
Author Retrospective for
PYRROS: Static Task Scheduling and Code Generation for

Message Passing Multiprocessors

Tao Yang
Department of Computer Science

University of California
Santa Barbara, CA 93106, USA

tyang@cs.ucsb.edu

Apostolos Gerasoulis
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903, USA
gerasoul@cs.rutgers.edu

ABSTRACT

Given a program with annotated task parallelism represented
as a directed acyclic graph (DAG), the PYRROS project was
focused on fast DAG scheduling, code generation and run-
time execution on distributed memory architectures. PYRROS
scheduling goes through several processing stages includ-
ing clustering of tasks, cluster mapping, and task execution
ordering. Since the publication of the PYRROS project,
there have been new advancements in the area of DAG
scheduling algorithms, the use of DAG scheduling for irregu-
lar and large-scale computation, and software system devel-
opment with annotated task parallelism on modern parallel
and cloud architectures. This retrospective describes our
experience from this project and the follow-up work, and re-
views representative papers related to DAG scheduling pub-
lished in the last decade.

Original paper: http://dx.doi.org/10.1145/143369.143446

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors); D.1.3 [Programming Tech-

niques]: Parallel Programming; D.4.1 [Operating Sys-

tems]: Process Management—Scheduling

Keywords

DAG, parallel processing, scheduling, task graphs

1. INTRODUCTION
Directed-acyclic task graphs (DAGs) have been widely

used for parallelism representation, performance modeling,
code generation, and execution optimization of parallel pro-
grams. Earlier work in parallelizing compilers and runtime
systems [21, 28, 6] adopted DAG-based task parallelism.
The contribution of the PYRROS project was to develop
fast scheduling algorithms for parallel code generation and

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

ICS 25th Anniversary Volume. 2014

ACM 978-1-4503-2840-1/14/06.

http://dx.doi.org/10.1145/2591635.2591647.

resource management in dealing with a large task graph and
taking communication cost into consideration. Experience
from PYRROS demonstrates that scheduling and code gen-
eration systems can be built with low complexity to simplify
parallel programming of complex parallel architectures, es-
pecially for coarse grain computation with many task com-
ponents or irregular patterns.

During the last decade, the development in high perfor-
mance computing infrastructures continues to present a
formidable challenge for parallel programming. It is difficult
for application users to fully harness the power of multi-core
clusters or hybrid platforms with GPU accelerators or other
co-processors. DAG-based codes have been suggested as a
suitable candidate for exascale applications [1, 14] to ex-
ploit modern parallel and distributed architectures. New
algorithms and techniques were developed for DAG-based
computation execution on emerging architectures. We will
give a short survey of those techniques as a retrospective on
DAG scheduling in high performance computing.

1.1 The PYRROS system and follow-up work
PYRROS contains a task graph language with an interface

to C and Fortran, allowing users to define partitioned pro-
grams and data; a scheduling system; a graphic displayer
for visualizing task graphs and scheduling results; a code
generator that inserts synchronization primitives and per-
forms code optimization for distributed memory machines.
PYRROS uses the following multistep approach to fast schedul-
ing: 1) Perform clustering using the Dominant Sequence
Algorithm (DSC) [33]. 2) Merge and map the clusters to
available physical machines. 3) Order the execution of tasks
in each processor using the RCP algorithm [32]. The over-
all algorithm complexity is O(e + vlogv) for a DAG with v

nodes and e edges, and the near-linear complexity allows the
system to handle a large task graph efficiently.

The experience learned from the PYRROS system is that
an automatic system for scheduling and code generation is
useful in many ways. If the scheduling is determined at
compile time then the complex parallel architecture can be
utilized better. A programmer does not have to get involved
in low level programming and synchronization, and the par-
allel code generated or managed by such a system can pro-
vide better portability. The scheduling system can also fa-
cilitate performance prediction and comparison of different
optimization strategies without actual code execution.

As a follow-up work to leverage DAG-scheduling for un-
structured computation [10], we studied the use of PYRROS



scheduling for irregular code [20] and developed a software
system called RAPID based on an inspector/executor ap-
proach for runtime parallelization [18, 17, 34]. RAPID pro-
vides library functions for specifying irregular data objects
and tasks that access these objects, extracts a task depen-
dence graph from data access patterns, and executes tasks
efficiently on distributed memory machines. Additional re-
search issues addressed were space/time-efficient DAG schedul-
ing optimization for better data locality and load balanc-
ing, the use of advanced hardware features for low-overhead
asynchronous communication, efficient task-level synchro-
nization protocols for maintaining data consistency, and run-
time memory management for maximizing space reuse. The
effectiveness of RAPID was demonstrated in parallelizing
irregular problems with static or slowly changing dynamic
computation patterns such as sparse matrix solving and the
adaptive fast multipole method for n-body simulation. Us-
ing RAPID, we developed fast DAG-based parallel code for
sparse LU factorization with partial pivoting and set up a
new performance record [16, 15].

2. PROGRESS IN DAG-BASED

PARALLELIZATION AND SCHEDULING
There has been a large body of active research on DAG-

based parallelization and computation scheduling. We sum-
marize a number of representative papers published during
the last decade in the following three areas.

Algorithms and compilation support for DAGs.

An earlier survey paper on DAG scheduling was by Kwok
and Ahmad [24]. Cosnard et al. [11, 12] studied the compact
representation and symbolic scheduling of DAGs to avoid
the unrolling of dependence structure. Sinnen et al. [29]
presented scheduling with task duplication under communi-
cation contention. Bozdağ et al. [8] optimized the number
of processors required in duplication-based scheduling. Vy-
dyanathan et al. [31] presented DAG scheduling with task
duplication in processing a stream of input data. Daoud
and Kharma [13] considered the architecture heterogeneity
in two-phase task scheduling.

Adve and Sakellariou [2] described parallelizing compiler
techniques to automate the task graph constructions for the
MPI code generated for a High-Performance-Fortran pro-
gram. Baskaran et al. [4] discussed compile-time paral-
lelization techniques in the Pluto system to enable dynamic
extraction of inter-tile dependences at run-time, and dy-
namic scheduling of the parallel tiles on multi-core archi-
tectures. Bellens et al. [5] presented a programming model
called CellSs with annotated functional parallelism. A source-
to-source compiler generates the necessary code that builds
a runtime task dependency graph and supports a locality-
aware task scheduling.

Parallel programming and application experience

with DAGs. The DAGuE system developed by Bosilca et
al. [7, 14] targets at exascale parallel programming with an-
notated task parallelism. It uses a concise representation of
the DAG to avoid task graph unrolling and reduce the mem-
ory usage. The algebraic representation of task dependen-
cies extracts more potential parallelism, while still enabling
out-of-order task execution.

Motivated by the need of exascale applications, Meng et
al. [25] investigated the portability and scalability of DAG-
based computation with the Uintah software on large com-

puting infrastructures. Through their experimental studies,
the authors indicate that the adaptive DAG-based approach
provides a powerful abstraction for solving challenging mul-
tiscale multi-physics engineering problems on the three of
the fastest computers appeared in the top 500 list of Novem-
ber 2012. Bueno et al. [9] developed a task graph based
programming system called OmpSs that lets a user anno-
tate a sequential application and provides semi-automatic
parallelization to simplify programming on GPU clusters.

DAG parallelism on clouds and emerging archi-

tectures. Henzinger et. al [22, 23] discussed the DAG
scheduling and resource management challenges, and devel-
oped a cloud programming and pricing model which consid-
ers the tradeoff of execution speed and price on a per-job
basis. Tang et al. [30] considered handling of hardware and
software failures in task graph scheduling for a grid comput-
ing system in which distributed scientific and engineering
applications often require multi-institutional collaboration,
large-scale resource sharing, and wide-area communication.

Hardware specialization is an important architecture di-
rection to improve microprocessor performance and transis-
tor energy efficiency. One key specialization technique is
to map large regions of computation to the hardware with
a spatial architecture paradigm. Mercaldi et al. [26] devel-
oped a practical DAG scheduling algorithm that generates
efficient code schedules for tiled architectures. The sched-
uler decides where and when an instruction will execute. For
example, placing dependent instructions on the same or ad-
jacent tiles reduces producer-to-consumer operand latency.
Nowatzkiy et al. [27] studied a scheduling framework usable
for various spatial architectures.

One key challenge in high performance quantum comput-
ing research is to scale experimental quantum computers
from a handful of quantum bits to a large number of quan-
tum bits. Balensiefer et al. [3] presented a set of infrastruc-
tural tools that enable the quantitative evaluation of archi-
tectures for quantum computers with thousands of quantum
bits and billions of time steps. One of its tools is a device
scheduler that maps an assembly source into a set of de-
vice specific primitive operations for controlling a quantum
micro-architecture. The ability to process billions of oper-
ations was critical in designing the scheduler. The paper
considers a trade-off of optimality for speed and employs a
variant of list scheduling [32].

3. CONCLUDING REMARKS
DAG scheduling is an important technique for software

tools, compilers, and runtime systems in optimizing the use
of parallel computing resource. Our earlier theoretical study
on task granularity [19] shows that scheduling needs to take
communication overhead into account especially for distributed
memory architectures. Fast scheduling heuristic algorithms
can attain good performance in solving the resource opti-
mization problem. Those scheduling techniques can be prac-
tical with an integration of a software system that aids task
graph description or derivation and manages code genera-
tion and runtime support for executing DAG computation.
Such systems are critical for supporting large-scale scientific
and data-intensive applications in the current and future
high performance computing platforms.

Acknowledgments. This work was supported in part
by NSF IIS-1118106. Any opinions, findings, conclusions or



recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

4. REFERENCES

[1] D. Brown and P. Messina (Chairs). Scientific Grand
Challenges: Crosscutting Technologies for Computing at
the Exascale. Report from the 2010 Workshop. U.S.
Department of Energy, 2010.

[2] Vikram S. Adve and Rizos Sakellariou. Compiler synthesis
of task graphs for parallel program performance prediction.
In Proc. of 13th Inter. Workshop on Languages and
Compilers for Parallel Computing-Revised Papers, pages
208–226, 2001.

[3] Steven Balensiefer, Lucas Kregor-Stickles, and Mark Oskin.
An evaluation framework and instruction set architecture
for ion-trap based quantum micro-architectures. In Proc. of
32nd Annual Inter. Symposium on Computer Architecture,
pages 186–196, 2005.

[4] Muthu Manikandan Baskaran, Nagavijayalakshmi
Vydyanathan, Uday Kumar Reddy Bondhugula,
J. Ramanujam, Atanas Rountev, and P. Sadayappan.
Compiler-assisted dynamic scheduling for effective
parallelization of loop nests on multicore processors. In
Proc. of 14th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 219–228,
2009.

[5] Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus
Labarta. Cellss: A programming model for the cell be
architecture. In Proc. of ACM/IEEE Supercomputing’06.

[6] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson,
K. Randall, and Y. Zhou. Cilk: An Efficient Multithreaded
Runtime System. In Proc. of 5th ACM Symposium on
Principles and Practice of Parallel Programming, pages
207–216, 1995.

[7] George Bosilca, Aurelien Bouteiller, Anthony Danalis,
Thomas Herault, Pierre Lemarinier, and Jack Dongarra.
Dague: A generic distributed dag engine for high
performance computing. Parallel Comput., 38(1-2):37–51,
January 2012.

[8] Doruk Bozdağ, Füsun Özgüner, and Umit V. Catalyurek.
Compaction of schedules and a two-stage approach for
duplication-based dag scheduling. IEEE Trans. Parallel
Distrib. Syst., 20(6):857–871, June 2009.

[9] Javier Bueno, Judit Planas, Alejandro Duran, Rosa M.
Badia, Xavier Martorell, Eduard Ayguade, and Jesus
Labarta. Productive programming of gpu clusters with
ompss. In Proc. of 2012 IEEE 26th Inter. Parallel and
Distributed Processing Symposium, pages 557–568, 2012.

[10] F. T. Chong, S. D. Sharma, E. A. Brewer, and J. Saltz.
Multiprocessor Runtime Support for Fine-Grained Irregular
DAGs. In Rajiv K. Kalia and Priya Vashishta, editors,
Toward Teraflop Computing and New Grand Challenge
Applications., New York, 1995. Nova Science Publishers.

[11] Michel Cosnard and Emmanuel Jeannot. Compact dag
representation and its dynamic scheduling. J. Parallel
Distrib. Comput., 58(3):487–514, September 1999.

[12] Michel Cosnard, Emmanuel Jeannot, and Tao Yang.
Compact dag representation and its symbolic scheduling. J.
Parallel Distrib. Comput., 64(8):921–935, August 2004.

[13] Mohammad I. Daoud and Nawwaf Kharma. A hybrid
heuristic-genetic algorithm for task scheduling in
heterogeneous processor networks. J. Parallel Distrib.
Comput., 71(11):1518–1531, November 2011.

[14] Jack Dongarra. Achitecture Aware Algorithms and Software
for Peta and Exascale. Presentation at Ken Kennedy
Institute of Information Technology, Feb 2014.

[15] C. Fu, X. Jiao, and T. Yang. Efficient Sparse LU
Factorization with Partial Pivoting on Distributed Memory
Architectures. IEEE Transactions on Parallel and
Distributed Systems, 9(2):109–125, 1998.

[16] C. Fu and T. Yang. Sparse LU Factorization with Partial
Pivoting on Distributed Memory Machines. In Proc. of
ACM/IEEE SuperComputing’96.

[17] C. Fu and T. Yang. Run-time Compilation for Parallel
Sparse Matrix Computations. In Proc. of ACM Inter.
Conf. on Supercomputing, pages 237–244, 1996.

[18] C. Fu and T. Yang. Space and Time Efficient Execution of
Parallel Irregular Computations. In Proc. of ACM
Symposium on Principles & Practice of Parallel
Programming, pages 57–68, 1997.

[19] A. Gerasoulis and T. Yang. On the Granularity and
Clustering of Directed Acyclic Task Graphs . IEEE Trans.
on Parallel and Distributed Syst., 4(6):686–701, June 1993.

[20] Apostolos Gerasoulis and Jia Jiao. Rescheduling support for
mapping dynamic scientific computation onto distributed
memory multiprocessors. In Proc. of Third Inter. Euro-Par
Conference on Parallel Processing, pages 905–912, 1997.

[21] M. Girkar and C. Polychronopoulos. Automatic Extraction
of Functinal Parallelism from Ordinary Programs. IEEE
Trans. on Parallel and Distributed Syst., 3(2):166–178,
1992.

[22] Thomas A. Henzinger, Anmol V. Singh, Vasu Singh,
Thomas Wies, and Damien Zufferey. A marketplace for
cloud resources. In Proc. of Tenth ACM Inter. Conf. on
Embedded Software, pages 1–8, 2010.

[23] Thomas A. Henzinger, Anmol V. Singh, Vasu Singh,
Thomas Wies, and Damien Zufferey. Static scheduling in
clouds. In Proc. of 3rd USENIX HotCloud, 2011.

[24] Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling
algorithms for allocating directed task graphs to
multiprocessors. ACM Comput. Surv., 31(4):406–471, 1999.

[25] Qingyu Meng, Alan Humphrey, John Schmidt, and Martin
Berzins. Investigating applications portability with the
uintah dag-based runtime system on petascale
supercomputers. In Proc. of SC13: Inter. Conf. for High
Performance Computing, Networking, Storage and
Analysis, pages 96:1–96:12, 2013.

[26] Martha Mercaldi, Steven Swanson, Andrew Petersen,
Andrew Putnam, Andrew Schwerin, Mark Oskin, and
Susan J. Eggers. Instruction scheduling for a tiled dataflow
architecture. In Proc. of 12th Inter. Conf. on Architectural
Support for Programming Languages and Operating
Systems, pages 141–150, 2006.

[27] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli,
Karthikeyan Sankaralingam, Cristian Estan, and Behnam
Robatmili. A general constraint-centric scheduling
framework for spatial architectures. In Proc. of 34th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 495–506, 2013.

[28] V. Sarkar. Partitioning and Scheduling Parallel Programs
for Execution on Multiprocessors. MIT Press, 1989.

[29] Oliver Sinnen, Andrea To, and Manpreet Kaur.
Contention-aware scheduling with task duplication. J.
Parallel Distrib. Comput., 71(1):77–86, January 2011.

[30] Xiaoyong Tang, Kenli Li, Meikang Qiu, and Edwin H. M.
Sha. A hierarchical reliability-driven scheduling algorithm
in grid systems. J. Parallel Distrib. Comput.,
72(4):525–535, April 2012.

[31] Naga Vydyanathan, Umit Catalyurek, Tahsin Kurc,
Ponnuswamy Sadayappan, and Joel Saltz. Optimizing
latency and throughput of application workflows on
clusters. Parallel Comput., 37(10-11):694–712, 2011.

[32] T. Yang and A. Gerasoulis. List Scheduling With and
Without Communication . Parallel Computing,
19:1321–1344, 1993.

[33] T. Yang and A. Gerasoulis. DSC: Scheduling Parallel Tasks
on An Unbounded Number of Processors. IEEE Trans. on
Parallel and Distributed Syst., 5(9):951–967, 1994.

[34] Tao Yang and Cong Fu. Space/time-efficient scheduling and
execution of parallel irregular computations. ACM Trans.
Program. Lang. Syst., 20(6):1195–1222, November 1998.


