examples in D.
– Assign x the category of the most similar example in D.

• Does not explicitly compute a generalization or 
category prototypes.

• Also called:
– Case-based
– Memory-based
– Lazy learning
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K Nearest-Neighbor

• Using only the closest example to determine 
categorization is subject to errors due to:
– A single atypical example. 
– Noise (i.e. error) in the category label of a 

single training example.
• More robust alternative is to find the k

most-similar examples and return the 
majority category of these k examples.

• Value of k is typically odd to avoid ties, 3 
and 5 are most common.
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Similarity Metrics

• Nearest neighbor method depends on a 
similarity (or distance) metric.

• Simplest for continuous m-dimensional 
instance space is Euclidian distance.

• Simplest for m-dimensional binary instance 
space is Hamming distance (number of 
feature values that differ).

• For text, cosine similarity of TF-IDF 
weighted vectors is typically most effective.
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3 Nearest Neighbor Illustration
(Euclidian Distance)
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...



15

K Nearest Neighbor for Text

Training:
For each each training example <x, c(x)> Î D

Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> Î D

Let sx = cosSim(d, dx)
Sort examples, x, in D by decreasing value of sx
Let N be the first k examples in D.     (get most similar neighbors)
Return the majority class of examples in N
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Illustration of 3 Nearest Neighbor for Text
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Bayesian Classification
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Bayesian Methods

• Learning and classification methods based 
on probability theory.
– Bayes theorem plays a critical role in 

probabilistic learning and classification.
• Uses prior probability of each category

– Based on training data
• Categorization produces a posterior

probability distribution over the possible 
categories given a description of an item.
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Basic Probability Theory

• All probabilities between 0 and 1

• True proposition has probability 1, false has 
probability 0. 

P(true) = 1        P(false) = 0.
• The probability of  disjunction is:
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Conditional Probability 

• P(A | B) is the probability of A given B
• Assumes that B is all and only information 

known.
• Defined by:
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Independence

• A and B are independent iff:

• Therefore, if A and B are independent:

)()|( APBAP =

)()|( BPABP =
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These two constraints are logically equivalent
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Joint Distribution
• Joint probability distribution for X1,…,Xn gives the probability of every 

combination of values: P(X1,…,Xn)
– All values must sum to 1.

• Probability for assignments of values to some subset of variables can 
be calculated by summing the appropriate subset

• Conditional probabilities can also be calculated.

Color\shape circle square

red 0.20 0.02
blue 0.02 0.01

circle square
red 0.05 0.30
blue 0.20 0.20

Category=positive negative
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80.0
25.0
20.0

)(
)()|( ==

Ù
ÙÙ

=Ù
circleredP

circleredpositivePcircleredpositiveP

57.03.005.002.020.0)( =+++=redP



23

Computing probability from a training 
dataset

Probability Y=positive negative
P(Y) 0.5 0.5

P(small | Y) 0.5 0.5
P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5
P(red | Y) 1.0 0.5
P(blue | Y) 0.0 0.5
P(green | Y) 0.0 0.0
P(square | Y) 0.0 0.0
P(triangle | Y) 0.0 0.5
P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:
<medium, red, circle>
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Bayes Theorem

Simple proof from definition of conditional probability:
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Bayesian Categorization

• Determine category of instance xk by determining for 
each yi

• P(X=xk) estimation is not needed in the algorithm to 
choose a classification decision via comparison.

• If really needed:
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Bayesian Categorization (cont.)

• Need to know:
– Priors: P(Y=yi) 
– Conditionals: P(X=xk | Y=yi)

• P(Y=yi) are easily estimated from training data. 
– If ni of the examples in training data D are in yi then 

P(Y=yi) =  ni / |D|
• Too many possible instances (e.g. 2n for binary 

features) to estimate all P(X=xk | Y=yi) in advance.
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Naïve Bayesian Categorization

• If we assume features of an instance are independent given 
the category (conditionally independent).

• Therefore, we then only need to know P(Xi | Y) for each 
possible pair of a feature-value and a category.
– ni of the examples in training data D are in yi

– nijof the examples in D with category yi 
– P(xij |Y=yi) =  ni j/ ni 

)|()|,,()|(
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i
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Underflow Prevention: 
Multiplying lots of probabilities may result in floating-point underflow.
Since log(xy) = log(x) + log(y), it is better to perform all computations 
by summing logs of probabilities.
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Computing probability from a training 
dataset

Probability Y=positive negative
P(Y) 0.5 0.5

P(small | Y) 0.5 0.5
P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5
P(red | Y) 1.0 0.5
P(blue | Y) 0.0 0.5
P(green | Y) 0.0 0.0
P(square | Y) 0.0 0.0
P(triangle | Y) 0.0 0.5
P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:
<medium, red, circle>
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Naïve Bayes Example

Probability Y=positive Y=negative
P(Y) 0.5 0.5

P(small | Y) 0.4 0.4
P(medium | Y) 0.1 0.2

P(large | Y) 0.5 0.4
P(red | Y) 0.9 0.3
P(blue | Y) 0.05 0.3
P(green | Y) 0.05 0.4
P(square | Y) 0.05 0.4
P(triangle | Y) 0.05 0.3
P(circle | Y) 0.9 0.3

Test Instance:
<medium ,red, circle>
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Naïve Bayes Example
Probability Y=positive Y=negative

P(Y) 0.5 0.5
P(medium | Y) 0.1 0.2

P(red | Y) 0.9 0.3
P(circle | Y) 0.9 0.3

P(positive | X) = P(Positive)*P(X/Positive)/P(X)
= P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)

0.5        *               0.1              *        0.9            *        0.9
=  0.0405 / P(X) 

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)
0.5       *              0.2               *        0.3             *     0.3

=  0.009 / P(X)

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1

P(X) = (0.0405 + 0.009) = 0.0495 

= 0.0405 / 0.0495 = 0.8181

= 0.009 / 0.0495 = 0.1818

Test Instance:
<medium ,red, circle>
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Error prone prediction with small 
training data

Probability Y=positive negative
P(Y) 0.5 0.5

P(small | Y) 0.5 0.5
P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5
P(red | Y) 1.0 0.5
P(blue | Y) 0.0 0.5
P(green | Y) 0.0 0.0
P(square | Y) 0.0 0.0
P(triangle | Y) 0.0 0.5
P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:
<medium, red, circle>

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 = 0

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 = 0



32

Smoothing

• To account for estimation from small samples, 
probability estimates are adjusted or smoothed.

• Laplace smoothing using an m-estimate assumes that 
each feature is given a prior probability, p, that is 
assumed to have been previously observed in a 
“virtual” sample of size m.

• For binary features, p is simply assumed to be 0.5.
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Laplace Smothing Example

• Assume training set contains 10 positive examples:
– 4: small
– 0: medium
– 6: large

• Estimate parameters as follows (if m=1, p=1/3)
– P(small | positive) = (4 + 1/3) / (10 + 1) =     0.394
– P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03
– P(large | positive) = (6 + 1/3) / (10 + 1) =      0.576
– P(small or medium or large | positive) =        1.0
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Naïve Bayes Classification 
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Evaluating Accuracy of Classification

• Evaluation must be done on test data that are independent of 
the training data 
– Classification accuracy: the  number of test instances 

correctly classified divided by total number of test instances 
– Average results over multiple training and test sets (splits of 

the overall data) for the best results.
• Not enough labeled data? N-fold cross-validation
• Partition data into N equal-sized disjoint segments.

– Run N trials, each time using a different segment of the 
data for testing, and training on the remaining N-1 
segments.

– This way, at least test-sets are independent.
– Report average classification accuracy over the N trials.
– Typically, N = 10.
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Sample Learning Curve
(Yahoo Science Data)
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Classification with Decision Trees



Decision Trees 
• Decision trees can express any function of the input attributes.
• E.g., for Boolean functions, truth table row → path to leaf:

• Trivially, there is a consistent decision tree for any training set with one path 
to leaf for each example (unless f nondeterministic in x) but it probably won't 
generalize to new examples

• Prefer to find more compact decision trees: we don’t want to memorize the 
data, we want to find structure in the data!



Decision Trees: Application Example

Problem: decide whether to wait for a table at 
a restaurant, based on the following 
attributes:

1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range ($, $$, $$$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)



Training data: Restaurant example
• Examples described by attribute values (Boolean, discrete, continuous)
• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)



A decision tree to decide whether to wait
• imagine someone talking a sequence of decisions.



Decision tree learning

• If there are so many possible trees, can we 
actually search this space? (solution: greedy 
search).

• Aim: find a small tree consistent with the 
training examples

• Idea: (recursively) choose "most significant" 
attribute as root of (sub)tree.



Choosing an attribute for making a 
decision

• Idea: a good attribute splits the examples 
into subsets that are (ideally) "all positive" 
or "all negative"

To wait or not to wait is still at 50%.



Information theory background: Entropy

• Entropy measures uncertainty
-p log (p)  - (1-p) log (1-p)

Consider tossing a biased coin.
If you toss the coin VERY often,
the frequency of heads is, say, p, 

and hence the frequency of tails is 
1-p. 

Uncertainty  (entropy) is zero if p=0 or 1
and maximal if we have p=0.5.



Using information theory for binary 
decisions

• Imagine we have p examples which are true 
(positive) and n examples which are false 
(negative). 

• Our best estimate of true or false is given by:

• Hence the entropy is given by:

( , ) log logp p pn n nEntropy
p n p n p n p n p n p n

» - -
+ + + + + +

( ) /
( ) /

P true p p n
p false n p n

» +

» +



Using information theory for more than 
2 states

• If there are more than two states s=1,2,..n we have 
(e.g. a die): 

( ) ( 1)log[ ( 1)]
( 2)log[ ( 2)]

...
( )log[ ( )]

Entropy p p s p s
p s p s

p s n p s n

= - = =

- = =

- = =

1
( ) 1

n

s
p s

=

=å



ID3 Algorithm: Using Information 
Theory to Choose an Attribute

• How much information do we gain if we disclose 
the value of some attribute?

• ID3 algorithm by Ross Quinlan uses information 
gained measured by maximum entropy reduction:
– IG(A) =  uncertainty before – uncertainty after
– Choose an attribute with the maximum IA



Before: Entropy = - ½ log(1/2) – ½ log(1/2)=log(2) = 1 bit: 
There is “1 bit of information to be discovered”. 

After: for Type: If we go into branch “French” we have 1 bit, similarly for the others.
French: 1bit
Italian: 1 bit
Thai: 1 bit

Burger: 1bit

After: for Patrons: In branch “None” and “Some” entropy = 0!, 
In “Full” entropy = -1/3log(1/3)-2/3log(2/3)=0.92

So Patrons gains more information!

On average: 1 bit and gained nothing!



Information Gain: How to combine 
branches

•1/6 of the time we enter “None”, so we weight“None” with 1/6. 
Similarly: “Some” has weight: 1/3 and “Full” has weight ½.    

1
( ) ( , )

n
i i i i

i i i i i

p n p nEntropy A Entropy
p n p n p n=

+
=

+ + +å

weight for each branch 

entropy for each branch.



Choose an attribute: Restaurant Example

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Patrons has the highest IG of all attributes and so is chosen by the DTL 
algorithm as the root
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Example: Decision tree learned

• Decision tree learned from the 12 examples:



Issues

• When there are no attributes left: 
– Stop growing and use majority vote.

• Avoid over-fitting data
– Stop growing a tree earlier
– Grow first, and prune later.

• Deal with continuous-valued attributes 
– Dynamically select thresholds/intervals.

• Handle missing attribute values
– Make up with common values

• Control  tree size
– pruning
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Classification with SVM



Two Class Problem: Linear Separable 
Case with a Hyperplane

Class 1

Class 2

Class 1

Class 2

Many decision boundaries can separate classes  using a hyperplane.
Which one should we choose?

Example of Bad Decision Boundaries

Class 1

Class 2
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Support Vector Machine (SVM)

Support vectors

Maximize
margin

• SVMs maximize the margin
around the separating hyperplane.

• A.k.a. large margin 
classifiers

• The decision function is fully 
specified by a subset of training 
samples, the support vectors.

• Quadratic programming problem
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Two ranking signals are used (Cosine text similarity score, proximity of term appearance window)

Example DocID Query Cosine score Judgment

37 linux operating 
system 0.032 3 relevant

37 penguin logo 0.02 4 nonrelevant

238 operating system 0.043 2 relevant

238 runtime 
environment 0.004 2 nonrelevant

1741 kernel layer 0.022 3 relevant

2094 device driver 0.03 2 relevant

3191 device driver 0.027 5 nonrelevant

Training examples for document ranking
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Cosine score

Term proximity
2 3 4 5

0.025

R
R

RR
R

R

R

NN NN
N

N

N
N

N
R

R

0

Proposed scoring function for ranking
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• w:  weight coefficients
• xi: data point i
• yi: class result of data point i (+1 or -1)
• Classifier is: f(xi) = sign(wTxi + b)

Formalization

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ
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Linear Support Vector Machine (SVM)

• Hyperplane
wT x + b = 0
wT x + b = 1
wT x + b = -1

Support vectors
datapoints that the 
margin
pushes up against

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

n ρ = ||xa–xb||2 = 2/||w||2

n ||w||2 = wTw
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Linear SVM Mathematically

• Assume that all data is at least distance 1 from the hyperplane, then the 
following two constraints follow for a training set {(xi ,yi)} 

• For support vectors, the inequality becomes an equality
• Then, each example’s distance from the hyperplane is

• The margin of dataset is:

wTxi + b ≥ 1    if yi = 1

wTxi + b ≤ -1   if yi = -1

w
2

=r

w
xw byr

T +
=



The Optimization Problem

• Let {x1, ..., xn} be our data set and let yi Î
{1,-1} be the class label of xi

• The decision boundary should classify all 
points correctly Þ

• A constrained optimization problem
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Classification with SVMs

• Given a new point (x1,x2), we can score its 
projection onto the hyperplane normal:
– In 2 dims: score = w1x1+w2x2+b.

• I.e., compute score: wx + b = Σαiyixi
Tx + b

– Set confidence threshold t.

3
5
7

Score > t: yes

Score < -t: no

Else: don’t know
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Soft Margin Classification  

• If the training set is not 
linearly separable, slack 
variables ξi can be added to 
allow misclassification of 
difficult or noisy examples.

• Allow some errors
– Let some points be 

moved to where they 
belong, at a cost

• Still, try to minimize training 
set errors, and to place 
hyperplane “far” from each 
class (large margin)

ξj

ξi



Soft margin

• We allow “error” xi in classification; it is based on 
the output of the discriminant function wTx+b

• xi approximates the number of misclassified samples

Class 1

Class 2

New objective function:

C : tradeoff parameter between 
error and margin; 

chosen by the user; 
large C means a higher 

penalty to errors
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Soft Margin Classification 
Mathematically

• The old formulation:

• The new formulation incorporating slack variables:

• Parameter C can be viewed as a way to control overfitting – a 
regularization term

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and    ξi ≥ 0 for all i
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Non-linear SVMs

• Datasets that are linearly separable (with some noise) work out great:

• But what are we going to do if the dataset is just too hard? 

• How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x
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Non-linear SVMs:  Feature spaces

• General idea:   the original feature space 
can always be mapped to some higher-
dimensional feature space where the 
training set is separable:

Φ:  x→ φ(x)



Transformation to Feature Space

• “Kernel tricks”

– Make non-separable problem separable.
– Map data into better representational space

f(  )

f(  )

f(  )
f(  )f(  )

f(  )

f(  )f(  )

f(.) f(  )

f(  )

f(  )
f(  )
f(  )

f(  )

f(  )

f(  )
f(  ) f(  )

Feature spaceInput space



Example Transformation

• Consider the following transformation

• Define the kernel function K (x,y) as 

• SVM computation involves pair-wise vector 
product. The inner product f(.)f(.) can be 
computed by K without going through the map f(.) 
explicitly!



Choosing a Kernel Function
nActive research on kernel function choices for different 

applications
nExamples:

nPolynomial kernel with degree d
nRadial basis function (RBF) kernel

or sometime
nClosely related to radial basis function neural networks

nIn practice, a low degree polynomial kernel or RBF kernel is a 
good initial try



Example: 5 1D data points

Value of discriminant function

1 2 4 5 6

class 2 class 1class 1

We use the polynomial kernel of 
degree 2
K(x,y) = (xy+1)2



Software

• A list of SVM implementation can be found 
at http://www.kernel-
machines.org/software.html

• Some implementation (such as LIBSVM) 
can handle multi-class classification

• SVMLight is among one of the earliest 
implementation of SVM

• Several Matlab toolboxes for SVM are also 
available
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• Most (over)used data set
• 21578 documents
• 9603 training, 3299 test articles (ModApte split)
• 118 categories

– An article can be in more than one category
– Learn 118 binary category distinctions

• Average document: about 90 types, 200 tokens
• Average number of classes assigned

– 1.24 for docs with at least one category
• Only about 10 out of 118 categories are large

Common categories
(#train, #test)

Evaluation:  Reuters News Data Set 

• Earn (2877, 1087) 
• Acquisitions (1650, 179)
• Money-fx (538, 179)
• Grain (433, 149)
• Crude (389, 189)

• Trade (369,119)
• Interest (347, 131)
• Ship (197, 89)
• Wheat (212, 71)
• Corn (182, 56)
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New Reuters: RCV1: 810,000 docs

• Top topics in Reuters RCV1
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Dumais et al. 1998: 
Reuters - Accuracy

Recall: % labeled in category among those stories that are really in category
Precision: % really in category among those stories labeled in category
Break Even: (Recall + Precision) / 2

Rocchio NBayes Trees LinearSVM
earn 92.9% 95.9% 97.8% 98.2%
acq 64.7% 87.8% 89.7% 92.8%
money-fx 46.7% 56.6% 66.2% 74.0%
grain 67.5% 78.8% 85.0% 92.4%
crude 70.1% 79.5% 85.0% 88.3%
trade 65.1% 63.9% 72.5% 73.5%
interest 63.4% 64.9% 67.1% 76.3%
ship 49.2% 85.4% 74.2% 78.0%
wheat 68.9% 69.7% 92.5% 89.7%
corn 48.2% 65.3% 91.8% 91.1%

Avg Top 10 64.6% 81.5% 88.4% 91.4%
Avg All Cat 61.7% 75.2% na 86.4%
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Results for Kernels (Joachims 1998)
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Micro- vs. Macro-Averaging

• If we have more than one class, how do we 
combine multiple performance measures 
into one quantity?

• Macroaveraging: Compute performance for 
each class, then average.

• Microaveraging: Collect decisions for all 
classes, compute contingency table, 
evaluate.
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Micro- vs. Macro-Averaging: Example
Truth: yes Truth: no

Classifier: 
yes

10 10

Classifier: 
no

10 970

Truth: yes Truth: no

Classifier: 
yes

90 10

Classifier: 
no

10 890

Truth: yes Truth: no

Classifier: 
yes

100 20

Classifier: 
no

20 1860

Class 1 Class 2

Micro.Av. Table

n Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
n Microaveraged precision: 100/120 = .83
n Why this difference?
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The Real World

• How much training data do you have? None, very little, 
quite a lot, a huge amount and its growing

• Manually written rules
– No training data, adequate editorial staff?
– Never forget the hand-written rules solution!

• If (wheat or grain) then categorize as grain
– With careful crafting (human tuning on development 

data) performance is high:
• 94% recall, 84% precision over 675 categories 

(Hayes and Weinstein 1990)
– Amount of work required is huge

• Estimate 2 days per class … plus maintenance
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Which methods to use?

• A reasonable amount of data
– Good with SVM, Trees
– Be prepared with the “hybrid” solution.

• A huge amount of data
– SVMs (train time) or kNN (test time) can be 

too expensive.
– Naïve Bayes, logistic regression
– Trees including  boosting trees, random forests


