
Request-Aware Scheduling for Busy Internet
Services

Jingyu Zhou∗§ Caijie Zhang∗§ Tao Yang§∗ Lingkun Chu§

§ Ask Jeeves Inc.
∗ University of California at Santa Barbara

Abstract— Internet traffic is bursty and network servers are
often overloaded with surprising events or abnormal client
request patterns. This paper studies scheduling algorithms for
interactive network services that use multiple threads to handle
incoming requests continuously and concurrently. Our investi-
gation with applications from Ask Jeeves search shows that
during overloaded situations, requests that require excessive
computing resource can dramatically affect the overall system
throughput and response time. The most effective method is to
manage resource usage at a request level instead of a thread
or process level. We propose a new size-adaptive request-aware
scheduling algorithm called SRQ with dynamic feedbacks to
control queue properties and have implemented SRQ in the Linux
kernel level. Our experimental results with several application
service benchmarks indicate that the proposed scheduler can
significantly outperform the standard Linux scheduler.

I. INTRODUCTION

Busy Internet service providers often use a service level
agreement in terms of response time and throughput to guide
performance optimizations and guarantees. For instance, when
Ask Jeeves [2] provides search results to other portals, the
goal is to complete 99% of requests within a second and to
achieve the average response time within a few hundreds of
milliseconds.

It is challenging to satisfy performance requirements of
requests at all times because Internet traffic is bursty, and
resource requirement for dynamic content is often unknown
in advance. Even with over-provisioning of system resources,
a web site can still be overloaded in a short period of time
due to slash-dot effects under an unexpected high request
rate [10], [25]. Sometimes even though the amount of traffic
does not increase sharply, the characteristics of traffic change
dramatically due to some abnormal situations. For example,
the percentage of long requests increases significantly and
these long requests take over most of the system resources.
As a result, the system is unable to handle other incoming
requests and becomes overloaded.

Previous work has been using admission control [21], [37],
[39], [40], [43] and adaptive service degradation [4], [12],
[43] to curb response time spikes during overload. Admission
control improves the response time of admitted client requests
by rejecting a subset of clients. Admission control techniques
include using 90th-percentile response time [43], bounding the
incoming request queue length [21], [37], and policing TCP
SYN packets [40].

Complementary to the above admission control and adaptive
service degradation mechanisms, we propose a request-aware
scheduling approach for improving quality of service. This
comes from the observation that the scheduling principal
for Internet services is an individual request. The traditional
operating systems or previous network services use processes
or threads to handle incoming requests and scheduling prin-
cipals are these processes or threads. It would be much more
effective if the system can perform fine-grained scheduling
at the request level for admission controls and performance
optimizations. In this way, we can differentiate long requests
and short requests during load peaks and prioritize resource
for short requests. The system throughout can be optimized
and the impact of long requests is minimized. Our new SRQ
algorithm combines multi-level feedbacks with soft deadlines,
and has been implemented within a request-aware scheduling
mechanism at the Linux kernel level, which also supports a
variety of different scheduling policies. We have conducted
experiments using a number of applications from Ask Jeeves
to demonstrate the effectiveness of the proposed techniques.

The rest of the paper is organized as follows. Section II
discusses the background on multi-threaded Internet services
and scheduling polices. Section III discusses the design of
the SRQ scheduling framework. Section IV describes our
implementation in Linux. Section V evaluates request-aware
scheduling with real applications. Section VI summarizes
related work. Finally, Section VII concludes the paper.

II. BACKGROUND

In this section, we describe the context of Internet services
and their implementation with the multi-threaded program-
ming model. Then we summarize the related scheduling poli-
cies for Internet services.

A. Multi-threaded Programming Model for Internet Services

An Internet service cluster hosts applications handling con-
current client requests on a set of machines connected by
a high speed network. A number of earlier studies have
addressed providing middleware-level support for service clus-
tering, load balancing, and replication management [13], [37],
[41]. In these systems, a service component can invoke RPC-
like service calls or obtain communication channels to other
components in the cluster. A complex Internet service cluster

Query
c a c h e

D o c
s erv er

Query
f ro n t en d

Query
f ro n t en d

Query
f ro n t en d

Query
c a c h eQuery
c a c h e

T i er- 1
i n d exT i er- 1
i n d exT i er- 1
i n d ex

D o c
s erv erD o c
s erv er

E x t ern a l
s ea rc h
q ueri es

T i er- 2
i n d ex

P a rt i t i o n 1
T i er- 2
i n d ex

P a rt i t i o n 1
T i er- 2
i n d ex

P a rt i t i o n 1

T i er- 2
i n d ex

P a rt i t i o n 2
T i er- 2
i n d ex

P a rt i t i o n 2
T i er- 2
i n d ex

P a rt i t i o n 2

Fig. 1. A three-tier keyword-based document search service.

often has multiple tiers and service components depend on
each other through service calls.

For example, Figure 1 shows the architecture of a three-tier
search engine. This service contains five components: query
handling front-ends, result cache servers, tier-1 index servers,
tier-2 index servers, and document servers. When a request
arrives, one of the query front-ends parses this request and
then contacts the query caches to see if the query result is
already cached. If not, index servers are accessed to search
for matching documents. Note that index servers are divided
into two tiers. Search is normally conducted in the first tier
while the second tier database is searched only if a first tier
index server does not contain sufficient matching answers.
Finally, the front-end contacts the document servers to fetch
a summary for relevant documents. There can be multiple
partitions for cache servers, index servers, and document
servers. A front-end server needs to aggregate results from
multiple partitions to complete the search.

������� �	
���
���

��������

��������

��������

��������

���������
�

���
�

������
�

�������
���

��������

�

���	

	��

����������

�����
�

 ����

Fig. 2. Multi-threaded server design.

As discussed above, each machine in a service cluster
handles requests concurrently sent from another machine in
the cluster or from clients through Internet. Multi-threaded
programming is widely used for concurrency control in In-
ternet services such as Apache [1] and IIS [29] Web servers,
BEA WebLogic application server [7], and Neptune clustering
middleware [37]. As shown in Figure 2, each machine main-
tains a set of active worker threads and each accepted request

is dispatched to a worker thread for processing. Each worker
thread performs a continuous loop to receive a new request,
process it with an application logic, and then send results back.
The thread pool size typically has a limit in order to control
resource contentions in a heavy loaded situation. Additionally,
admission control may be used to regulate incoming requests
during a busy period.

B. CPU Schedulers

In this section, we discuss existing CPU schedulers and their
suitability for Internet services.

• Real-time systems: These systems typically have hard
deadlines and conventional schedulers such as Earliest
Deadline First (EDF) and Rate Monotonic Algorithm
(RMA) are suitable for these systems [3], [23], [28], [38].
These systems guarantee a maximum delay an application
may experience with a number of restrictions. For exam-
ple, in RTLinux [3], a hard real-time operating system,
real-time tasks are written as special Linux modules and
are loaded into kernel dynamically, which creates security
problems because any bugs in real-time tasks can corrupt
and crash the kernel. Additionally, RTLinux only provides
a subset of POSIX APIs and real-time tasks cannot use
virtual memory. All these limitations are preventing many
applications from being ported to the RTLinux platform.
Soft-deadline scheduling for aperiodic tasks have been
studied in [26], [33]. The focus is to minimize response
time of aperiodic tasks with soft deadlines and to avoid
missing hard deadlines of periodic tasks. Generally, such
a scheduler tries to “steal” all the possible slack time
from the periodic tasks. These studies have assumed FIFO
ordering for processing aperiodic tasks and exponential
workload.
Internet services often have soft deadlines instead of
hard deadlines and requests may be served out-of-order
considering their deadlines or importance. Additionally,
applications exhibit a wide variety of size distributions
such as heavy-tailed distribution, which calls for more
adaptive scheduling algorithms.

• General purpose operating systems: The general pur-
pose OS schedulers (e.g., Linux, Windows, and Solaris)
employ multi-level feedback queues (MFQ) to use pro-
cess ages as feedbacks for prioritization. Each process is
initially placed in a high priority queue and is gradually
moved from higher priority queues to lower ones, i.e.,
the priority decays with its age. A process is preempted if
another process in a higher priority queue becomes ready.
When there are several processes inside one queue, the
scheduler can use a different policy such as round-robin.
These systems provide best effort resource sharing among
processes so that throughput is high while response time
is relatively low. The drawback is that scheduling prin-
cipals for all above schedulers are processes or threads.
In addition, deadline is not considered, while for Internet
services each request can have a soft deadline that can be
exploited. When a thread is dealing with a sequence of

requests for Internet services, it is hard to prioritize such
a thread without knowing the characteristics of requests
being handled. A fine grained scheduler that works at
request level can allow us to perform more advanced
optimizations, which will be described in more details
in next section.

III. DESIGN

This section begins with a motivating example of request-
aware scheduling. Then two design choices are discussed and
a new SRQ scheduler is presented.

A. Request-aware Scheduling

In a general purpose operating system such as Linux, there
is a discrepancy for Internet services in terms of scheduling
principals. The Internet services are request-driven and the
perceived performance is measured by individual requests. It is
desirable that the operating systems use requests as scheduling
principals. However, the request is an application level concept
unknown to the operating system kernels. In a multi-threaded
programming model, as in Figure 2, the actual scheduling
entities used by the operating systems are threads.

When the system is busy under a high request rate or size
distribution shift, a thread may serve multiple requests and
only relinquishes CPU after using up its time quantum. In
this case, thread-level scheduling deviates from request-aware
scheduling and delivers sub-optimal performance. The thread
scheduling matches closely with request-aware scheduling if
the system is only lightly loaded. Because in this case there
exist free threads waiting for new requests, a new request will
be served by one of the free threads. The chance of a thread
continuously serving multiple requests is low. Our evaluation
in Section V confirms this by showing similar performance
of request-aware schedulers and the Linux kernel in lightly
loaded scenarios.

We use Figure 3 to illustrate the performance difference of
request-oblivious and request-aware scheduling. In the request-
oblivious case, let scheduling quantum be 10 ms and let
threads A and B have the same priorities at time 0. These
two threads will alternate their executions every 10 ms. Note
that requests 3 and 4 can only be served by thread B from
time 100 ms to 290 ms, because A hasn’t finished processing
of request 1.

On the other hand, a request-aware scheduler can improve
the average response time. As shown in Figure 3 also, threads
A′ and B′ are managed by a request-aware scheduler, which
decreases thread priority after servicing a request for 50 ms. At
time 90 ms, thread A′ has processed request 1 for 50 ms and is
given a low priority. Thread B′ gains a higher priority when
starting servicing new requests (3 and 4), thus can execute
requests 3 and 4 without interruption from thread A′. Here
request 4 happens to be served before request 3. As a result, the
response time of request 4 is reduced from 200 ms in request-
oblivious scheduling to 50 ms in request-aware scheduling.
The response time of request 1 has a minor increase from 290
ms to 300 ms.

To summarize, although a traditional scheduler performs
well in an underloaded situation, it can be significantly outper-
formed by a request-aware scheduler with finer-grained control
during overloaded cases.

B. Design Choices

There are two questions for a request-aware scheduler: 1) Is
a user-level implementation or a kernel-level implementation
more appropriate? 2) What scheduling algorithm works well
for this scheduler? The following discusses these two design
choices.

1) User-level vs. Kernel-level Implementation: A user-level
implementation is more portable across different platforms and
may seem easier to develop, but has a number of problems.

• Being at user-level, the implementation has no control
over which thread is to run currently. Changing thread
priority with nice(1) is tricky, because the dynamic
priority also depends on recent CPU usage of the thread.
Forcing some threads to sleep can decrease the CPU
utilization, because the concurrency is reduced.

• Accurate timing and quick thread preemption is difficult.
The implementation needs to be able to preempt a running
thread, which could be implemented using signals sent
by a dedicated thread. Though the granularity of timer
on the default Linux 2.6 kernel is 1 ms, the time needed
for notifying the dedicated thread when to send a signal
and the delay of signal delivery are prolonged in heavy
load. Thus, the thread preemption may not be performed
at a fine granularity.

A kernel-level implementation, on the other hand, can over-
come the above problems. Priority and preemption are readily
supported in the kernel scheduler. The kernel naturally decides
the running thread. Thread preemption can be performed at
timer granularity by modifying timer interrupt handler. The
drawbacks are platform-dependent.

Our initial implementation is a user-level thread package,
which was abandoned after realizing the problems with it. The
current implementation is at the kernel-level and the rest of
the paper discusses this implementation.

2) Scheduling Algorithms: For a request-aware scheduler,
there are three possible scheduling parameters: age of a request
(elapsed time since the request is received), a deadline of
the request, and a value or request yield associated with
the request. EDF and VRD [20] take deadline and value as
input. None of these schedulers consider all three scheduling
parameters. In fact, our evaluation of these schedulers during
size distribution shift in Section V-C shows that none is
satisfactory, which motivates us to design a new scheduler,
given below, with all three parameters as input.

C. SRQ Scheduler

We propose a new SRQ scheduler for Internet services,
which combines dynamic feedbacks and deadline scheduling
together. Specifically, dynamic feedback or the size of a
request is the first scheduling discipline, while the deadline is
used as the second discipline. Dynamic feedback is applied

�

�������	

�������

�

�

�

�

�

�

�

�

�

� � � � �

�

� � � � �

� � � �

 �
 �

 ��
 �

 ��
 �

���������

� � � � �

� � � � �

� � � � �

� � �� �

� � � � �� � � � �

�������	�

�������
�

��������� ���������

� � � � �

������������ �����!"�������

���������#����!"�������

�$������% �$������%

Fig. 3. Illustration of request-aware scheduling for response time improvement. Threads A and B are dispatched with an ordinary scheduler, while threads
A′ and B′ are managed by a request-aware scheduler that decreases the priority a thread after servicing a request for 50 ms. The response time of request 4

is reduced from 200 ms to 50 ms, and only request 1 is delayed for 10 ms. We assume each scheduler gives 10 ms quantum for each thread in this example
and the priorities at time 0 for all threads are the same.

���
���

���

���

������

����	�
��

�
���������	�

���	������

����	�
���

����	�
���

����	�
���

�������

������	���������	��

�����	
��������������

���������������������

������	

�����

������	������
������

���
������	

��	��	�

������
������

Fig. 4. The SRQ scheduler. Note each request is associated with a deadline and a value (or yield).

first so that short requests can preempt long requests and
complete first, approximating the theoretical best Shortest
Remaining Processing Time (SRPT) [6] scheduler.

Given a set of threads executing on different incoming
requests, we will dynamically compute the priorities of these
threads by tracking the status of these requests being processed
by these threads. The request status tracking mechanism in
SRQ is illustrated in Figure 4. The dynamic feedback is
achieved with a number of request queues. A queue quantum
is associated with all requests in the same queue, but different
queues may have different quanta. A request is first put into
the first queue and is gradually moved to the next queue if uses
up current queue quantum. A request exits the scheduler after
its completion. Note that the idea of using multiple queues
is similar to the MFQ, but a significant difference is that the
scheduling principals in SRQ are requests, not threads.

Adaptive queue management. The goal of the SRQ con-
troller is to distinguish requests of different sizes and to group
requests of similar size together so that they can finish in the
same queue. The questions are how many queues should be
actively maintained and what are the quanta for these queues?
The controller monitors the previously executed requests and
then uses the statistical information to determine the number
of priority queues and scheduling quanta so that short requests
are separated from long requests and can complete in the first
few queues.

Specifically, the scheduler monitors fail-percent, deviation,
and average elapsed times of each queue periodically. The fail-
percent is the percentage of requests moving to the next queue
during the time period. For all the requests completed within
the period, the deviation and average elapsed times represent
the standard deviation and the mean of the elapsed time of
these requests since they are received in this machine. The
system adjusts the number of queues and quantum of each
queue periodically, guided by the following rules:

• Queue shrinking happens when no request is completed
for the last queue since the last queue adjustment time. It
causes the scheduler to merge the last two queues. Here
queues are ordered based on the average elapsed time of
requests within each queue. The last queue is the queue
containing requests with the largest elapsed time.

• Queue splitting occurs if the ratio of the deviation and
the average elapsed time in the last queue exceeds a pre-
defined threshold Tsplit.

• Queue quantum is updated as follows: if the fail-percent
exceeds a threshold Tfail, which means less requests are
completed within the queue and more requests have to
be moved to next queue, then the quantum of the current
queue is increased by a constant factor adji (quantum
increase). If the ratio of the deviation over the average
exceeds a threshold Tdesc, the quantum is decreased
by the average times a constant factor adjd (quantum
decrease).

This controller has two advantages: short and long requests
are separated, and the variation within the same queue is small

minimizing the adverse effect that long requests have on short
requests.

Running thread selection. At each scheduling step, the
SRQ scheduler needs to choose a queue and then selects a
request from this queue. The thread that processes this request
will be switched in and executed by the CPU.

In most of times we select requests from the first queue con-
taining all requests with the shortest elapsed time. In this way,
short size requests get a high priority for execution. To ensure a
reasonable fairness, we impose a proportional selection policy
such that the first queue will be selected X% of chance while
the rest of queues will be considered proportionally with (100-
X)% of chance. In our implemenetation, X=90%.

Priority computation. When there are multiple requests in
a queue, the SRQ scheduler uses relative deadlines and values
of these requests for priority calculation:

P = α × Deadline + (1 − α) × (MAX V AL − V alue),

where 0 ≤ α ≤ 1 and lower P means high priority. When
α is zero, this policy becomes highest value first; when α is
one, this policy is earliest deadline first; in all other cases, the
algorithm is between these two policies.

����������	
�

�
�

�
�

�
�

�

�

Fig. 5. An example value function.

For each request, its value is a function of response time.
As shown in [35], different QoS metrics, such as throughput
and response time, can be captured using this method, and the
overall goal of provisioning resource is expressed in terms of
maximizing the aggregate values. Figure 5 gives an example of
value function: if a request is completed before a soft deadline
D′, full value C is realized; if the request is completed after
a hard deadline D, there is no service yield; between D′ and
D, a partial value is realized.

Triggering of SRQ and summary of scheduling pa-
rameters. The parameters used in the implementation are
summarized in Table I. These parameters are determined using
trace-driven experiments with real applications.

The SRQ scheduler is triggered during busy periods, which
can be identified by querying the admission controller. For
instance, our implementation uses the Neptune threshold of
queue length as the indicator of overload.

TABLE I
PARAMETERS USED IN THE SRQ SCHEDULER.

Parameter Description Default Value
α Deadline weight constant 0.2
interval Time before adapt SRQ 60 s
Tfail Fail percentage threshold 60%
Tsplit Queue split threshold 1.0
Tdesc Quantum decrease threshold 1.0
adji Quantum increase factor 2.0
adjd Quantum decrease factor 0.2
D,D′ Request soft deadline 2.0 s
C Request yield value 1.0

The combination of different techniques allows the SRQ
scheduler to be effective for different workload. Firstly, the
request-aware scheduling is more fine-grained than the process
scheduling of the operating systems, thus the SRQ scheduler
can make better scheduling decisions. Secondly, the adaptive
queue management enables the scheduler to use dynamic
feedback to favor short requests, which is beneficial to heavy-
tailed distributions. Finally, the variance of jobs within the
same priority queue is low, which reduces the adverse effect
that long requests have on short requests.

IV. IMPLEMENTATION

��������	��

�
��
�	��������
���	�

����
����

��
�	��
���	��������
���
����

������
����	���� ���
�	�

!�
�������

��"������
 �	��� ���
�	�

Fig. 6. System architecture.

We have implemented SRQ in the Linux kernel and have
integrated it with the Neptune clustering middleware [35],
[37]. Note that Neptune has been used in Ask Jeeves websites
and internal sites supporting many different Internet and data
mining services running on several thousands of machines at
each data center. Figure 6 illustrates the system architecture
of our implementation. Changes are made to the Linux 2.6.11
kernel and to the Neptune middleware in order to realize
request-aware scheduling. One big advantage of this approach
is that service applications can still run unmodified binaries
under this new SRQ scheme.

A. Changes to the Linux Kernel

The Linux kernel is modified to create a scheduler extension
interface and a new system call. The scheduler extension inter-
face consists of a set of callback functions for implementations
of different scheduling algorithms, round-robin for example.
The new system call allows a user process to notify the kernel
the start and the end of a request, which is further discussed
in the next part of this section.

We have implemented Request-aware EDF (R-EDF),
Request-aware VRD (R-VRD), and SRQ scheduler as separate
loadable kernel modules by realizing the extension interface.
These callbacks are inserted in the kernel at points related to
making scheduling decisions, i.e., the timer interrupt handler,
the schedule() function, process migration code (i.e, SMP
load balancing code), and blocking or unblocking of a process.
Data structures related to each scheduler are carefully designed
on a per CPU basis to avoid global locks. We do not change
the SMP load balancing logic and only make necessary
modifications to keep data consistency, though it is possible
to exploit multiple CPUs of SMP machines [18].

For us, this loadable module approach proves to be better
than directly modifying the kernel for three reasons. First, the
change made to the kernel is minimal and easy to verify its
correctness. Second, the loadable kernel module only needs
to implement the scheduling interface independent of other
components of the kernel. The loadable module also enables
testing a new scheduler simply by reloading the module
without reboots. Finally, the scheduling interface can help for
developing other more sophisticated schedulers, for example,
a hierarchical scheduler with proportional guarantees [14].

B. Changes to the Neptune Clustering Middleware

i n c l u d e < s y s / s y s c a l l . h>
d e f i n e NR svr 289 /∗ s y s t e m c a l l # ∗ /
d e f i n e SVR START 1
d e f i n e SVR END 2

vo id worker ()
{

s t r u c t s c h e d u l e r e x t t a r g ;

whi le (1) {
Reques t ∗ r e q u e s t = g e t r e q u e s t () ;

s e t u p a r g (& a r g) ;
s y s c a l l (NR svr , SVR START , s i z e o f (a r g) , & a r g) ;
p r o c e s s r e q u e s t (r e q u e s t) ;
s e n d r e s u l t (r e q u e s t) ;
s y s c a l l (NR svr , SVR END , 0 , NULL) ;

}
}

Fig. 7. A pseudo-code example of invoking request-aware schedulers.

A user process communicates with request-aware schedulers
via a new system call interface. Figure 7 gives a pseudo-
code example, where the start and end of a request are made
explicit to the kernel using different system call parameters.
In our implementation, for instance, deadlines are passed to
the kernel schedulers as part of the arguments. The Neptune

middleware [37] is easily modified by adding about thirty lines
of code.

V. EVALUATION

In this section, we mainly seek to evaluate the performance
of request-aware schedulers in busy workload situations. The
request-aware schedulers are R-EDF, R-VRD, and the pro-
posed SRQ. Our main objectives are:

1) Demonstrate request-aware schedulers have better re-
sponse time while maintaining comparable throughput
in overloaded situations, compared to request-oblivious
thread-level scheduling in Linux.

2) We compare SRQ with simple request-aware schedul-
ing algorithms such as R-EDF and R-VRD built on
our request queue management scheme and illustrate
the proposed SRQ scheduler is able to deliver better
performance and has negligible overhead.

A. Settings and Applications

Experiments were conducted on a cluster of nine dual
Pentium III 1.4 GHz machines connected with fast Ethernet.
Each machine has 4GB memory and two 36GB, 10,000 RPM
Seagate ST336607LC SCSI disks. These disks have 8MB
buffer, the average seek time is 4.7ms, and the average latency
is 2.99ms.

The applications used for the evaluation are two services
from Ask Jeeves [2] with different size distribution charac-
teristics: a database retrieval service and a page description
service. The retrieval service that finds all web pages contain-
ing certain keywords is heavy-tailed. The description service
that finds a paragraph in a web page containing the search
keywords is exponential.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log10(x)

lo
g1

0(
P

[X
>

x]
)

Retrieval data
10−Aggregrated
50−Aggregrated
Linear fitting

Fig. 8. LLCD plot and CLT test for the retrieval service data.

Figure 8 gives the log-log complementary distribution
(LLCD) plot of the retrieval service data, which is the comple-
mentary cumulative distribution F̄ (x) = 1 − F (x) = P [X >

x] on log-log axes. Plotted in this way, an estimate for the

heavy-tailed distribution is obtained as the slope of the linear
fitting. To verify that the dataset exhibits the infinite variance
of the heavy tails, the Central Limit Theorem (CLT) test is also
performed: the m-aggregated dataset from the original dataset
is also drawn in the LLCD plot. As we can see from Figure 8,
increasing aggregation level doesn’t cause the slope to decline,
reflecting the distribution has infinite variance property of
heavy tail. We also employed Hill estimator to estimate tail
weight in the data. The result shows an apparent straight
line behavior for large x-values consistent with the hyperbolic
tail assumption. In our experiments, the index database size
is 2.1 GB and can be completed cached in memory. All
experiments on the retrieval service were conducted after a
warm-up process that ensures service data is completely in
memory.

For the description service, trace data exhibits the expo-
nential processing time distribution. The mean and standard
deviations of the trace are close and the distribution is right-
skewed (median is less than mean). Though the data does not
fully satisfy the statistical patterns of exponential distributions,
we can consider request time distribution of this service
is close to exponential. In the experiments, the description
service uses a dataset of 6.3 GB data, which cannot completely
fit into memory.

Table II shows the average, 90-percentile, and maximum
response time of these two services.

TABLE II
RESPONSE TIME OF THE RETRIEVAL AND THE DESCRIPTION SERVICE.

Application Ave. (ms) 90% (ms) Max (ms)
Retrieval 23.6 46 2,732
Description 24.6 40 596

We will mainly evaluate two types of service overloads.
The first type of overload is traffic peak, for example caused
by unexpected events. In this case, the system becomes over-
loaded because of high request rate. The second type is size
distribution shift within the incoming traffic. This effect has
been observed in live traffic at Ask Jeeves: while the client
request rate remains in an expected range, the percentage of
long requests increases significantly. As a result, the system
becomes overloaded, which leads to service response time
spikes and throughput loss.

For all applications, we use real traffic traces collected at
Ask Jeeves search. We avoid measuring performance in a
multi-tiered setup, because the admission control and timeout
of middle tiers can shadow the real performance results.
Instead, we directly replay traces collected at each server
application machine. To determine the capacity of each ap-
plication, we increase the request rate until there are five
percent throughput losses with the vanilla Linux kernel. This
probed request rate is then used as the full service capacity.
During overloaded periods, all services take advantage of the
admission control mechanism of the Neptune [37] middleware
which uses request queue length to shed load.

B. Overhead of SRQ

We demonstrate that the SRQ scheduler has negligible
performance impact on applications. To determine SRQ’s
overhead, we use the CPU timestamp counter on Intel chips
to measure the time for system calls introduced by the SRQ
scheduler, i.e., the starting and ending of a request illustrated in
Figure 7. We also measure the overhead for SRQ scheduler’s
operations, i.e., the scheduling time, and queue splitting and
shrinking time. The results are shown in Table III. As we can
observe from the table, each of these operations only takes
a few microseconds. Thus, the SRQ scheduler has negligible
impact on application performance as long as the processing
time of requests is in the order of milliseconds or more.

TABLE III
OVERHEAD OF SYSTEM CALLS INTRODUCED BY THE SRQ AND SRQ’S

SCHEDULING AND QUEUE MANAGEMENT OPERATIONS.

Ops. Start End Schedule Split shrink
Cycles 4132 7230 1433 1872 1401
Time (µs) 2.95 5.16 1.02 1.34 1.00

C. Performance during Size Distribution Shift

TABLE IV
RESPONSE TIME OF THE RETRIEVAL SERVICE DURING SIZE DISTRIBUTION

SHIFT. THE PERCENTAGE DIFFERENCE ROW ASSUMES THE PERFORMANCE

OF LINUX AS 100%.

Scheduler Linux Linux 100 R-EDF R-VRD SRQ
Ave. (s) 1.413 3.106 1.706 1.121 0.529
Diff. (%) 0 +119.8 +20.7 -20.7 -62.6

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response Time (s)

P
ro

b
[r

es
po

ns
e

tim
e

<
=

x]

R−EDF
R−VRD
SRQ
Linux

Fig. 10. Cumulative distribution of response time during size distribution
shift.

In this experiment, we replayed a traffic trace from Ask
Jeeves with a constant rate of 50 requests per second. We
compare five different schemes: Linux with a default thread

pool size of 20; Linux using a thread pool size of 100; and
three request-aware scheduler R-EDF, R-VRD, and SRQ all
using the default thread pool size of 20. The throughput and
response time of the retrieval service are illustrated in Figure 9.
The size distribution shift happens roughly from time 30 to
155. During this time interval, there is a significant drop
of system throughput due to admission control triggered by
overload. The throughput of different schedulers (R-EDF, R-
VRD, Linux, and SRQ) are similar to each other, because of
the same admission controller used.

The second graph in Figure 9 illustrates response time
changes during the experiment. SRQ performs the best, fol-
lowed by R-VRD, Linux, and R-EDF. The average response
times are given in Table IV. Comparing to the default Linux,
SRQ and R-VRD reduce the average time by 62.6% and
20.7%, respectively. The R-EDF is 20.7% longer because
the system is overloaded and the EDF algorithm degrades
rapidly in such situations. The R-VRD is better than the
Linux because it does request-aware scheduling and has more
requests completed earlier.

In addition to request-aware scheduling, the SRQ also uses
dynamic feedbacks to prioritize short requests, which is more
evident from Figure 10. The figure shows that the SRQ
scheduler completes short request more quickly than other
schedulers. Also shown in the figure, the SRQ has longer
tails, signifying that long requests are delayed. The response
time improvement is mainly because a majority of requests
are completed more quickly for the SRQ.

With the thread pool size of 100, the response time of
Linux-100 is 119.8% higher than the default setting of 20
threads. This is because during the size distribution shift all
the 100 threads are quickly occupied for processing requests,
resulting in more CPU contentions. This result shows that
simply allocating more threads for the applications doesn’t
help for size distribution shift.

D. Performance during Traffic Peaks

0 20 40 60 80
0

1

2

3

4

5

6

Load (%)

T
hr

ou
gh

pu
t L

os
s

P
er

ce
nt

Underloaded

100 120 140 160 180 200
0

10

20

30

40

50

60

Load (%)

T
hr

ou
gh

pu
t L

os
s

P
er

ce
nt

Overloaded

Linux
R−EDF
R−VRD
SRQ

Fig. 11. Description service throughput loss.

1) Description Service Evaluation: For each request, the
description server issues a variable number of random IO
requests to disk. The Linux kernel has four different block
IO schedulers: Noop, Anticipatory [22], Deadline, and CFQ.

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

Time (s)

T
hr

ou
gh

pu
t

←Pattern shift begins (30s) Pattern shift ends (155s)→

Linux(20) Linux(100) R−EDF R−VRD SRQ Request Rate

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

Time (s)

R
es

po
ns

e
T

im
e

(s
)

Fig. 9. Retrieval service response time and throughput during size distribution shift for five different schemes: Linux using the default 20 threads, Linux
using 100 threads, R-EDF, R-VRD, and SRQ.

0 20 40 60 80 100
20

25

30

35

Load (%)

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Underloaded

100 120 140 160 180 200
200

400

600

800

1000

1200

1400

Load (%)

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)

Overloaded
Linux
R−EDF
R−VRD
Linux 2.6.9
SRQ

Fig. 12. Description service response time.

Using different underlying IO schedulers yields slightly dif-
ferent performance results. For a fair comparison, the Linux
default anticipatory scheduler is used in this experiment. The
results of the other three IO schedulers have similar trends and
are not shown here.

Figure 11 illustrates our evaluation results of throughput loss
percent in both underloaded and overloaded scenarios, which
is defined as

LossPercent =
TotalRequest− SuccessRequest

TotalRequest
× 100.

All schedulers perform mostly similar to each other because
of the same admission control used. The only significant
difference is when load is 100%, where R-EDF, R-VRD, and
SRQ are about half the loss percent of Linux.

Figure 12 illustrates the response time for description ser-
vice. The R-EDF, R-VRD, and SRQ all outperform the Linux
with similar amount. For instance, the SRQ scheduler reduces

the response time by 14.5% to 78.8% compared to the Linux
scheduler in overloaded situations. The similar performance
is because of the workload characteristics of the description,
where each request requires similar processing time. Since
all three schedulers realize request-aware scheduling, the
scheduling decisions are similar. Thus three schedulers have
comparable performance.

In Figure 12, there is an unusual high response time of
the Linux 2.6.11 scheduler when the load is 100%. Another
possible factor for this performance anomaly is changes in the
Linux kernel. For comparison, we also performed experiments
using 2.6.9 kernel and plotted the data in Figure 12. From the
figure, it’s clear that 2.6.9 kernel doesn’t have this anomaly
and is better than the default 2.6.11 kernel we used. The
performance degradation in 2.6 kernel series is also reported
by other people elsewhere [9].

0 20 40 60 80
0

1

2

3

4

5

6

7

8

9

10

Load (%)

T
hr

ou
gh

pu
t L

os
s

P
er

ce
nt

Underloaded

100 120 140 160 180 200
0

10

20

30

40

50

60

70

Load (%)

T
hr

ou
gh

pu
t L

os
s

P
er

ce
nt

Overloaded
Linux
R−EDF
R−VRD
SRQ

Fig. 13. Retrieval service throughput loss.

20 40 60 80
20

30

40

50

60

70

80

90

100

Load (%)

M
ea

n
R

es
po

ns
e

T
im

e
(m

s)
Underloaded

100 120 140 160 180 200
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Load (%)
M

ea
n

R
es

po
ns

e
T

im
e

(m
s)

Overloaded
Linux
R−EDF
R−VRD
SRQ

Fig. 14. Retrieval service response time.

 R−EDF Linux R−VRD SRQ
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

<500 ms 500−1000 ms 1000−2000 ms >2000 ms

Fig. 15. Retrieval service response time breakdown when system load is
50%, 100%, and 200% (from left to right).

2) Retrieval Service Evaluation: Figure 13 gives the results
of throughput loss of the retrieval service in both underloaded
and overloaded situations. All schedulers have similar through-
put loss because of the same admission control. When the
system is underloaded and has enough resource, all schedulers
have very little throughput loss. Linux performs the worst for
overloaded cases.

Figure 14 illustrates the average response time for the
retrieval service. As shown in the Figure, the Linux scheduler
has much higher response time than the other three approaches
in high load scenarios. For example, the SRQ reduces the mean
response time by 78.9% to 82.3% compared to the default
Linux during overload.

Figure 15 shows that Linux scheduler has much lower
percentage of short response time requests, which explains
the high response time when system load is high. The main
reason for the poor performance of the Linux scheduler is
that it dispatches CPU at thread level. During an overloaded
period, a long request can delay the execution of multiple
short requests. On the other hand, because of the request-aware
scheduling mechanism, all other schedulers are able to make

new scheduling decisions after a request is serviced.

VI. RELATED WORK

Previous studies on Internet service infrastructure have
addressed load balancing issues [13], [15], [16], [27], [34],
[36], [37], [44]. Our work in this paper complements these
studies by focusing on scheduling issues in a greater detail
to improve quality of services. Multi-threaded Internet service
infrastructure software, such as Neptune [37], can easily be
modified to use the proposed scheduler for request-aware
scheduling. However, event-driven [32], [43] servers cannot
directly take advantages of the request-aware scheduler, be-
cause requests are serviced by several different threads in its
life cycle, difficult for request-aware scheduling by the kernel.

Real-time systems have used deadlines to guide scheduling
such as EDF [3], [23], [28], [38]. Soft-deadline scheduling
is also proposed to execute aperiodic tasks among periodic
tasks. Our approach adopts the concept of deadlines in our
design to improve the response times. Our work is also
motivated by the previous work on size-based scheduling for
static web content [11], [19] and we share the same spirit of
SRPT scheduling [6] but with a focus on dynamic content.
Multi-level feedback queues with exponential job size have
been addressed in [24]. For heavy-tailed workload, Guo and
Matta [17] studied on the case of two queues. In our work, we
propose dynamic queue management of multiple queues with
queue splitting and shrinking. Theoretical analysis for such a
queuing system is interesting for future work.

Proportional share of CPU resource [8], [23], [31], [42]
targets traditional throughput-oriented computing with fair
sharing. The Scout operating system unifies different software
layers into the “Paths” abstraction [30] for resource allocation,
scheduling, and admission control. Resource container [5] is
another abstraction for resource management separation from
protection domains. The main difference of our work is that
this paper focuses on request-aware scheduling algorithms for
Internet services optimizing quality of service in terms of
response time and throughput.

VII. CONCLUDING REMARKS

The main contribution of this work is the design and
implementation of a request-aware scheduling mechanism for
busy dynamic Internet services that use the multi-threaded pro-
gramming model. Our design integrates size adaptiveness and
deadline driven prioritization in a multiple queue scheduling
framework with dynamic feedback-guided queue management.
Our experiments with several applications from Ask Jeeves in-
dicate the proposed techniques can effectively reduce response
time and sustain good throughput in overloaded situations,
and can outperform other scheduling methods. Currently each
server makes an independent scheduling decision for a large
multi-tier network service application and our future work is
to study the impact of cooperative request-aware scheduling
among different servers.

ACKNOWLEDGMENTS

We thank the anonymous referees for their helpful com-
ments on earlier drafts of this paper. This work was supported
by Ask Jeeves and NSF grant CCF-0234346.

REFERENCES

[1] Apache web server. http://www.apache.org/.
[2] Ask Jeeves, Inc. http://www.ask.com/.
[3] RTLinux. http://www.fsmlabs.com/.
[4] T. F. Abdelzaher and N. Bhatti. Web Content Adaptation to Improve

Server Overload Behavior. In Proc. of the 8th International Conference
on World Wide Web, pages 1563–1577, 1999.

[5] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A New
Facility for Resource Management in Server Systems. In Proceedings of
the Third Symposium on Operating Systems Design and Implementation
(OSDI ’99), pages 45–58, 1999.

[6] N. Bansal and M. Harchol-Balter. Analysis of SRPT Scheduling:
Investigating Unfairness. In SIGMETRICS, pages 279–290, 2001.

[7] BEA Systems. BEA WebLogic. http://www.bea.
com/framework.jsp?CNT=index.htm&FP=/content/
products/web%logic.

[8] A. Chandra, M. Adler, P. Goyaly, and P. Shenoy. Surplus Fair Schedul-
ing: A Proportional-Share CPU Scheduling Algorithm for Symmetric
Multiprocessors. In Proc. of the 4th Symposium on Operating Systems
Design and Implementation, pages 45–58, San Diego, CA, Oct 2000.

[9] K. Chen. Benchmarking 2.6. http://kerneltrap.org/node/
4940/, Mar. 2005.

[10] M. Crovella and A. Bestavros. Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes. In SIGMETRICS, pages 160–
169, 1996.

[11] M. E. Crovella, R. Frangioso, and M. Harchol-Balter. Connection
Scheduling in Web Servers. In 2nd USENIX Symposium on Internet
Technologies and Systems, Oct. 1999.

[12] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to Network
and Client Variability via On-Demand Dynamic Distillation. In ASPLOS,
1996.

[13] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-Based Scalable Network Services. In Proc. of the 16th Sym-
posium on Operating Systems Principles (SOSP-16), St.-Malo, France,
Oct. 1997.

[14] P. Goyal, X. Guo, and H. M. Vin. A Hierarchical CPU Scheduler
for Multimedia Operating Systems. In Proceedings of the Second
Symposium on Operating Systems Design and Implementation, pages
107–121, 1996.

[15] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scalable,
Distributed Data Structures for Internet Service Construction. In Proc.
of the 4th Symposium on Operating Systems Design and Implementation
(OSDI), 2000.

[16] S. D. Gribble, M. Welsh, E. Brewer, and D. Culler. The MultiSpace: an
Evolutionary Platform for Infrastructural Services. In Proc. of USENIX
Annual Technical Conference, June 1999.

[17] L. Guo and I. Matta. Scheduling Flows with Unknown Sizes: Approxi-
mate Analysis. In ACM SIGMETRICS, Poster Session, pages 276–277,
Marina Del Rey, CA, June 2002.

[18] M. Harchol-Balter. Task Assignment with Unknown Duration. Journal
of the ACM, 49(2):260–288, March 2002.

[19] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal. Size-
Based Scheduling to Improve Web Performance. ACM Transactions on
Computer Systems (TOCS), 21:207–233, May 2003.

[20] J. R. Haritsa, M. J. Carey, and M. Livny. Value-Based Scheduling in
Real-Time Database Systems. VLDB Journal, 2:117–152, 1993.

[21] R. Iyer, V. Tewari, and K. Kant. Overload Control Mechanisms for
Web Servers. In Workshop on Performance and QoS of Next Generation
Network, Nagoya, Japan, Nov. 2000.

[22] S. Iyer and P. Druschel. Anticipatory scheduling: A disk scheduling
framework to overcome deceptive idleness in synchronous I/O. In 18th
ACM Symposium on Operating Systems Principles, pages 117–130, Oct.
2001.

[23] M. B. Jones, D. Rosu, and M.-C. Rosu. CPU Reservations and Time
Constraints: Efficient, Predictable Scheduling of Independent Activities.
In Symposium on Operating Systems Principles, pages 198–211, St-
Malo, France, 1997.

[24] L. Kleinrock and R. Muntz. Processor Sharing Queueing Models of
Mixed Scheduling Disciplines for Time Shared Systems. Journal of
ACM, 19(3):464–482, July 1972.

[25] W. LeFebvre. CNN.com: Facing a World Crisis. Invited talk at USENIX
LISA’01, Dec. 2001.

[26] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for
Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems.
In Proc. of IEEE Real-Time Systems Symposium, pages 110–123, Dec.
1992.

[27] R. Levy, J. Nagarajarao, G. Pacifici, A. Spreitzer, A. Tantawi, and
A. Youssef. Performance Management for Cluster Based Web Services.
In IFIP/IEEE International Symposium on Integrated Network Manage-
ment, Colorado Springs, CO, Mar. 2003.

[28] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–
61, 1973.

[29] Microsoft Corporation. IIS 5.0 Overview. http://www.
microsoft.com/windows2000/techinfo/howitworks/
iis/iis5techov%erview.asp.

[30] D. Mosberger and L. L. Peterson. Making Paths Explicit in the Scout
Operating System. In Proc. of the 2nd Symposium on Operating Systems
Design and Implementation, pages 153–167, 1996.

[31] J. Nieh, C. Vaill, and H. Zhong. Virtual-Time Round-Robin: An O(1)
Proportional Share Scheduler. In Proc. of USENIX Annual Technical
Conference, pages 245–259, Boston, MA, June 2001.

[32] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and
portable Web server. In Proceedings of the USENIX 1999 Annual
Technical Conference, 1999.

[33] I. Ripoll, A. Crespo, and A. Garcia-Fornes. An Optimal Algorithm
for Scheduling Soft Aperiodic Tasks in Dynamic-Priority Preemptive
Systems. IEEE Transactions on Software Engineering, 23(6), Jun. 1996.

[34] Y. Saito, B. N. Bershad, and H. M. Levy. Manageability, Availability
and Performance in Porcupine: A Highly Scalable, Cluster-based Mail
Service. In Proc. of the 17th SOSP, pages 1–15, 1999.

[35] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated Resource Man-
agement for Cluster-based Internet Services. In Proc. of the 5th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI’02), pages 225–238, Boston, MA, 2002.

[36] K. Shen, T. Yang, and L. Chu. Cluster Load Balancing for Fine-grain
Network Services. In Proc. of International Parallel and Distributed
Processing Symposium (IPDPS’02), Fort Lauderdale, FL, 2002.

[37] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner, and H. Zhu.
Neptune: Scalable Replica Management and Programming Support for
Cluster-based Network Services. In Proc. of the 3rd USENIX Symposium
on Internet Technologies and Systems (USITS’01), pages 197–208, San
Francisco, CA, 2001.

[38] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A New
Paradigm for Real-Time Systems. IEEE Software, 8(3):62–72, May
1991.

[39] B. Urgaonkar and P. Shenoy. Cataclysm: Policing Extreme Overloads
in Internet Applications. In Proc. of the International World Wide Web
Conference (WWW’05), Chiba, Japan, Jun. 2005.

[40] T. Voigt, R. Tewari, and D. Freimuth. Kernel Mechanisms for Service
Differentiation in Overloaded Web Servers. In USENIX Annual Techni-
cal Conference, pages 189–202, 2001.

[41] J. R. von Behren, E. A. Brewer, N. Borisov, M. Chen, M. Welsh,
J. MacDonald, J. Lau, S. Gribble, and D. Culler. Ninja: A Framework
for Network Services. In USENIX Annual Technical Conf., 2002.

[42] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In Proceedings of the First
Symposium on Operating System Design and Implementation, pages 1–
11, 1994.

[43] M. Welsh and D. Culler. Adaptive Overload Control for Busy Internet
Servers. In Proceedings of the 4th USENIX Conference on Internet
Technologies and Systems (USITS’03), pages 26–28, Seattle, WA, March
2003.

[44] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An Architecture
for Well-Conditioned, Scalable Internet Services. In Symposium on
Operating Systems Principles, pages 230–243, 2001.

