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Abstract

A highly available large-scale service cluster often re-
quires the system to discover new nodes and identify failed
nodes quickly in order to handle a high volume of traffic.
Determining node membership promptly in such an envi-
ronment is critical to location-transparent service invoca-
tion, load balancing, and failure shielding. In this paper, we
present a topology-adaptive hierarchical membership ser-
vice which dynamically divides the entire cluster into mem-
bership groups based on the network topology among nodes
so that the liveness of a node within each group is pub-
lished to others in a highly efficient manner. The proposed
approach has been compared with two alternatives: an all-
to-all multicast approach and a gossip based approach. The
results show that the proposed approach is scalable and ef-
fective in terms of high membership accuracy, short view
convergence time, and low communication cost.

1. Introduction

Many Internet services, such as AOL [1], Ask Jeeves [2],
Google [13], MSN [20], and Yahoo [32], are hosted in large-
scale clusters with thousands of machines. These services
are typically organized into a multi-tiered architecture, with
data partitioning and replication at each tier for high avail-
ability. In this way, frequent component and network fail-
ures due to hardware faults, software bugs and operational
errors can be masked [21, 23, 26].

Membership service is an essential component of these
Internet services. The goal of the membership service is to
maintain a yellow page directory of all cluster nodes, in-
cluding both the aliveness and service information. For a
service consumer node, the aliveness information is often
used to avoid sending requests to a non-functioning node,
and the service information is used to make well-informed
decision, load balancing for instance [10, 27]. The require-
ments for membership service for such applications are that

1) Every node needs to receive updated membership infor-
mation within a delay as short as possible when there is a
change. 2) The number of messages to propagate in the pro-
tocol needs to be minimized. 3) Tolerance of faults in nodes
and networks needs to be considered for high availability.

The architecture of a membership service can be central-
ized, where a stand-alone server provides membership in-
formation to all the service nodes (e.g., Google FS [12]),
or distributed, where every consumer maintains its own yel-
low page directory (e.g., Neptune [28]). Though easier to
implement, the centralized approach is not scalable and the
central server is a single point of failure. Furthermore, it in-
troduces an additional delay during a service invocation for
contacting the membership server first to look up service
nodes.

In this paper, we propose an efficient, scalable, topology-
adaptive, distributed membership protocol for large-scale
cluster-based services. Nodes from a subnet form a group
and leaders are elected to form an additional hierarchy.
The protocol is topology-aware in the sense that cluster
nodes are automatically divided into subgroups based on
the physical network topology and a propagation hierarchy
is formed adaptively on such a topology. Such a protocol
reduces cross-network traffic and facilitates fault isolation
when there is a failure in the network. The above scheme is
more efficient and scalable than the naive broadcast-based
approach and a gossip-style approach. Our evaluation con-
firms that this approach has high membership accuracy,
short view convergence time, and low communication costs.

The rest of the paper is organized as follows. Section 2
describes the functionality and requirements of a member-
ship service in cluster-based environments. Section 3 de-
scribes our topology-aware protocol. Section 4 analyzes the
scalability of our approach with a comparison with two al-
ternatives. Section 5 presents the details of the implementa-
tion and our evaluation in a cluster with hundreds of nodes.
Section 6 discusses related work. Finally, Section 7 recaps
our findings and concludes the paper.



2. Problem Definitions and Approaches

A membership service maintains the directory of all
available service nodes, the types of their services, and other
application-specific status information. This information is
made available to all nodes. A membership service needs to
detect a change quickly when a node enters or leaves a clus-
ter or there is a network failure. With node membership in-
formation, when a node seeks a service from other nodes, it
can avoid unavailable replicas that are listed providing such
a service and select the best replica with the minimal work-
load. The consideration of networking infrastructure is im-
portant in designing an efficient membership protocol be-
cause the membership information is propagated through
such a network. Figure 1 demonstrates a sample layout of
an Internet service on clusters located in multiple hosting
centers. Each center contains a large cluster of computer
nodes which provides certain services to network users. A
service may be available from multiple hosting centers or
a service may be provided at one center and accessed from
another center. Since typically network service applications
localize communication and computation within a data cen-
ter, this paper focuses on the design of an efficient mem-
bership protocol in a large-scale cluster within a data cen-
ter. We have also extended our protocol to support mem-
bership information exchange among centers. Due to space
constraint, its details are left to a technical report.
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Figure 1: A sample cluster-based Internet service.

It is important that a membership service detects a node
failure and notifies appropriate nodes as fast as possi-
ble (e.g. within few seconds for a large cluster). Figure 2
demonstrates the importance of fast notification with an ex-
ample in an online document retrieval service we have

investigated recently [6]. In this case, a server node be-
comes unavailable at time 7 and the failure is detected at
time 12. Replication of this failed component does not
help within the short period of time from time 7 to 12 be-
cause new requests are still sent to this failed node. As a re-
sult, too many requests are accumulated waiting and all
system resources are exhausted. When all these nodes be-
come unresponsive, the entire auction service becomes
unavailable from time 10 to 13.

Another important consideration is to minimize commu-
nication needed in the membership protocol and tolerate
faults caused by unexpected switch failure or network par-
titions. As a large-scale cluster typically uses level 2 and
level 3 switches, exploiting the network topology can prop-
agate information following a hierarchy and localize proto-
col traffic within physical switches which in turn minimize
impact of switch failures.

Finally, the membership service should also quickly
adapt to changes in the network topology because the topol-
ogy can often change intentionally or unintentionally when
there is a service expansion, a network device upgrade, or
even an operational error.
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Figure 2: Service availability during the failure detection time.

One straightforward approach of a membership service
is to let every node periodically send its heartbeats to
other nodes and meanwhile collect heartbeats from other
nodes [28]. This is an all-to-all approach. Each heartbeat
packet contains service information and current load status
of a node. Every node builds its own membership directory
based on these heartbeat packets. This is a fully distributed
approach in the sense that every node maintains its mem-
bership directory independently. This scheme works fairly
well for a cluster of a small or medium size and it can toler-
ate switch failure and unexpected network partitions. But it
is not scalable for a large cluster with thousands of nodes for
which communication and computation overhead in main-
taining a local yellow page directory can be significant 1.

1 It is possible to modify this algorithm with a lazy broadcast ap-
proach if only certain information is needed, such as a detected failure



We performed an experiment that measures the member-
ship service overhead imposed on a Linux machine with
dual 1.4 GHz P-III processors when varying the number of
heartbeat packets received by this machine. The result of
this experiment is shown in Figure 3. If each node sends a
1024-byte heartbeat packet per second, the heartbeat pack-
ets can consume 4MB/s bandwidth for each node in a clus-
ter with 4000 nodes, which is 32% of the raw bandwidth of
a Fast Ethernet link from this node. It should be noted that
Gigabit cards for PC machines and a Gigabit switch with 24
Gigabit ports or less are cheap in today’s market, however a
high-end single Gigabit Ethernet switch with a large num-
ber of Gigabit ports (e.g. > 40) is still very expensive. As
a result, many large-scale clusters with hundreds or thou-
sands of machines in a production environment use Giga-
bit switches with fast Ethernet ports. It is possible to link a
few Gigabit switches of 24 Gigabit ports, and then commu-
nication bandwidth among these switches is limited within
few Gigabits and the overall all-to-all communication vol-
ume will easily surpass such a limit.
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Figure 3: Communication overhead of the all-to-all approach as
the cluster size increases.

An alternative approach used in wide-area network ap-
plications is gossip style membership service [24]. In a gos-
sip style approach, each node randomly selects a set of
neighbor nodes and sends them its current membership di-
rectory. The recipient nodes then update their own direc-
tories based on the new information. Given a rate of error
tolerance, this approach can control the amount of heart-
beat traffic by selecting an appropriate number of neigh-
bor nodes. This capability is essential in wide-area services
where bandwidth is limited, network latency is high and fast
multicast is usually unavailable. When it comes to low la-

(namely, broadcast only when there is a failure). Then such a scheme
may not be general for providing a periodic update of other service sta-
tus required by applications.

tency and high bandwidth system area networks, a gossip
style membership service has the problem of slow conver-
gence time and high communication overhead for maintain-
ing a complete view of the service cluster. Furthermore, its
probabilistic property does not guarantee 100% accuracy,
which can be unacceptable for some high reliable services.

Our intention is to pursue a hierarchical approach with a
tree structure for communicating membership information
in a large-scale cluster so communication cost can be re-
duced while change detection time is still competitive. Tree
communication has been studied in the previous work in
various different contexts and the challenge is to devise a
scheme which is topology-aware and adaptive so that net-
work communication is localized and minimized while net-
work failure can be effectively tolerated.

3. Topology-Adaptive Hierarchical Member-
ship Service

For machines in a large-scale cluster, we form a hierar-
chical tree among nodes. Note that the underlying network
topology does not necessarily need to be a tree. However,
each node is assumed to join the membership group through
only one network interface, which is generally true in prac-
tice. In general, an internal tree node passes the member-
ship information from its parent to children nodes, and also
it collects the information from its children and propagates
to its parent. The membership information from one child
of a node will be propagated to other children of this node.

In our protocol, an internal tree node and its children
form a communication group. Multicast is used within
the group for communication. A hierarchical tree is cre-
ated based on the network topology of level-3 switches by
exploiting the Time-To-Live (TTL) field in an IP packet
header. The original purpose of TTL is to prevent packets
falling into infinite routing loops. When an IP packet passes
a router, the router decreases the TTL of this packet by one
and forwards this packet to the right subnet. When the count
reaches zero, the packet will be discarded. We exploit this
feature to limit the scope of multicast packets within each
communication group.

3.1. Topology-adaptive Group Formation for
Node Joining

The key idea of our topology adaptive strategy is to form
a number of small multicast groups among cluster nodes us-
ing the topology information. The overlapping of these mul-
ticast groups forms a hierarchical structure among nodes.
The multicast within each group is highly efficient and the
scalability of the membership protocol is achieved by divid-
ing nodes into small groups. In this scheme, each node joins



join(local_addr)
{

ttl = 1;
channel = BASE_MULTICAST_CHANNEL;

while (ttl < MAX_TTL) {
join_group(channel, ttl);

if (channel has a leader) {
bootstrap with the leader;
break;

} else {
elect_leader(channel);
/*if there is only one node in

this group, this node is the leader*/
}
if (is_leader(local_addr)) {

ttl =ttl +1
channel = next_channel(channel);
continue;

}
break;

}
}

Figure 4: Pseudo-code for a node to join a communication group.

a multicast group with the same TTL value and each mul-
ticast group has a communication channel (following the
UDP protocol). As level 3 switches separate node multi-
cast communication with different TTL value, a topology-
aware hierarchy can be formed, which is also adaptive to
any topology change later on. Figure 4 illustrates the group
joining procedure performed by each node at startup time.

Initially when a node joins in, its TTL value is set to
one and it uses the base channel of the membership proto-
col. By listening to the selected multicast channel, the node
can find if there is a leader for the group. If there is a leader,
the node will use a bootstrap protocol to quickly build its lo-
cal yellow-page directory. Otherwise, an election process is
performed. If this newly-joined node is a leader in this mul-
ticast group, it increases its TTL value and joins the mem-
bership channel at a higher level. This process continues un-
til the maximum TTL count is reached, which is the largest
possible hop count according to its network topology of the
cluster.

The bootstrap protocol allows a newly joined node to
quickly build its local yellow-page directory. After know-
ing the leader, the node contacts the leader to retrieve the
membership information that the leader knows. Meanwhile,
the leader of this communication group also queries this
newly joined node for its membership information in case
that the new node is a leader for another group in a lower
level. When the new information is obtained, the group
leader of this new node propagates the information further
to all group members using an update propagation proto-
col, which will be discussed in Section 3.3.

Group election determines a leader for a group using the
bully algorithm [5]. Each node is assigned a unique ID (e.g.,

IP address). The node with the lowest ID becomes the group
leader. If there is already a group leader, a node will not
participate the leader election. To reduce the chance of re-
election due to failure of a leader, each group maintains a
group leader and a backup leader. The backup leader is ran-
domly chosen by the group leader and it will take over the
leadership if the primary leader fails. This allows quick re-
covery if only the primary leader fails. When both the pri-
mary and the backup leader fail, the election algorithm is
performed to select a new leader, which will designate a
backup leader thereafter.

It should be noted that if a group only has one mem-
ber (i.e. a first joined node), then this node is the default
leader. There could be a number of multicast groups with
one member, especially when the joining process reaches
a high TTL value. We still keep such groups for topology
adaptivity because some new nodes may join in the future.
Since the maximum TTL value is normally small in a large
cluster, there should not be many such groups. The commu-
nication cost is negligible for groups with only one mem-
ber, because the corresponding router multicast tree is very
small.

3.2. Properties and Examples

The above group formation process creates a hierarchical
tree where leaves are cluster nodes and internal tree nodes
are leaders elected. We define the level of a group as the
TTL value of the group minus one, and we can prove that a
hierarchical tree derived based on the topology has follow-
ing properties:

• All alive nodes in the cluster will be eventually in-
cluded in the hierarchical tree if there is no net-
work partition. With network partitions, forests will
be formed and every node will be in one of trees. That
means that the status change of a node will be propa-
gated to all nodes connected in the same tree.

• If a node is present in a group of certain level, it is
aware of the group leader when the group is in the
steady state. Therefore, it can inform its group leader
when a change is detected, i.e. messages can be prop-
agated upwards.

• If a node is present at level i, it must join as leaders in
lower level groups, 0, 1, ..., i−1. This means a change
message at level i will be propagated to lower levels,
i.e. messages can be propagated downwards.

We illustrate the node joining protocol with two exam-
ples. The first example is based on California data center of
Figure 1 in Section 2. In total, four multicast groups have
been formed to build a hierarchical membership propaga-
tion tree with the maximum TTL value as 2. Groups 0a,
0b, and 0c are formed with TTL value one. With TTL value



one, packets from one member of these three groups can-
not pass the level-3 switch to reach another group. Each of
the three groups elects a leader, which joins Group 1a with
TTL value two.
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Figure 5: The left and the right of the figure show physical net-
work layout and membership groups respectively.

The second example is illustrated in Figure 5 with nine
multicast groups formed in this case for hierarchical com-
munication. Nodes A, B and C are leaders for groups
0a, 0b, and 0c respectively. In the next level, node A forms
its own group with TTL=2. The reason is that node A can-
not reach node B with two hops. Then nodes A and B form
a group called 2a with TTL=3 because they can reach each
other with 3 hops. Similarly node B and C form group 2b
with TTL=3. We assume that B is selected as a leader in
group 2a. In group 2b, B is also elected. Then B forms a
group by itself with TTL=4.

3.3. Update Protocol for Cluster Change

Membership change should be made aware to the nodes
in the entire cluster. In our scheme, a multicast group
leader propagates such information promptly by notifying
its members and its parent group.

We have discussed the node joining process in the above
subsection. For detecting the departure of a node due to
failure or an operation decision, we use the heart beating
method. A node always continuously multicasts its avail-
ability (heartbeat messages) in each multicast group it re-
sides. Since multicast heartbeat packets may get lost, a node
is considered dead only when no heartbeat packet is re-
ceived from the node after a pre-defined time period.

When a multicast group leader receives an update from
its child group, it needs to further multicast the update in-
formation in its parent multicast group. Similarly when a

leader receives an update message from its parent multicast
group, it needs to multicast the new information to its child
multicast group. In this way, an update of node status can
be propagated to the entire cluster quickly. Figure 6 illus-
trates the propagation of an update message. Nodes B, E
and H are the leaders of groups 0a, 0b, and 0c respectively.
Node E is the leader of group 1a. Assume node C is dead
in group 0a, and node B detects this failure and removes
C from its membership directory. Then node B also multi-
casts this update to its parent group 1a at Step 2. At step 3,
node E forwards this information to all nodes in group 0b
through multicast after it receives this update at group 1a.
At step 4, all nodes at group 0b update its local member-
ship directory. Concurrently, all nodes at group 0c update
its membership directory also and exclude node C.
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Figure 6: Propagation of an update message. The circled numbers
show the propagation order of the update message.

We want to add two techniques in the design of the above
update protocol.

• Handling unexpected network partitions or switch
failure with hierarchical timeout. When a leader
brings in new information on the group or subgroup
it manages, other groups need to remember that this
leader is in charge for the specific group. If a group
leader is considered to be dead, then all nodes man-
aged by this leader are considered dead tentatively by
other groups, mainly for detecting a switch failure.

For example in Figure 6, if node B is dead, it is
possible that it is caused by an unexpected network
partition or switch failure so that all nodes in group
0a can be non-accessible from groups 0b and 0c. The
other multicast groups in the system first assume that
all nodes in group 0a are dead and purge them from the
membership directory as a possible switch failure, and



then let the new leader in group 0a re-announce their
availability in the subsequent iteration.

Since it takes time to remove assumed dead nodes
from the membership table of a node and then add
them back, to minimize the impact of handling the fail-
ure of a leader, different timeout values are assigned
for multicast groups at different levels. Higher level
groups are assigned with larger timeout value, namely
a longer heartbeat waiting period in determining if a
node is dead or not. In this way, when a group leader
fails, a new leader can be quickly selected to replace
the old leader before the higher level group detects
the failure. This can avoid the unnecessary purging of
nodes from the available membership directory.

• Delta information updating and recovery of lost
messages. When a leader updates new information to
a multicast group, it only announces the changed por-
tion to minimize communication size. Because UDP
multicast packets can be lost during network transmis-
sion, to help detect a packet loss, each host assigns a
sequence number for an update message. Thus the re-
ceiver can use the sequence number to detect lost up-
dates. Since each update about a node departure or
join has a very short message, we let an update mes-
sage piggyback last three updates so that the receiver
can tolerate up to three consecutive packet losses. If
more than three consecutive packets are lost, the re-
ceiver will poll the sender to synchronize its member-
ship directory.

4. Scalability Analysis

In this section, we present analytic results to compare
the hierarchical approach with two alternatives: the all-to-
all approach and the gossip approach in a cluster environ-
ment. We assume multicast is used to disseminate messages
to a group of nodes, and unicast is used for one to one com-
munication, such as gossip messages.

We use the following three metrics for a comparison:

• Failure detection time (Tfail) is the earliest time that
a failure is detected by any of other nodes. Notice that
when a failure is detected by one node, it may not be
known to others.

• View convergence time is the length of an interval
from the time of a status change to the time that all
nodes have a consistent view of the change.

• Communication cost in maintaining a protocol. We
measure it using communication bandwidth consump-
tion requirement per second.

Since fast detection can require more communi-
cation volume to make sure a new event is detected
promptly while we also prefer low communication

cost, we use the metric BDP that combines bandwidth
consumption and failure detection time. Assume the
bandwidth consumption of a scheme is B bytes per
second when the cluster status is stable, the metric is
calculated as BDP = B × Tfail, where Tfail is the
detection time of a node failure. Protocols with lower
BDP values are better, because they use less time to
detect a failure with a fixed bandwidth.

4.1. Failure Detection Time and Communication
Cost

Let m be the average size of a protocol message, n be the
total number of nodes in a cluster, and B be the total band-
width allowed. The failure detection time and BDP are cal-
culated as follows.

• All-to-all. The multicast frequency is limited by f =
B

m×n2 since each node receives heartbeats from all
other nodes and sends out one heartbeat per multicast
cycle. Thus each node consumes m × n bandwidth
per cycle. If the protocol assumes a node is dead af-
ter not hearing p consecutive heartbeats from the node,
the failure detection time is

Tfail =
p

f
=

p × m × n2

B
,

and

BDP = B × Tfail = p × m × n2 = O(n2).

In practice, each node often fixes its multicast fre-
quency, which is independent of the number of nodes.
This makes the failure detection time as a constant and
then the total amount of network bandwidth consump-
tion B will become O(n2).

• Gossip. Each gossip message contains a local view
of cluster membership. As each node accumu-
lates the global view incrementally following a ran-
domized manner, the size of the local view reaches
m × n bytes eventually. Then bandwidth consump-
tion is O(mn2). We do not count the broadcast
message in the gossip scheme since it can be elimi-
nated under optimization. The frequency of gossip can
be calculated as f = B

m×n2 . For this scheme, the pre-
vious research shows that the number of failure de-
tection steps is O(log n) [24]. Thus we compute the
failure detection time and BDP as:

Tfail =
O(log n)

f
=

O(log n) × m × n2

B
,

and
BDP = B × Tfail = O(n2 log n).



If the gossip approach consumes O(n2) amount of
bandwidth, then the failure detection time will be
O(log n).

• Hierarchical. Assume the size of each multicast group
with a varying TTL value is limited to a constant of k
nodes, the height of the membership tree is limited by
logk n. Adding up the number of groups at each level,
we get the number of total groups

g =
n

k
+

n

k2
+ ... +

n

klogk n
=

n − 1
k − 1

The multicast frequency is f = B
(g×m×k2) since each

group has k nodes which consume m× k2 bandwidth.
If the protocol assumes a node is dead after not hear-
ing p consecutive heartbeats from the node, the failure
detection time is

Tfail =
p

f
=

p × g × m × k2

B
,

and

BDP = B × Tfail = p × n − 1
k − 1

× m × k2 = O(n).

If each node fixes its multicast frequency as the all-
to-all approach does, the failure detection time is a
constant and the total amount of network bandwidth
will become O(n), which is more scalable than the
other two methods.

4.2. View Convergence Time

View convergence time includes the failure detection
time and the time to disseminate this information to all other
nodes. Similarly, we can define a metric BCP which com-
bines bandwidth consumption with convergence time, mea-
sure the effectiveness of the three approaches: BCP =
B × Tconverge.

For the Gossip and the flat all-to-all scheme, the view
convergence time is the same as their failure detection time
since all nodes maintain their views independently. Thus,
their BCP values are O(n2) and O(n2 log n), respectively.
For the hierarchical scheme, the view convergence time
is the failure detection time plus the time to disseminate
this information along the hierarchical tree whose height is
logk n. An update message will first travel up to the root of
the tree and propagate down to the bottom of the tree. As-
sume the network transmission time of an update message is
λ, the whole propagation will take 2λ logk n. Thus, the con-
vergence time is

Tconverge = Tfail + 2λ logk n,

and

BCP = B × Tconverge = O(n) + O(B × logk n).

In the worst case, B can be O(n), the hierarchical scheme
has the best scalability in terms of BCP.

If we just look at the view convergence time assum-
ing that high communication cost is allowed, the all-to-
all method has a constant time while the gossip method
has O(log n) delay and the hierarchical approach have
O(logkn) delay. In practice, the convergence rate for the hi-
erarchical method can be very fast because λ is very small
and k can be chosen quite large. The gossip method can be
slow in view convergence since updating randomly does not
follow a deterministic notification path.

In summary, the all-to-all method has a short conver-
gence rate and failure detection time, but it is not scalable in
terms of communication cost. The communication scheme
in gossip method is also not scalable and its failure detec-
tion time is slower than others. The hierarchical method can
have a reasonable failure detection time and convergence
rate with a scalable communication scheme.

5. Implementation and Evaluation

In this section, we first illustrate the implementation of
the hierarchical membership service, which is then evalu-
ated and compared with two alternative approaches. The
main objective is to study the scalability of the hierarchi-
cal approach in terms of failure detection time, view con-
vergence time and network overhead.

5.1. Implementation

We have implemented the membership service in the
Neptune framework – programming and runtime support
for building cluster-based Internet services [28]. However,
it can be easily coupled into other clustering frameworks.
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Figure 7: Implementation of the hierarchical membership (Cir-
cles and eclipses represent active entities, rectangles represent data
structures and arrows show the information flow).

Figure 7 shows the components in our implementation
and the related external entities. The components in circles
are threads associated with specific tasks. The Announcer
thread collects the machine information from Linux /proc



file system and the service information from the IPC chan-
nel of the service. Then it publishes this information to the
multicast channels the node has joined.

The Receiver thread subscribes to the multicast channels
that the node has joined and updates the shared memory
structure to reflect newly received information. The shared
memory block is divided into two parts: (1) a local part that
contains the information about all the directly connected
nodes via the multicast channel. (2) an external part which
contains information of external groups relayed by a group
leader. The difference is that a node is responsible for de-
tecting a failure in the local part while it depends on its
group leader to tell the availability of an external node.

The Status Tracker thread periodically checks the en-
tries in the shared memory block and purges any expired
entries. When there is an expiration and the failed node
is the leader of the local group, the Tracker will assume
the backup leader as the new leader. If there is no backup
leader, the Tracker wakes up the Contender thread to initi-
ate an election process for a new group leader. If the node it-
self is a group leader, it needs to propagate a status change
to higher level groups. This is done through the Informer
thread, which propagates a change to other groups.

Besides relaying changes to other group members, the
Informer thread of a group leader also listens to a well
known UDP port. Thus, the Receiver thread on a newly
joined node can poll Informer to get the entire yellow page.
Furthermore, the Receiver is also responsible for detecting
any loss of update packets. Each update packet contains last
three status changes to improve the tolerance of the packet
loss. If there is an unrecoverable loss, the Receiver will also
poll the source node to get a complete image.

5.2. Experiment Settings

All the experimental evaluations were conducted on a
rack-mounted Linux cluster with 100 dual 1.4 GHz Pentium
III nodes. Each node runs RedHat Linux (kernel version
2.4.20). There are two Layer-3 switches with 100Mb links.
One accommodates 50 nodes each. These two switches are
connected by a Gigabit link.

For our hierarchical protocol, we manually designate
multicast channels to emulate multiple networks. Each mul-
ticast channel hosts 20 nodes. Therefore, there are five net-
works for 100 nodes and these five networks form a second
level network.

For Gossip scheme, mistake probability is set to 0.1%,
which represents the bound that any node may make an er-
roneous failure detection. This is a relatively loose require-
ment for the Gossip scheme. As discussed before, each gos-
sip message accounts for a number of network packets and
the broadcast packets are not counted.

In the following experiments, we fix the multicast or
gossip frequency as one packet per second for all three
schemes. For the all-to-all scheme and the hierarchical
scheme, we set the maximum packet losses as 5 before a
node is considered as dead. We vary the number of nodes
from 20 to 100 with the number of networks from 1 to 5.
The average packet size carrying the membership informa-
tion of each node is measured as 228 bytes for all three
schemes.

5.3. Bandwidth Consumption

First, we compare the bandwidth consumption for three
schemes in Figure 8. Bandwidth consumption is measured
on each node by counting the incoming heartbeat pack-
ets. Then all numbers are added up to get the aggregated
bandwidth consumption. When there are 20 nodes, all the
schemes use the same amount of bandwidth. When the
number of nodes grows, the hierarchical scheme has the
least total bandwidth consumption and has close to linear
growth. On the contrary, the bandwidth usage for both the
all-to-all scheme and the gossip scheme grows quadratically
with the number of nodes. These results are in line with our
analysis results in Section 4, where we show that the av-
erage bandwidth consumption for each node remains con-
stant in the hierarchical approach and grows linearly for the
other two approaches. This suggests that the hierarchical ap-
proach is more scalable in terms of network bandwidth us-
age.

5.4. Failure Detection Time

Figure 9 shows the failure detection time for three
schemes. During the experiments, a membership ser-
vice daemon process on a node is killed to emulate the
node failure. We can see from the figure that as the num-
ber of nodes grows, the hierarchal scheme and the all-to-all
scheme have the same constant detection time which is
around 5 seconds, the maximum number of packet losses
times the multicast period. On the other hand, the detec-
tion time of the gossip scheme increases logarithmically
along with the number of nodes. It also has the longest de-
tection time when there are only 20 nodes. Both the
hierarchical and the all-to-all schemes have shorter fail-
ure detection time than the gossip scheme. This experiment
results are also in accordance with our analysis in Sec-
tion 4.

5.5. View Convergence Time

Figure 10 compares the view convergence time. The hi-
erarchical scheme has the similar view convergence time as
the all-to-all scheme. This is because they have the same
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Figure 10: View convergence time

failure detection time and when a failure is detected, group
leaders can quickly propagate this information to all nodes.
Figure 10 also shows the view convergence time of the gos-
sip scheme is the biggest among the three schemes and it
grows along with the number of nodes. Again, the hierarchi-
cal and the all-to-all schemes perform better than the gossip
scheme.

5.6. Discussion

From the above experiments, we can see that gossip
scheme performs the worst. Using the same amount of net-
work traffic, it has the longest detection and convergence
time. When the number of nodes scales up, the gossip
scheme increases bandwidth usage quadratically. The rea-
son is that each gossip has to carry a host’s local view of
the group membership, while the other two protocols use
much smaller message size. If the gossip protocol is orga-
nized into a hierarchical fashion [24, 11], the detection time
and convergence time will be longer due to cross group gos-
sips. However, it is shown that Gossip protocol is useful for
large groups where each member only needs a partial view
of group membership [11]. Gossip style approaches are also
attractive when efficient multicast is not available, for ex-
ample in wide-area applications. We focus on protocols,
such as the all-to-all scheme and the hierarchical scheme,
which allow each member to quickly manage a global view.
The hierarchical scheme is better than the all-to-all scheme
for its less bandwidth consumption and comparable perfor-
mance. The experiment results closely match our analysis in
Section 4. This validates our analysis and allows us to pre-
dict that our findings will remain valid for larger clusters.

6. Related Work

Previous research on membership or failure detection
protocols for fault-tolerant distributed applications requires
precise membership services to support other distributed
protocols such as atomic broadcast protocols [4, 8, 22, 9].

Stok et al. [29] described a hierarchical membership proto-
col and their protocol requires all nodes have synchronized
clocks so that the execution steps of the protocol can be syn-
chronized. Our work is focused on network topology-aware
techniques at the software application layer.

Gossip style membership services are different from
heartbeat-based membership services in the aspect that they
are based on probabilities [24, 16, 11]. These protocols
are most attractive when full group membership is not re-
quired, especially in wide-area applications. For instance,
SCAMP [11] is a hierarchical variation of gossip protocols
where group members only have partial knowledge of the
group. We focus on the cluster applications which require
full membership knowledge.

There are similar ideas of hierarchically organiz-
ing group members in the research of overlay networks [ 3].
Most of work is focused on wide area network appli-
cations, where network latency is high and link band-
width varies from node to node. Failure detection time and
view convergence time are often not the primary goals.

Many high-availability systems [17, 14] also include
membership services as an essential component. The Linux-
HA project provides a heartbeat based membership ser-
vice [18]. It enables a hot-standby feature that one machine
can take over another machine’s IP when it fails. But it only
works in small scale. The study of [15] proposes a failure
detector protocol for Grid environment. Our study aims at
large-scale clusters with low latency and high throughput
system area networks.

Cluster-based network services have been studied in
[10, 30, 26, 28] and the membership service is part of infras-
tructure. Resource monitoring tools, such as Ganglia [25],
the Network Weather Service [31], and the Monitoring and
Discovery Service (MDS2) [19, 7] of Globus project, pro-
vide information of machine resource and network resource
of large-scale clusters or computer grids. These projects do
not emphasize fast failure detection time, convergence time,
and topology awareness in details. It should also be noted
that our membership service is general and can provide a pe-
riodical update of service status information for each node



in addition to failure detection.

7. Concluding Remarks

The contribution of this work is a topology-adaptive hi-
erarchical membership service for large-scale clusters. The
key strategy is to form a number of small TTL based mul-
ticast groups with an update protocol to achieve fast hier-
archical communication. It tolerates switch and node fail-
ure adaptively while localizing protocol communication fol-
lowing the network topology. Our evaluation shows the hi-
erarchical membership service is scalable and efficient in
large-scale clusters.
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