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All pairs similarity search (APSS) is used in many web search and data mining applications. previous
work has used techniques such as comparison filtering, inverted indexing, and parallel accumulation of par-
tial results. However, shuffling intermediate results can incur significant communication overhead as data
scales up. This paper studies a scalable two-phase approach called Partition-based Similarity Search (PSS).
The first phase is to partition the data and group vectors that are potentially similar. The second phase is
to run a set of tasks where each task compares a partition of vectors with other candidate partitions. Due to
data sparsity and the presence of memory hierarchy, accessing feature vectors during the partition compar-
ison phase incurs significant overhead. This paper introduces a cache-conscious design for data layout and
traversal to reduce access time through size-controlled data splitting and vector coalescing, and it provides
an analysis to guide the choice of optimization parameters. The evaluation results show that for the tested
datasets, the proposed approach can lead to an early elimination of unnecessary I/O and data communica-
tion while sustaining parallel efficiency with one order of magnitude of performance improvement and it can
also be integrated with LSH for approximated APSS.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—clustering, search process; H.3.4 [Information Storage and Retrieval]: Systems and Soft-
ware—distributed systems

Additional Key Words and Phrases: All-pairs similarity search; memory hierarchy; partitioning; data traver-
sal

1. INTRODUCTION
All Pairs Similarity Search (APSS) [Bayardo et al. 2007], which identifies similar ob-
jects among a given dataset, has many important applications. For example, collabora-
tive filtering and recommendations based user or item similarity [Aiolli 2013; Cacheda
et al. 2011], search query suggestions with similar results [Sahami and Heilman 2006],
plagiarism and spam recognition [Shivakumar and Garcia-Molina 1996; Chowdhury
et al. 2002; Kolcz et al. 2004; Jindal and Liu 2008], coalition detection for advertise-
ment frauds [Metwally et al. 2007], clustering [Baeza-Yates and Ribeiro-Neto 1999],
and near duplicate detection [Hajishirzi et al. 2010; Zhu et al. 2012]. Conducting simi-
larity search is a time-consuming process because the complexity of a naïve APSS can
be quadratic to the dataset size. As big data computing with hundreds of millions of
objects such as web mining, improvement in efficiency can have a significant impact to
speed up discovery and offer more rich options under the same computing constraint.

Previous research on expediting the process has used filtering methods and inverted
indexing to eliminate unnecessary computations[Bayardo et al. 2007; Xiao et al. 2008;
Arasu et al. 2006; Anastasiu and Karypis 2014]. However, parallelization of such meth-
ods is not straightforward given the extensive amount of I/O and communication over-
head involved. One popular approach is the use of MapReduce to compute and collect
similarity results in parallel using an inverted index [Lin 2009; Morales et al. 2010;
Baraglia et al. 2010; Metwally and Faloutsos 2012]. Unfortunately, the cost of com-
municating the intermediate partial results is still excessive and such solutions are
un-scalable for larger datasets.

We pursue a design that conducts partition-based similarity search (PSS) in parallel
with a simplified parallelism management. We statically group data vectors into parti-
tions such that the dissimilarity of partitions is revealed in an early stage. This static
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optimization technique allows an early removal of unwanted comparisons which elimi-
nates a significant amount of unnecessary I/O, memory access and computation. Under
this framework, similarity comparisons can be performed through a number of tasks
where each of them compares a partition of vectors with other candidate vectors. To
expedite computation when calculating the similarity of vectors from two partitions,
we have further considered the impact of memory hierarchy on execution time. The
main memory access latency can be 10 to 100 times slower than the L1 cache latency.
Thus, the unorchestrated slow memory access can significantly impact performance.

We investigate how data traversal and the use of memory layers affect the perfor-
mance of similarity comparison, and propose a cache-conscious data layout and traver-
sal scheme that reduces the execution time for exact APSS. We propose two algorithms
PSS1 and PSS2 to exploit the memory hierarchy explicitly. PSS1 splits the data hosted
in the memory of each task to fit into the processor’s cache and PSS2 coalesces data
traversal based on a length-restricted inverted index. We provide an analytic cost
model and identify the parameter values for optimized performance. Contrary to com-
mon sense in choosing a large split size, the optimum split size is rather small so that
core data can fully reside in the fast cache.

The rest of this paper is organized as follows. Section 2 reviews background and
related work. Section 3 gives an overview of PSS. Section 4 presents the static parti-
tioning algorithm. Section 5 discusses the design framework and PSS1 algorithm for
cache-aware data splitting. Section 6 analyzes cost model of PSS1 and demonstrates
the impact of the parameters on memory access performance. Section 7 presents PSS2,
the further optimized algorithm using vector coalescing. Section 8 describes the inte-
gration of PSS and Locality-Sensitive Hashing (LSH) for approximated APSS. Sec-
tion 9 discusses an extension for incremental computing and a revision of PSS for
Jaccard and Dice similarity. Section 10 is our experimental evaluation that assesses
the benefits of PSS1 and PSS2. Section 11 concludes this paper.

2. BACKGROUND AND RELATED WORK
Following the work in [Bayardo et al. 2007], the APSS problem is defined as follows.
Given a set of vectors d

i

= {w
i,1, wi,2, · · · , wi,m

}, where each vector contains at most m
features and may be normalized to a unit length, the cosine-based similarity between
two normalized vectors is computed as:
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Two vectors d
i

, d
j

are considered similar if their similarity score exceeds a threshold ⌧ ,
namely Sim(d

i

, d
j

) � ⌧ . The time complexity of computing APSS is high, especially for
a big dataset. Application-specific methods could be applied to reduce the computation
complexity. For example, text mining removes stop-words or features with extremely
high frequency [Baeza-Yates and Ribeiro-Neto 1999; Lin 2009]. We adopt these meth-
ods in the pre-processing step when applicable during our experiments for the tested
datasets.

Generally speaking, there are three groups of optimization techniques developed in
previous work to accelerate APSS.

— Dynamic computation filtering. Partially accumulated similarity scores can be
monitored at runtime and dissimilar document pairs can be detected dynamically
based on the given similarity threshold, without complete derivation of final similar-
ity scores [Bayardo et al. 2007; Xiao et al. 2008; Morales et al. 2010; Anastasiu and
Karypis 2014].
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— Similarity-based grouping and mapping. The search scope for similarity can be
reduced when potentially similar vectors are placed in the same group. One can use
an inverted index [Xiao et al. 2008; Lin 2009; Morales et al. 2010; Metwally and
Faloutsos 2012] developed for information retrieval [Baeza-Yates and Ribeiro-Neto
1999]. This approach identifies vectors that share at least one feature as potentially
similar, so data traversal can be avoided for certain vector pairs. Similarly, the work
in [Vernica et al. 2010] maps feature-sharing vectors to the same group for group-wise
parallel computation. This technique is more suitable for vectors with low sharing
pattern, otherwise it suffers from excessive redundant computation among groups.
Locality-Sensitive Hashing (LSH) is a technique that groups similar vectors into one
bucket with approximation [Gionis et al. 1999; Ture et al. 2011]. This approach has
a trade-off between precision and recall, and can introduce redundant computation
when multiple hash functions are used. The work in [Satuluri and Parthasarathy
2012] studies the use of LSH with approximated APSS, but has not considered the
integration with the exact APSS. A study [Arasu et al. 2006] shows that exact com-
parison algorithms can deliver performance competitive to LSH when computation
filtering is applied.

— Parallelism management. The similarity score of vectors involves a large number
of partial result addition and the work in [Lin 2009; Baraglia et al. 2010; Metwally
and Faloutsos 2012] leverages the inverted index to exploit parallelism. The MapRe-
duce framework called V-SMART-JOIN in [Metwally and Faloutsos 2012] builds the
inverted index and generates the candidate pairs of vectors that share the same fea-
tures. Then V-SMART-JOIN aggregates the partial scores from all candidate pairs.
Another study [Wang et al. 2013] introduces a division scheme to improve load bal-
ance for dense APSS problems using multiple rounds of MapReduce computation.

Cache optimization for computationally intensive applications is studied in the con-
text of general database query processing [Shatdal et al. 1994; Boncz et al. 1999]. In
particular, the problem of hash join in a main memory DBMS has attracted much at-
tention. Radix-cluster [Manegold et al. 2002] is a partitioning algorithm that utilized
an analytic model to incorporate memory access costs when executing hash-join oper-
ations. These techniques are typically applied to the database join using one attribute.
The computation studied in this paper focuses on similarity search that involves many
common features among vector pairs. Cache optimization for computationally in-
tensive applications is also studied in the context of matrix-based scientific comput-
ing [Duff et al. 2002; Dongarra et al. 1990; Vuduc et al. 2002; Shen et al. 2000]. The
work in [Sundaram et al. 2013] studies cache-aware optimization in dynamic LSH in-
dex update and query processing, but has not addressed on the exact APSS. Motivated
by these studies, we investigate the opportunities of cache-conscious optimization tar-
geting the APSS problem.

Our work focuses on exact APSS and is complementary to the existing work. For
example, dynamic filtering [Bayardo et al. 2007; Xiao et al. 2008] is used in our run-
time partition-wise comparison. Inverted index [Xiao et al. 2008; Lin 2009; Metwally
and Faloutsos 2012] guides through the runtime data traversal in our scheme. LSH
approximation or other mapping [Gionis et al. 1999] can be used to map vectors first
to groups, and then static partitioning and fast comparison among partitions studied
in this paper can be further applied within each group. The work in [Sundaram et al.
2013] studies cache-aware optimization with dynamic LSH index update and query
processing, but has not addressed the problem of computing exact APSS.

Our previous work studied the use of static partitioning in [Alabduljalil et al. 2013b]
and cache-aware optimization in [Alabduljalil et al. 2013a]. This paper presents a more
general framework of Partition-based Similarity Search with comprehensive analysis
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on its memory hierarchy performance, especially when feature-based vector coalesc-
ing is used. This paper also studies the integration with LSH to tackle the approxi-
mated APSS problem, an extension for incremental vector update, and an extension
for applying other similarity metrics. This paper briefly discusses the optimization of
load balancing for mapping partitioned tasks and more optimization techniques can
be found in [Tang et al. 2014].

3. OVERVIEW OF PARTITION-BASED SIMILARITY SEARCH
In this section, we describe the design considerations and processing flow of the PSS
framework. The basic ideas are summarized as follows.

— A large amount of comparisons can be eliminated statically. An earlier detection of
such unnecessary computations avoids unwanted data I/O and memory access. To
facilitate such a process, we statically group data vectors into partitions such that
dissimilar vectors are placed to different partitions as much as possible. This parti-
tioning identifies dissimilar vectors without explicitly computing the product of their
features.

— The previous work [Lin 2009; Morales et al. 2010; Baraglia et al. 2010; Metwally
and Faloutsos 2012] for parallel APSS exploits parallelism in accumulating the par-
tial score w

i,t

⇥w
j,t

based on Formula (1) between two vectors d
i

and d
j

. For example,
three weight multiplications in a dot product expression 0.1⇤0.3+0.3⇤0.2+0.7⇤0.5 can
run in parallel, and the partial scores can be accumulated gradually. We call this ap-
proach as parallel score accumulation. In addition to parallelism in score accumula-
tion for the dot product of each vector pair, there is a huge number of document pairs
which can be computed independently. The above parallel score accumulation exces-
sively exploits parallelism and can cause a large amount of unnecessary management
overhead. A partition-based approach has an opportunity to expose sufficient coarse-
grain parallelism while incurring less overhead than parallel score accumulation.

— We further consider the performance impact of memory hierarchy when calculating
the similarity of vectors from two partitions. Memory access can be ⇠100x slower
than L1 cache and un-orchestrated slow memory access incurs significant cost, dom-
inating the entire computation. Extreme data sparsity creates additional challenges
in data structure design and memory access optimization. For example in the web-
page dataset we have tested, each page has about 320 features and the number of
nonzero features of each vector divided by the total number of features is only around
0.0023%.

— For APSS applications where LSH approximation is necessary, we need to investi-
gate how this framework can be used together with LSH. We will also consider an
extension for different similarity measures and incremental computing.
The framework for PSS consists of two phases. The first phase divides the dataset

into a set of partitions. During this process, the dissimilarity among partitions is iden-
tified so that unnecessary data I/O and comparisons among them are avoided. The
second phase assigns a partition to each task at runtime and each task compares this
partition with other potentially similar partitions. Figure 1 depicts the whole process.
We will present the static detection of dissimilar vectors and the partitioning algorithm
in Section 4 and the runtime execution of PSS tasks and optimization with memory hi-
erarchy in Section 5. Then we discuss cache-aware optimization and other extensions
in the rest of this paper.

Once the dataset is separated into v partitions, v independent tasks are composed.
Each task is responsible for a partition and compares this partition with all poten-
tially similar partitions. We assume that the assigned partition for each task fits in
the memory of one machine as the data partitioning can be adjusted to satisfy such
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Fig. 1: Illustration of partition-based similarity search.

an assumption. Other partitions to be compared with may not fit in the remaining
memory and need to be fetched gradually from a local or remote storage. Task can be
executed in a simple multi-core server or in a computer cluster with a distributed file
system such as Hadoop, where tasks can seamlessly fetch data from the file system
without worrying about the physical locations of data. Each task loads the assigned
partition and produces an inverted index to be used during the partition-wise com-
parison. It then fetches a number of vectors from potentially similar partitions and
compares them with the local partition. This process is repeated until all candidate
partitions are compared.

4. STATIC PARTITIONING AND DISSIMILARITY DETECTION
This section describes an efficient algorithm that derives a mechanism to partition vec-
tors such that dissimilar vectors are assigned to different partitions. This partitioning
algorithm allows each task in our framework to completely avoid fetching dissimilar
partitions to be compared with the partition it owns.

To identify more dissimilar vectors without explicitly computing the product of their
features, we use Hölder’s inequality to bound the similarity of two vectors:

Sim(d
i

, d
j

)  kd
i

k
r

kd
j

k
s

where 1
r

+

1
s

= 1. k · k
r

and k · k
s

are r-norm and s-norm values. r-norm is defined as

kd
i

k
r

= (

X

t

|w
i,t

|r)1/r.

With r = 1, s = 1, the inequality becomes Sim(d
i

, d
j

)  kd
i

k1kdjk1. If the above
similarity upper-bound is less than ⌧ , such vectors are not similar and comparison
between them can be avoided.

Although the formula shows the relationship between two vectors, the challenge is to
find a quick partitioning of vectors without involving quadratic complexity. Although
the above formula shows the relationship between two vectors, the challenge is to find
a partitioning of vectors efficiently without involving quadratic complexity. We discuss
the basic idea of a partitioning algorithm based on Hölder’s inequality as follows. It
first sorts all vectors based on their r-norm value (ie.k · k

r

). Without loss of generality,
assume that

kd1kr  kd2kr  · · ·  kd
n

k
r

.
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Fig. 2: Example of static partitioning using 9 vectors when r = 1 and s = 1.

Given any vector d
j

, we find another vector d
i

in the above sorted list where:

kd
i

k
r

<
⌧

kd
j

k
s

. (2)

Then the above pair of vectors d
i

and d
j

cannot be similar because Expression (2)
implies that Sim(d

i

, d
j

)  kd
i

k
r

kd
j

k
s

< ⌧. Moreover, all vectors d1, d2, · · · d
i�1 cannot

be similar to d
j

due to the above norm-based sorting. Following this idea, we rapidly
find a large number of vectors dissimilar to one vector.

We define ⌧ -s ratio of vector d
j

as ⌧

kd
j

k
s

The above analysis shows that a sorted
comparison between the r-norm value and ⌧ -s ratio of vectors can facilitate the identi-
fication of dissimilar data partitions. The partitioning procedure is formally described
below along with an example illustrated in Figure 2.

— Step 1. Sort all vectors by their r-norm values (k·k
r

) in a non-decreasing order. Divide
this ordered list evenly to produce u consecutive groups G1, G2, · · · , Gu

.
For example, given d1, d2, · · · , d9 in a non-decreasing order of their r-norm values
shown in Figure 2 with r = 1, the above step produces the following groups:

G1 = {d1, d2, d3}, G2 = {d4, d5, d6}, G3 = {d7, d8, d9}.

— Step 2. Partition each group further as follows. For the i-th group G
i

, divide its
vectors into i disjoint subgroups G

i,1, Gi,2, · · · , Gi,i

. With j < i, each subgroup G
i,j

contains all vectors d
x

from group G
i

satisfying the following inequality:

max

d

y

2G

j

kd
y

k
r

<
⌧

kd
x

k
s

.

Let leader(G
j

) be the maximum vector 1-norm value in group G
j

, namely
max

d

y

2G

j

kd
y

k
r

. The above condition can be interpreted as:
— G

i,1 contains G
i

’s vectors whose ⌧ -s ratio is in the interval [leader(G1), leader(G2));
— G

i,2 contains G
i

’s vectors whose ⌧ -s ratio is in the interval [leader(G2), leader(G3));
— G

i,i�1 contains G
i

’s vectors whose ⌧ -s ratio is greater or equal to leader(G
i�1).

— G
i,i

contains vectors from G
i

that are not in G
i,1, G

i,2, · · · , G
i,i�1.
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For the example in Figure 2(c), group G3 is further divided into:
G3,1 = {d8}, G3,2 = {d7}, G3,3 = {d9}.

The vectors in G3 have been compared with the leaders of groups G1 and G2 and
satisfied:

Leader(G1) = kd3k1 <
⌧

kd8k1
.

and

Leader(G2) = kd6k1 <
⌧

kd7k1
.

The leader value defines the characteristic of each partition and facilitates the fast
partitioning to detect dissimilarity relationship. From the above partitioning algo-
rithm, it is easy to show that the groups derived by the above algorithm satisfy the
following property.

Proposition 1 Given i > j, Vectors in G
i,j

are not similar to ones in any group G
k,l

where l  k  j.

This is because as G
i,j

is not similar to G
j

, any leader in groups with index below j
has the vector 1-norm value less than Leader(G

j

). Thus G
i,j

is not similar to G1,G2,
· · · , G

j�1, Gj

.

G

G

..... ...
...

1,1

G2,1

G3,1

Gn,1

G2,2

G3,2

Gn,2

G3,3

n,3 Gn,n

..

.

Fig. 3: Dissimilarity relationship among partitions.

Figure 3 illustrates the dissimilarity relationship among the partitioned groups and
each edge represents a dissimilar relationship. For example, members of G3,2, G4,2 ,· · · ,
G

n,2 are not similar to any member in G1,1, G2,1 or G2,2,
The complexity of this partitioning algorithm is O(n log n). This is because Step 2

of the above algorithm only needs to compare a member’s ⌧ -1 ratios with the leaders
of each group, G1, · · ·Gi�1. Furthermore, it is easy to parallelize this algorithm with a
parallel sorting routine that Hadoop provides. The cost of parallel partitioning is rela-
tively small and is less than 3% of the overall execution time of PSS in our experiment
benchmarks.
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To facilitate load balancing in the later phases, we aim at creating more evenly-sized
partitions at the dissimilarity detection phase. One way is to divide the large group into
smaller partitions. The weakness of this approach is that it introduces more potential
similarity edges among these partitions, hence the similarity graph produced becomes
denser, more communication and I/O overhead will be incurred during runtime. An-
other method uses a non-uniform group size. For example, let the size of group G

k

be proportional to the index value k, following the fact that the number of subgroups
in G

k

is k in our algorithm. The main weakness of the second approach is that less
dissimilarity relationships are detected as the top layers become much smaller.

We adopt a hierarchical partitioning that identifies large subgroups, detects dis-
similar vectors inside these subgroups, and recursively divides them using the above
partitioning procedure. The recursion stops for a subgroup when it reaches a partition
size threshold. Each partition inherits the dissimilar relationship from its original
subgroup.

Data preparation and partition postprocessing. To utilize the above partition-
ing more effectively, we first eliminate the lonely features which only appear in a single
vector in the entire dataset. These features do not participate in any similarity compu-
tation. We also investigated the elimination of lonely vectors following the definition
of ˆd from [Baraglia et al. 2010] based on [Bayardo et al. 2007; Anastasiu and Karypis
2014]. Here ˆd = {ŵ

i,1, ŵ
i,2, · · · , ŵ

i,m

} where ŵ
i,j

= max

d

i

2D

{w
i,j

} is the maximum
weight for the j-th feature among all vectors. Then we have Sim(d

i

, d
j

)  Sim(d
i

, ˆd).
Any vector that satisfies Sim(d

i

, ˆd)  ⌧ is defined as a lonely vector and cannot be
similar to any other vector in the entire dataset. In the datasets we tested, we have
not found enough lonely vectors. However, we find it is useful to exploit partition-level
lonely vectors as follows.

Once the static partitions have been derived, we further detect dissimilarity rela-
tionships among them using the following procedure.

— For each data partition P
i

, compute:
ˆd
i

= {ŵ
i,1, ŵi,2, · · · , ŵi,m

}

where ŵ
i,j

= max

d

i

2P

i

{w
i,j

} is the maximum weight for the j-th feature used in set
P
i

.
— Two partitions P

i

and P
k

are dissimilar if Sim(

ˆd
i

, ˆd
k

) < ⌧ .

5. RUNTIME COMPARISON OF PARTITIONS
After a dataset is divided into v partitions, there are v corresponding independent
tasks. Each PSS task is responsible for a partition and compares this partition with
all potentially similar partitions. In this section, we give an overview of a runtime
framework for partition-based APSS and then present the caching optimization strat-
egy in detail. We will discuss the load balancing and symmetry of vector comparison
in Section 9.

5.1. Runtime Framework and Data Layout
Figure 4 depicts a task in PSS interacting with a CPU core with multiple levels
of cache. Two to three cache levels are typical in today’s Intel or AMD architec-
ture [Levinthal 2009; Kanter 2010]. We assume that the assigned partition A fits the
memory of one machine as the data partitioning can be adjusted to satisfy such an
assumption. However, vectors in the other partition (denoted with parameter O) will
most likely exceed memory size and need to be fetched gradually from a local or re-
mote storage. In a computer cluster with distributed file system like Hadoop, a task
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Fig. 4: A PSS task compares the assigned partition A with other partitions O.

ALGORITHM 1: PSSTask(A, O)
Input: Partition A assigned to the task, and another candidate partition O.
Output: Similar pairs from A and O, and their corresponding similarity scores.

1 Read all vectors from assigned partition A into S;
2 build inverted index of these vectors and store in S;
3 repeat
4 fetch a set of vectors from O into B;
5 for dj 2 B do
6 PSSCompare(S, dj);
7 end
8 until all vectors in O are fetched;

can seamlessly fetch data from the file system without worrying about the machine
location of data.

The memory used by each task has three areas, as illustrated in Figure 4.

(1) Area S: hosts the assigned partition A.
(2) Area B: stores a block of vectors fetched from another candidate partition O.
(3) Area C: stores intermediate results temporarily.

Algorithm 1 and Function PSSCompare describe a PSS task. Each task loads the as-
signed vectors, whose data structure is in forward index format, into area S. Namely,
each vector consists of an ID along with a list of feature IDs and their corresponding
weights, stored in a compact manner. After loading the assigned vectors, the task in-
verts them locally within area S. It then fetches a number of vectors from O, in forward
index format, and place them into area B.

Let d
j

be the vector fetched from O to be processed (Line 5 in Algorithm 1). For each
feature t in d

j

, PSS uses the inverted index in area S to find the localized t’s posting
(Line 3 in Function PSSCompare). Then weights of vector d

i

from t’s posting and d
j

contribute a partial score towards the final similarity score between d
j

and d
i

. After
all the features of d

j

are processed, the similarity scores between d
j

and the vectors
in S are validated (Line 13 in Function PSSCompare) and only those that exceed the
threshold are written to disk. The dissimilarity of vector d

i

in S with d
j

can be marked
(Line 7 in Algorithm 1) by using a negative value for score[i]. Array ||d||1[ ] contains
the 1-norm value of vector d

i

. The score[ ] vector is also used for dynamic elimination,
where a negative value of score[i] indicates d

i

marked as a non-candidate.
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Function PSSCompare(S, d
j

)
1 Initialize array score of size |S| with zeros;
2 rj = ||dj ||1;
3 for t 2 dj and posting(t) 2 S do
4 for di 2 posting(t) and di is a candidate do
5 score[i]=score[i]+wi,t⇥wj,t ;
6 if (score[i]+||di||1⇥rj<⌧ ) then
7 mark di as non-candidate;
8 end
9 end

10 rj = rj � wj,t;
11 end
12 for i = 1 to |S| do
13 if score[i] � ⌧ then
14 write (di, dj , score[i]);
15 end
16 end

5.2. Cache-Conscious Data Splitting
When dealing with a large dataset, the number of vectors in each partition is high.
Having a large number of vectors increase the benefits of inverted indexing. But a new
problem emerges: the accessed areas S or C may not fit in the fast cache. If that is the
case, temporal locality is not exploited, meaning the second access of the same element
during any computation will be a cache miss. As we will show in the next section, large
inverted index leads to frequent slow memory accesses and a significant increase in
execution time. Since fast accesses of areas S, B and C are equally important in the
core computation (Lines 5 and 6 in Function PSSCompare), one idea is to let area C
fit in L1 cache by explicitly dividing vectors of the assigned partition (S) into a set of
splits and have the task focus on one split at a time.

Fig. 5: A partition in area S is further divided into multiple splits for each PSS1 task.

Figure 5 and 6 illustrate this cache-conscious data splitting idea. The corresponding
algorithm called PSS1 is shown in Algorithm 2. First, it divides the hosted vectors in
S into q splits, each with s vectors. Each split S

i

is of size s. PSS1 then executes q
comparison sub-tasks. Each sub-task compares vectors from S

i

with a vector d
j

in B.
The access in area C is localized such that array score[ ] and ||d||1[ ] can fully fit in
L1 cache. This constraint improves temporal locality of data elements for area C and
reduces the access time by an order of magnitude. As a result, the core computation
speeds up.
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Fig. 6: Core computation in PSS1 and its interaction with data items. Four data items
are involved in the core computation. The striped areas indicate cache coverage.

ALGORITHM 2: PSS1Task(A, O)
Input: Partition A assigned to the task, and another candidate partition O.
Output: Similar pairs and their corresponding similarity scores.

1 Read and divide A into q splits;
2 repeat
3 build an inverted index for each split Si and store in S;
4 repeat
5 fetch a set of vectors from O into B;
6 for dj 2 B do
7 for Si 2 S do
8 PSSCompare(Si, dj);
9 end

10 end
11 until all vectors in O are fetched;
12 until all splits in A are processed;

The question is, how do we determine the number of vectors in each split (s value)
to optimize cache utilization? This is discussed next.

6. CACHE PERFORMANCE AND COST ANALYSIS OF PSS1
We model the total execution time of each PSS1 task and analyze how memory hier-
archy affects the running time. This analysis facilitates the identification of optimized
parameter setting. Table I describes the parameters used in our analysis. They rep-
resent the characteristics of the given dataset, algorithm variables, and the system
setting.

6.1. Task Execution Time
The total execution time for each task includes two parts: I/O and computation. I/O cost
occurs for loading the assigned vectors A, fetching other potentially similar vectors,
and writing similarity pairs to disk storage. Notice that in fetching other vectors for
comparison, the algorithm always fetches a block of vectors to amortize the start-up
cost of I/O. For the datasets we have used, read I/O takes about 2% of total cost while
write I/O takes about 10-15%. Since I/O cost is the same for the baseline PSS and our
proposed schemes, we do not model it in this paper.

For each split, the computation time contains a small overhead for the index inver-
sion of its s vectors. Because the inverted index is built once and reused every time
a partition is loaded, this part of computation becomes negligible and the comparison
time with other vectors dominates. The core part is computationally intensive. Follow-
ing notations defined in Table I, h is the cost of looking up the posting of a feature
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Table I: Notations

Dataset
w

d,t

Weight of feature t in vector d
⌧ Similarity threshold
k Average number of nonzero features in d

Algorithm
S,B,C Memory usage for each task

n Number of vectors to compare per task (|O|)
s Avg. number of vectors for each split in S
b Number of vectors fetched and coalesced in B

p
s

, p
b

Average posting length in inverted index of each S
i

or B touched
S
i

A split in area S divided by PSS1
q Number of splits in S
h Cost for t-posting lookup in table

m
j

(X) Miss ratio in level j cache for area X
D

j

(X) Number of misses in level j cache for area X
D

j

Total number of access misses in level j cache
�
total

Cost of accessing the hierarchical memory
Infrastructure

l Cache line size
f Prefetch factor

e
s

, e
b

, e
c

Element size in S, B, C respectively
�1, �2, �3, �mem

Latency when accessing L1, L2, L3 or memory
 Cost of addition and multiplication

appeared in a vector in B. p
s

denotes the average length of postings visited in S
i

(only
when a common feature exists), so p

s

estimates the number of iterations for Line 3 in
Function PSSCompare. Furthermore, there are four memory accesses in Line 5 and
6, regarding data items score[i], w

i,t

, w
j,t

, and ||d
i

||1. Other items, such as r
j

, and ⌧ ,
are constants within this loop and can be pre-loaded into registers. The write back
of score[i] is not counted due to the asymmetric write back mechanism adopted. The
dynamic checking of whether d

i

is a candidate or not (Line 7) is an access to score[ ]
vector as well (negative indicates non-candidate), and is not modeled separately. There
are two pairs of multiplication and addition involved (one in Line 5 and one in Line 6)
bringing in a cost of 2 . For simplicity of the formula, we model the worst case where
none of the computations are dynamically filtered.

For a large dataset, the cost of self-comparison within the same partition for each
task is negligible compared to the cost of comparisons with other vectors in O. The
execution time of PSS1 task (Algorithm 2) can be approximately modeled as follows.

Time = q
h
nk(

lookupz}|{
h +

multiply+addz }| {
p
s

⇥ 2 ) +

traverse S,B,Cz }| {
�
total

i
. (3)

As s increases, q decreases and the cost of inverted index lookup may be amortized.
In the core computation, p

s

increases as s increases. More importantly, the running
time can be dominated by �

total

which is the data access cost due to cache or memory
latency. The data access cost is affected by s because of the presence of memory hierar-
chy. We investigate how to determine the optimal s value to minimize the overall cost
in the following subsection.
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Table II: Cases of cache miss ratios for split S
i

and area C in PSS1 at different cache
levels. Column 2, 4, and 6 are the cache miss ratio m

j

(S
i

) for accessing data in S
i

.
Column 3, 5, and 7 are the cache miss ratio m

j

(C) for accessing data in C.

Case m1 m2 m3 Description
Si C Si C Si C

(1) max(

1
p

s

, e

s

fl

) 0 0 0 0 0 C fits L1; S
i

does not fit L1, but fits L2.
(2) max(

1
p

s

, e

s

fl

)

e

c

fl

0 0 0 0 S
i

and C do not fit L1, but fit L2.
(3) max(

1
p

s

, e

s

fl

)

e

c

fl

1 0 0 0 C does not fit L1, but fits L2; S
i

does not fit L2 but fits L3.
(4) max(

1
p

s

, e

s

fl

)

e

c

fl

1 1 0 0 S
i

and C do not fit L2, but fit L3.
(5) max(

1
p

s

, e

s

fl

)

e

c

fl

1 1 1 0 C does not fit L2 but fits L3; S
i

does not fit L3.
(6) max(

1
p

s

, e

s

fl

)

e

c

fl

1 1 1 1 S
i

and C do not fit L3.

6.2. Memory and Cache Accesses of PSS1

CPUMain Memory Cache
L2

L1

L3BS
C

D
D

D
D

0
1

2
3

Fig. 7: Data access misses for three-layer cache hierarchy, where D
j�1 � D

j

, j=1, 2, 3.

Here we estimate the cost of accessing data in S
i

, B, and C. As illustrated
in Figure 7, D0 is defined as the total number of data accesses in performing
COMPARE(S

i

, d
j

) in Algorithm 2. D
j

is defined as the total number of data access
misses in cache level j. �

i

is the access time at cache level i. �
mem

is the memory access
time.

�
total

= (D0 �D1)�1 + (D1 �D2)�2 + (D2 �D3)�3 +D3�mem

. (4)

To conduct the computation in Lines 5 and 6 of Function PSSCompare, the program
needs to access weights from S

i

, weights from B, and score[ ] and ||d||1[ ] from C. We
model these accesses separately then add them together as follows:

D0 = D0(Si

) +D0(B) +D0(C) =

S

iz }| {
nkp

s

+

Bz }| {
nkp

s

+

Cz }| {
2nkp

s

. (5)

Define D
j

(X) as the total number of data accesses missed in cache level j for accessing
area X. m

j

(X) is the cache miss ratio to access data for area X in cache level j.

D
j

=D
j

(S
i

) +D
j

(B) +D
j

(C)

=D
j�1(Si

) ⇤m
j

(S
i

) +D
j�1(B) ⇤m

j

(B) +D
j�1(C) ⇤m

j

(C).
(6)
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Table II lists six cases of miss ratio values m
j

(S
i

) and m
j

(C) at different cache levels
j. The miss ratio for B is not listed and is considered close to 0 assuming it is small
enough to fit in L1 cache after warm-up. That is true for our tested datasets. For a
dataset with long vectors and B cannot fit in L1, there is a small overhead to fetch it
partially from L2 to L1. Such overhead is negligible due to the relative small size of B,
compared to S

i

and C.
A cache miss triggers the loading of a cache line from next level. We assume the

cost of a cold cache miss during initial cache warm-up is negligible and the cache
replacement policy is LRU-based. Thus the cache miss ratio for consecutive access of a
vector of elements is 1

l/e

where l is the cache line size and e is the size of each element
in bytes. We assume that cache lines are the same in all cache levels for simplicity,
which matches the current Intel and AMD architecture.

The computer system prefetches a few cache lines in advance, in anticipation of us-
ing consecutive memory regions [Levinthal 2009; Kanter 2010]. Also, an element might
be re-visited before it is evicted, where the second cache miss is saved. As an example,
a popular feature in the inverted index of S

i

might be hit again before replacement.
We model both factors to the effective prefetch factor f . Let f be the effective prefetch
factor for S

i

, and e
s

be the element size for S
i

. The cache miss ratio for accessing S
i

is
adjusted as e

s

fl

.
We further explain the cases listed in Table II.

— In Case (1), s is small. C can fit in L1 cache. Thus after initial data loading, its
corresponding cache miss ratios m1(C1), m2(C1), and m3(C1) are close to 0. Then
m1(Si

) =

e

s

fl

, and m2(Si

) and m3(Si

) are approximately 0 since each split can fit in
L2 (but not L1). In this case, s is too small, the benefit of using the inverted index
does not outweigh the overhead of the inverted-index constructions and dynamic
look-up.

— In Case (2), S
i

and C can fit in L2 cache (but not L1). m1(Si

) =

e

s

fl

, and m1(C) =

e

c

fl

.
m2(Si

) and m3(Si

) are approximately 0. Thus �
total

is:

�
total

= (D0 �D1)�1 +D1�2

=


nkp

s

(1�max(

1

p
s

,
e
s

fl
)) + nkp

s

+ 2nkp
s

(1� e
c

fl
)

�
�1

+


nkp

s

max(

1

p
s

,
e
s

fl
) + 2nkp

s

e
c

fl

�
�2.

(7)

Hence task time is

T ime = q


nk(h+ p

s

2 ) + nkp
s

⇣
4�1 + (max(

1

p
s

,
e
s

fl
) +

2e
c

fl
)(�2 � �1)

⌘�
.

— As s becomes large in Case (3) to Case (6), S
i

and C cannot fit in L2 nor L3, and they
need to be fetched periodically from memory if not L3.

A comparison of data access time between PSS1 and PSS.. For a large dataset,
Case (6) reflects the behavior of PSS as each partition tends to hold a large number
of vectors. PSS1 performs the best with the Case (2) setting and thus we compare the
reduction of total data cost from Case 6 to Case (2) in Table II. The D0 and D1 values
of two cases are the same while D2 = D3 = 0 in Case (2) and D3 = D2 = D1 in Case
(6).

�
total

(PSS)

�
total

(PSS1)
=

(D0 �D1)�1 +D1�mem

(D0 �D1)�1 +D1�2
= 1 +

�
mem

� �2

(

D0
D1

� 1)�1 + �2
.
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D1
D0

represents L1 miss ratio and in practice, it exceeds 10%. On the other hand, �
mem

is two orders of magnitude slower than L1 access latency �1. Thus data access of PSS1
can be 5 to 10 time faster than that of PSS.

Optimal choice of s. From the above analysis, a larger s value tends to lead to
the worst performance. We illustrate the s value for the optimal case on an AMD ar-
chitecture. For the AMD Bulldozer 8-core CPU architecture (FX-8120) tested in our
experiments, L1 cache is of size 16KB for each core. L2 cache is of size 2MB shared
by 2 cores and L3 cache is of size 8MB shared by 8 cores. Thus 1MB on average for
each core. Other parameters are: �

m

= 64.52ns, �3 = 24.19ns,�2 = 3.23ns, �1 = 0.65ns,
l = 64 bytes. We estimate  = 0.16ns, h = 10ns, p

s

= 10%s, f = 4 based on the results
from our micro benchmark. The minimum task time occurs in Case (2) when S

i

and C
can fit in L2 cache, but not L1. Thus the constraint based on the L2 cache size can be
expressed as

s⇥ k ⇥ e
s

+ 2s⇥ e
c

 1MB.

While satisfying the above condition, split size s is chosen as large as possible to
reduce q value. For Twitter data, k is 18, e

s

is 28 bytes, and e
c

is 4 bytes. Thus the
optimal s is around 2K.

To support the above analysis, Figure 8 shows the actual data-access-to-computation
ratio collected from our experiment using Twitter dataset. when s varies from 100 to
25,000. We measure the ratio of the data access time (including the inverted index
lookup) over the computation time. This ratio captures the data access overhead paid
to perform comparison computation and the smaller the value is, the better. For Twit-
ter benchmark, the above ratio is 8 for optimum case, while it increases to over 25 for
Case (3) and Case (4) where more frequent access to L3 cache is required. It shows
that by selecting the optimal s value based on our cost function, we are able to reduce
the data-access-to-computation ratio from 25 to 8.
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Fig. 8: Y axis is the ratio of actual data access time to computation time for Twitter
data observed in our experiments.
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ALGORITHM 3: PSS2Task(A, O).
Input: Partition A assigned to the task, and other candidate partitions O.
Output: Similar pairs and their corresponding similarity score.

1 Read A and divide it into q splits of s vectors each;
2 build an inverted index for each split Si;
3 repeat
4 fetch b vectors from O and build inverted index in B;
5 for Si 2 S do
6 PSS2Compare(Si, B);
7 end
8 until all vectors in O are compared;

7. FEATURE-BASED VECTOR COALESCING
In PSS1, every time a feature weight from area S

i

is loaded to L1 cache, its value is
multiplied by a weight from a vector in B. L1 cache usage for S

i

is mainly for spatial
locality. Namely fetching one or few cache lines for S

i

to avoid future L1 cache miss
when consecutive data is accessed. Temporal locality is not exploited much, because
the same element is unlikely to be accessed again before being evicted, especially for
L1 cache due to its small size. Another way to understand this weakness is that the
number of times that an element in L1 loaded for S

i

can be used to multiply a weight
in B is low before this element of S

i

is evicted out from L1 cache. PSS2 is proposed to
exploit temporal locality and adjust data layout and traversal in B in order to increase
L1 cache reuse ratio for S

i

.

w 4,3 w

w5,7

4,7 w4,8

B
t1

w

2,1

1,1 1,2 1,3

w 6,3 w6,8

w

3,1w

w

3,2w
w

2,3w

i CS
t2 t3

t3 t7 t8

Fig. 9: Example of data traversal in PSS2. Five data items are involved in the core
computation. The striped area indicates coverage of cache line.

7.1. Design of PSS2
Figure 9 illustrates the data traversal pattern of PSS2 with b = 3. There is one common
feature t3 that appears in both S

i

and B. The posting of t3 in S
i

is {w1,3,w2,3} and each
iteration of PPS2 uses one element from this list, and multiplies it with elements in
the corresponding posting of B which is {w4,3,w6,3}. Thus every L1 cache loading for
S
i

can benefit two multiplications with weights in B in this example. In comparison,
every L1 loading of weights for S

i

in PSS1 can only benefit one multiplication.
Algorithm 3 and Function PSS2Compare describe a PSS2 task. The key distinctions

from a PSS1 task are as follows.
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Function PSS2Compare(S
i

, B).
1 Initialize array score of size s⇥ b with zeros;
2 for j = 1 to b do
3 r[j] = ||dj ||1;
4 end
5 for feature t appears in both B and S do
6 for di 2 posting(t) in S do
7 for dj 2 posting(t) in B and di is a candidate do
8 score[i][j]=score[i][j]+wi,t⇥wj,t;
9 if (score[i][j]+||di||1⇥r[j]<⌧ ) then

10 mark pair di and dj as non-candidate;
11 end
12 end
13 end
14 for dj 2 posting(t) in B do
15 r[j] = r[j]� wj,t;
16 end
17 end
18 for i = 1 to s do
19 for j = 1 to b do
20 if score[i][j] � ⌧ then
21 write (di, dj , score[i][j]);
22 end
23 end
24 end

— Once an element in S
i

is loaded to L1 cache, we compare it with b vectors from
B at a time. Namely group S

i

from S is compared with b vectors in B (Line 6 in
Algorithm 3).

— We coalesce b vectors in B and build an inverted index from these b vectors. The
comparison between S

i

and b vectors in B is done by intersecting postings of common
features in B and S

i

(Line 5 in Procedure PSS2Compare).
— The above approach also benefits the amortization of inverted index lookup cost. In

PSS1, every term posting lookup for S
i

can only benefit multiplication with one ele-
ment in B. In PSS2, every look up can potentially benefit multiple elements because
of vector coalescing. Thus PSS2 exploits temporal locality of data in S

i

better than
PSS1.

Compared with PSS1, PSS2 compares S
i

with not one, but b vectors in B at a time.
The partial result accumulator is expanded as well, from a one-dimensional array
score[ ] (of length s) to a two-dimensional array score[ ][ ] of length s⇥b. This expansion
in space allocation, together with the coalescing effect aforementioned, implies that
the cache utilization of PSS2 is affected by the choice of s, as well as b.

In this section, we explain in detail why the parameter choice affects the cache uti-
lization, how the parameter choice changes the cache miss ratios by example cases,
and eventually generalize the cases in a cache analytic model. For simplicity of pre-
sentation, the analysis is applied to PSS2 without dynamic elimination (line 6 and
line 7 in Function PSSCompare).
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7.2. Parameter Choices for Optimal Cache Utilization
From the analysis for PSS1, s cannot be too small in order to exploit the spatial locality
of data in S

i

. Now we examine the choice of b as the number of vectors fetched and
stored in B.
— We first discuss the benefits of having a large value for b. The primary gain of PSS2

compared to PSS1 is to exploit the temporal locality of data from S
i

by coalescing b
vectors in area B. Let p

b

be the average number of vectors sharing a feature. The
L1 cache miss ratio of S

i

is reduced by p
b

from PSS1 to PSS2. Choosing a large b is
better as it increases p

b

value.
Also since we build the inverted index for vectors in B dynamically, the small b value
will not bring enough locality benefit to offset the overhead of building the inverted
index. Thus b cannot be too small. In general, B would not fit L1 cache.

— There is a disadvantage to increase b from the cache capacity point of view. Increas-
ing b values expands the size of variables in B and C. Then B and C may not fit L2
cache anymore.
Another consideration is that vectors in B is sparse as shown in our experiment
section (Figure 20) and as a result, a large b value does not linearly increase p

b

value.
From cache analysis for PSS1, we expect that PSS2 performs best when S

i

, B and C fit
L2 cache but none of them fit L1 cache.

Since the space of 2D variable score[ ][ ] dominates the usage of area C, the constraint
based on the L2 cache size can be expressed as

s⇥ k ⇥ e
s

+ b⇥ k ⇥ e
b

+ s⇥ b⇥ e
c

 capacity of L2.
For the Twitter dataset and AMD architecture with 1MB L1 cache per core, when b

size is around 8 to 32, s value varies from 1,000 to 1,500, the above inequality can hold.
The analysis above does not consider the popularity of features among vectors. Since
some features are accessed more frequently than the others, we expect that a smaller
number of features are shared among vectors but many others are not shared, thus
not need to be cached. As a result, the above inequality does not need to include all
features in the capacity planning. We expect the optional choice to be slightly larger
than the numbers discussed above.

The miss ratios for the above cases are:

m1(Si

) = max(

1
p

s

, e

s

fl

) · 1
p

b

, m1(B) =

e

b

fl

· 1
p

s

, m1(C) =

e

c

fl

· 1
p

b

,
m2(Si

) = m3(Si

) = 0, m2(B) = m3(B) = 0, m2(C) = m3(C) = 0.

We could derive the total access cost of PSS2 in this case as follows
�
total

(PSS2) = D0�1 +D1(PSS2)(�2 � �1)

where D1(PSS2) denotes the D1 value when PSS2 is applied and S
i

, B and C fit L2
cache.

D1(PSS2) = max(

1

p
s

,
e
s

fl
)

nkp
s

p
b

+

e
b

nkp
s

flp
s

+

3e
c

nkp
s

flp
b

.

We compare the above result with �
total

for PSS1 with Case (2) in Table II.

D1(PSS1) = max(

1

p
s

,
e
s

fl
)nkp

s

+

2e
c

nkp
s

fl
.

where D1(PSS1) denotes the D1 value when PSS1 is applied and S
i

and C do not fit
L1, but fit L2.
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Table III: Explanation of case abbreviations in Figure 10.

Algo. Case Description

PSS2

pss2-1 Optimal case for PSS2. S
i

, B, C all fit L2.
pss2-2s B and C fit L2; while S

i

does not.
pss2-2c S

i

and B fit L2; while C does not.
pss2-2sc B fits L2; while S

i

and C do not.
pss2-2bc S

i

fits L2; while B and C do not.
pss2-3sbc Worst case for PSS2. S

i

, B, C do not fit L3.

PSS1
pss1-1 Optimal case for PSS1. B fits L1, S

i

and C fit L2.
pss1-2s B fits L1, C fits L2; while S

i

does not.
pss1-2sc B fits L1; while S

i

and C do not fit L2.
pss1-3s A poor case for PSS1. B fits L2; C fits L3; while S

i

does not.

With a relatively large s value, p
s

is relatively large. max(

1
p

s

, e

s

fl

) =

e

s

fl

. Hence,

�
total

(PSS1)

�
total

(PSS2)
=

D0�1 +D1(PSS1)(�2 � �1)

D0�1 +D1(PSS2)(�2 � �1)
/ D1(PSS1)

D1(PSS2)
=

e
s

+ 2e
c

e

s

p

b

+

e

b

p

s

+

3e
c

p

b

. (8)

Impact of s and b values on data-access-to-computation ratio. The above anal-
ysis assumes that the smallest memory access time is achieve when all three areas
fit L2 cache. To validate this, we have further analyzed the cache miss ratio and ac-
cess time for other cases, and compare their performance in terms the ratio of data
access time (including the inverted index lookup time) over the computation time
Data-access

Computation.
Figure 10 plots the data-access-to-computation ratio ratio for the different cases of

parameters in PSS1 and PSS2 and PSS2 cases are from Table III in handling the
Twitter dataset. This figure confirms that PSS2 reaches the lowest ratio when Si, B
and C fit L2 cache, and its data access speed can be upto 14x faster than the others.

Figure 10 also shows the Data-access
Computation ratio for optimal case in PSS2 is about 50%

lower than the optimal case in PSS1. Such performance gain proves the positive effect
of vector coalescing on cache optimization, when p

b

value is not too small. It demon-
strates the advantage of PSS2 over PSS1 (a significant reduction of the task execution
time) by exhibiting good reference locality.

8. INTEGRATION OF LOCALITY SENSITIVE HASHING WITH PSS
We discuss how LSH [Indyk and Motwani 1998; Gionis et al. 1999] can be incorporated
with PSS. LSH is an approximate similarity search technique that scales to both large
and high-dimensional data sets. Its basic idea is to hash the feature vectors using
several hash functions to ensure that similar vectors have much higher probability
of collision in buckets than dissimilar vectors. Previous work has applied variants
of LSH on cross-language information retrieval problem [Ture et al. 2011] and near
duplicate detection [Hajishirzi et al. 2010].

An adaptive approach [Hajishirzi et al. 2010] tunes LSH by concatenating k hash
values from each data vector into a single signature for high precision, and by com-
bining matches over l such hashing rounds, each using independent hash functions,
for good recall. An illustration is shown in Figure 11. They use k = 8 to 256 min-hash
functions over l = 5 hashing rounds, and each min-hash value takes roughly 20 bits to
store. Within each bucket, the Jaccard similarity score of two documents is determined
by the number of identical hash values their corresponding signatures share, divided
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Fig. 10: Y axis is the ratio of actual data access time to computation time for Twit-
ter benchmark observed in our experiments. X axis is the case abbreviation further
illustrated in Table III.

by k. The work included in Ivory package [Ture et al. 2011] uses a sliding window
mechanism to narrow the scope of similarity comparison on sorted signatures gener-
ated by one set of hash functions, and repeats this step for hundreds of rounds. Due to
the approximation introduced by bit signatures and the sliding window algorithm, the
recall ratio for their method is limited. For example, the recall is 76% with 1, 000-bit
signature. If precision is desired, candidates within each LSH bucket could be post-
processed by an additional pairwise clustering step by calculating exact similarities to
filter out false positives.

Fig. 11: Illustration of l rounds of LSH, each round generates k hash values.

Since PSS is very fast in dealing with exact APSS, we can apply it for each bucket
of vectors mapped by LSH. The exact APSS within different buckets can be done in
parallel. Such a pipeline is illustrated in Figure 12. LSH mapping is parallelized over
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Table IV: Number of LSH rounds (l) needed to achieve a targeted recall rate for cosine
similarity threshold ⌧ with k signature bits.

⌧
recall = 95% recall = 99%

k = 3 k = 5 k = 7 k = 9 k = 11 k = 3 k = 5

0.99 1 1 2 2 2 2 2
0.95 2 3 3 4 4 3 4
0.90 3 4 5 7 8 4 6
0.85 4 6 8 12 17 5 8
0.80 5 8 13 21 34 7 12

the distributed servers in the form of MapReduce jobs, and consists of sub-steps of
projection generation, signature generation and bucket generation.

Fig. 12: Integration of LSH with PSS.

We study how the signature bit length k and hashing rounds (l) can be chosen to
maximize the performance of integrated LSH with PSS. Let the precision ratio be de-
fined as the percentage of detected similar pairs found by an approximation algorithm
is actually similar and the recall ratio be the percentage of similar pairs detected suc-
cessfully. Since the combined algorithm achieves 100% precision, we opt to use a rela-
tively lower value of k and relatively higher value of l to improve the recall ratio. We
compute the required l value to guarantee a recall ratio as follows.

Suppose the probability that two signature bits (at the same position) from two vec-
tors collide equals to the cosine similarity of the two vectors. Given cosine similarity
threshold ⌧ , the number of bits for a signature k, and the number of LSH rounds l, the
recall ratio is as follows:

recall = 1� (1� ⌧k)l.

Then l value based on a targeted recall rate is:

l =
⌃
log(1�⌧

k)(1� recall)
⌥
.

Given various choices of signature bits k, targeted recall ratio, and cosine similarity
threshold ⌧ , the corresponding rounds (l) of LSH needed are listed in Table IV.
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Because of the approximation introduced in LSH, this combined approach is much
faster than pure PSS. If we assume in each round, all vectors are evenly divided among
buckets. Considering the overhead of generating LSH signatures and making copies
of vectors to different buckets is relatively insignificant, the integrated scheme could
reduce the total number of similarity comparisons to l

2k of the original number. This
is because given n vectors, the number of pair-wise similarity comparison is reduced
from n

2

2 to
( n

2k
)2

2 in each bucket over a total of 2k · l buckets. However, this ideal speedup
ratio may not be reachable because the vector mapping to buckets may not be load
balanced and pairs of similar vectors are mapped to multiple buckets, which leads to a
redundant computation. The actual speedup obtained in our experiments is reported
in Section 10.6.

9. DISCUSSIONS
Task formation for load balancing. The size of these PSS tasks can be highly
irregular because static partitioning can produce vector groups with a skewed size
distribution. Even runtime task scheduling in a parallel platform such as Hadoop pro-
vides load balancing support in executing independent tasks, APSS-specific techniques
for optimizing load balancing can yield additional benefits.

One key condition to facilitate a runtime execution scheduler to achieve a good bal-
ance is to have a relatively even distribution of overall work load among PSS tasks.
We discuss how to improve the evenness of load distribution among tasks in forming
comparison tasks. Given two tasks T

i

and T
j

that own partition P
i

and P
j

respectively,
due to the computation symmetry, only one task needs to compare vectors of P

i

with
vectors of P

j

. An optimization decision needs to select which task should conduct the
above partition-wise comparison and this decision affects the load size of T

i

or T
j

. A
poor assignment can lead to a skewed workload distribution among tasks and thus
affect the parallel time of the final schedule in the target execution platform.

One simple task formation scheme is to use a circular mapping for balancing task
loads and we define it as follows. Let p be the number of partitions produced by static
partitioning and data partitions are numbered as 0, 1, · · · , p � 1. If p is odd, Task T

i

,
which handles partition i, compares with the following partition IDs:

(i+ 1) mod p, (i+ 2) mod p, · · · , (i+ p� 1

2

) mod p.

If p is even, Task T
i

(0  i < p/2) compares with the following partition IDs:

(i+ 1) mod p, (i+ 2) mod p, · · · , (i+ p

2

) mod p.

Task T
i

(p/2  i < p) compares with the following partition IDs:

(i+ 1) mod p, (i+ 2) mod p, · · · , (i+ p

2

� 1) mod p.

In this way, every partition is compared with at most p

2 other partitions with a differ-
ence of at most one partition. The above balancing technique is relatively simple and a
more complex two-stage assignment algorithm that considers partition size variation
is in [Tang et al. 2014].

PPS with-incremental updating. In various applications, some percentage of vec-
tor content could be updated periodically. For example, a web search engine constantly
crawls the web and there is a percentage of page content change in the searchable
database. Twitter users create new tweets and a tweet database is updated every day.
How to handle APSS with incrementally updated vectors?
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To avoid the computation of similarity scores among vectors from scratch, we focus
on the computation of similarity scores between an updated or new vector and an
existing vector. One option is to figure out the dissimilarity of new and updated vectors
with the existing vectors, merge them with the existing partitions, and then conduct
related APSS. We find that this naïve approach takes too much overhead for data
redistribution and comparison.

Alternatively,we consider the number of newly added or updated vectors is relatively
small, and it is much simpler to compare them with the existing vectors in parallel
and then distribute new data to partitions following the dissimilarity relationship. As
illustrated in Figure 13 (a). we set aside a new partition and every time a vector is
updated or a new vector is generated, we append such a vector to the new partition.
Once this new partition grows to a threshold in terms of size or time, we start a parallel
PSS job to compare the new partition with all the original partitions. This procedure
identifies a new set of vector pairs which are similar.

P1

P3

P4

P2

Pnew

...

P’new

(a)

P2 new

P4 new

P3 new

P1 new

P1

P3

P4

P2

(b)

Fig. 13: (a) The pipeline for incremental computing of similarity scores given a set of
new or updated vectors. (b) The updated static partitions.

The above approach identifies new similar pairs quickly by going through a one-
to-many partition-wise comparison. After that, we need to place each vector of the
new partition to the original set of partitions in order to facilitate the future update.
Following the notation in Section 4, each vector d

x

of the new partition is inserted into
group G

i

if i is the minimum integer that satisfies kd
x

k
r

 max

d

y

2G

i

kd
y

k
r

. This vector
d
x

inserted in group G
i

is further mapped to subgroup G
i,j

where j is the maximum
integer satisfying max

d

y

2G

j

kd
y

k
r

< ⌧

kd
x

k
s

. Figure 13 (b) illustrates how these existing
partitions grow after new vectors are appended based on the aforementioned scheme.

Extension to other similarity measures. Since PSS1 and PSS2 are based on the
cosine similarity metric, we discuss an extension to apply our techniques for other two
similarity measures with binary vectors.

— Jaccard similarity. For binary vectors, the Jaccard similarity is defined as

Sim(d
i

, d
j

) =

kd
i

· d
j

k1
kd

i

k1 + kd
j

k1 � kd
i

· d
j

k1
.
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Following the upper bound discussed in [Theobald 2008], it is easy to verify that if
one of the following inequalities is true:

kd
i

k1 < ⌧kd
j

k1 or kd
j

k1 < ⌧kd
i

k1,
Sim(d

i

, d
j

) < ⌧ . The static partitioning algorithm in Section 4 can be revised as
follows. It will still sort all vectors by norm |d|

r

with r = 1. After this sorting and
grouping, given the leader value in a group G

i

, we can find a vector d
j

with largest
value j such that leader(G

i

) < ⌧ |d
j

|1. Then d
j

is dissimilar to any member in G1,
G2, · · · , G

i

. Thus subgroup G
i,j

is defined as containing these members d
x

in G
i

satisfying the following inequality.
Leader(G

i

) < ⌧kd
x

k.
For runtime partition comparison, Line 9 of Function PSS2Compare in PSS2 needs
to be modified as:

score[i][j] + r[j] <
⌧

1 + ⌧
(kd

i

k1 + kd
j

k1).

Notice that score[i][j] keeps track of the partially-computed value kd
i

· d
j

k1. Term
score[i][j] in Lines 20 and 21 of Function PSS2Compare is replaced with the follow-
ing Jaccard similarity formula

score[i][j]

kd
i

k1 + kd
j

k1 � score[i][j]
.

— Dice similarity. For binary vectors, the Dice similarity is defined as

Sim(d
i

, d
j

) =

2kd
i

· d
j

k1
kd

i

k1 + kd
j

k1
.

It is easy to verify that if one of the following inequalities is true:

kd
i

k1 <
⌧

1� ⌧
kd

j

k1 or kd
j

k1 <
⌧

1� ⌧
kd

i

k1,

Sim(d
i

, d
j

) < ⌧ . Then the static partitioning algorithm in Section 4 can also be
modified accordingly after all vectors are sorted by norm |d|1. Namely given the
leader value in a group G

i

, a vector d
j

satisfying leader(G
i

) < ⌧

2�⌧

|d
j

|1, is dissimilar
to any member in G1, G2, · · · , G

i

. Thus subgroup G
i,j

is defined as containing these
members d

x

in G
i

satisfying the following inequality:

Leader(G
i

) <
⌧

2� ⌧
kd

x

k.

For runtime partition comparison, condition of Line 9 of Function PSS2Compare in
PSS2 needs to be modified as:

score[i][j] + r[j] <
⌧

2

(kd
i

k1 + kd
j

k1).

Term score[i][j] in Lines 20 and 21 of Function PSS2Compare is changed with the
following Dice formula

2 · score[i][j]
kd

i

k1 + kd
j

k1
.

10. EXPERIMENTAL EVALUATIONS
We have implemented our algorithms in Java and the parallel solution runs on a
Hadoop cluster. The source code and test datasets could be found at a public site
https://github.com/ucsb-similarity/pss. Our evaluations have the following objectives:
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(1) Demonstrate the benefits of partitioned APSS in parallelism management in a
Hadoop cluster and compare it with the alternative parallel solutions [Lin 2009;
Baraglia et al. 2010; Metwally and Faloutsos 2012]. Assess the impact of static
partitioning.

(2) Compare PSS1 and PSS2 with the baseline PSS using multiple application
datasets and illustrate the impact of parameters by examining the cache hit ra-
tios and execution time under different choices.

(3) Report the efficiency and effectiveness of incorporating LSH with PSS, and provide
a guideline for the method choices that meet different requirements in dealing with
approximated APSS.

(4) Demonstrate the incremental updating with PSS and assess the use of PSS for the
Jaccard and Dice metrics.

Datasets. The following five datasets are used.

— Twitter dataset containing 100 million tweets with 18.32 features per tweet on av-
erage after pre-processing. Dataset includes 20 million real user tweets and addi-
tional 80 million synthetic data generated based on the distribution pattern of the
real Twitter data but with different dictionary words.

— ClueWeb dataset containing about 40 million web pages, randomly selected from the
ClueWeb09 collection produced by Language Technologies Institute at CMU. The
average number of features is 320 per web page. We choose 40M records because it
is big enough to illustrate the scalability.

— Yahoo!music dataset (YMusic) used to investigate the song similarity for music rec-
ommendation. It contains 1,000,990 users rating 624,961 songs with an average
feature vector size 404.5.

— Enron email dataset containing 619,446 messages from the Enron corpus, belonging
to 158 users with an average of 757 messages per user. The average number of
features is 107 per message.

— Google news (GNews) dataset with over 100K news articles crawled from the web.
The average number of features per article is 830.

The datasets are pre-processed to follow the TF-IDF weighting after cleaning and stop-
word filtering.

Environment setup and metrics. We ran parallel speedup experiments on a clus-
ter of servers with Linux/Hadoop and each node has Intel X5650 6-core 2.66GHz dual
processors and 24GB of memory per node. We have also used a cluster of nodes with
4-core AMD Opteron 2218 2.6GHz processors and 8G memory. The cache-conscious
experiments were also conducted on 8-core 3.1GHz AMD Bulldozer FX8120 machines.
Each AMD FX8120 processor has 16KB of L1 cache per core, 2MB of L2 cache shared
by two cores, and 8MB of L3 cache among all eight cores. Each Intel X5650 processor
has 32KB of L1 data cache per core, 1.5MB of L2 cache per processor, and 12MB of L3
cache per processor.

To verify our analytic model for optimization of memory hierarchy, we use the results
measured by the Linux profiling tool perf. Perf collects the performance counters that
accumulate hardware events, and helps us understand how the program interacts with
a machine’s cache hierarchy. For modern machines with three levels of cache, perf
collects from the first-level and third-level cache measures.

10.1. Benefits of Partition-based APSS
In this subsection, we demonstrate the parallel performance of PSS when a set of
partitioned tasks runs on a Hadoop cluster using only map tasks and compare its per-
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Fig. 14: Speedup for 3 datasets when varying the number of cores used.

formance with the previous work which exploits fine-grain accumulation parallelism
with both map and reduce tasks.

Figure 14 shows the speedup for processing 40M ClueWeb dataset and 100M Twitter
dataset with similarity threshold 0.8 when varying the number of cores on the Intel
cluster. Speedup is defined as the estimated serial time of these tasks divided by the
parallel time. We will discuss the estimated serial cost in next paragraph. It should
be noted that the time measurement is conducted when all machines are dedicate and
there is no machine failure during the execution. The performance of our scheme scales
well as the number of CPU cores increases. The efficiency is defined as the speedup
divided by the number of cores used. For the two larger datasets, the efficiency is about
83.7% for ClueWeb and 78% for Twitter when 100 cores are used. When running on
300 cores, the efficiency can still reach 75.6% for ClueWeb and 71.7% for Twitter. The
decline is most likely caused by the increased I/O and communication overhead among
machines in a larger cluster. Efficiency for YMusic is 76.2% with 100 cores and 42.6%
with 300 cores. There is no significant reduction of parallel time from 200 cores to 300
cores, remaining about 15 minutes. The problem size of this dataset is not large enough
to use more cores for amortizing overhead. Still parallelization shortens search time
and that can be important for iterative search experimentation and refinement. Enron
email or Gnews dataset are not used in the scalability experiments due to similar
reasons.

The serial time of processing Yahoo music is 17.8 hours on Intel when the system is
configured to run one map task at a time. The above baseline is the fastest Java imple-
mentation that we can optimize after incorporating the work of [Bayardo et al. 2007].
The estimated serial time for Twitter 100M and ClueWeb 40M datasets is 25,438 hours
and 45,157 hours respectively. We estimate them because it takes too long to run se-
quentially. For Twitter 4M, the serial time is 26.7 hours while for Twitter 10M, it takes
254 hours. For ClueWeb 1M, the serial time is 29.3 hours hours while for ClueWeb 4M,
it takes 469 hours. The time cost of this algorithm grows approximately in a quadratic
manner. We assume the preprocessing of input vectors such as stopword removal is al-
ready completed and do not employ any additional preprocessing approximation such
as removing features with their frequency exceeding an upper limit [Lin 2009]. Such
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preprocessing can further significantly reduce the serial time with approximated re-
sults.

To confirm the choice of partition-based search which does not use reduce tasks, we
have implemented an alternative MapReduce solution to exploit parallel score accu-
mulation following the work of [Lin 2009; Baraglia et al. 2010; Metwally and Falout-
sos 2012] where each mapper computes partial scores and distributes them to reducers
for score merging. The performance comparison is presented in Figure 15 The parallel
score accumulation is much slower because of the communication overhead incurred in
exploiting accumulation parallelism. Even with extensive optimization to filter unnec-
essary computations, map-reduce communication with the inverted index can increase
quadratically as the dataset size scales up and can incur significant synchronization
and I/O overhead. Such communication between mappers and reducers, purely con-
ducted over disk and network transfer, becomes cumbersome after dataset size grow-
ing over tens of millions of records. For example, to process 4M Twitter data using
120 cores, parallel score accumulation is 19.7x slower than partition-based similarity
search which has much simpler parallelism management and has no shuffling between
mappers and reducers. To process 7M Twitter data, parallel score accumulation is 25x
slower. The approach of parallel score accumulation is much slower because of the com-
munication overhead incurred in exploiting accumulation parallelism. In comparison,
execution of PSS does not involve reduce tasks, there is much less communication cost
and there are less chances experiencing the straggler effect.
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Fig. 15: Parallel time on 120 cores of parallel score accumulation method and partition-
based similarity search over Twitter dataset as data size increases from 1M to 7M (⌧
= 0.9). Time is reported in log scale.

Table V shows that static partitioning, which is parallelized, takes 2.1% to 3% of the
total parallel execution time. This table also shows the time distribution in terms of
data I/O and CPU usage for similarity comparison. Data I/O is to fetch data and write
similarity results in the Hadoop distributed file system. The cost of self-comparison
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Dataset Cores Static Similarity Comparison
Partitioning Read Write CPU

Twitter 100 2.8% 0.9% 11.7% 84.6%
ClueWeb 300 2.1% 1.9% 7.8% 88.2%
YMusic 20 3.0% 2.3% 1.8% 92.9%
Emails 20 1.0% 1.7% 8.7% 88.6%

Table V: Cost of static partitioning and runtime cost distribution of PSS in parallel
execution.

among vectors within a partition is included when reporting the actual cost. The re-
sult of this table implies that the computation cost in APSS is dominating and hence
reducing the computation cost of tasks is critical for overall performance. Later we will
show the impact of PSS1 and PSS2 in reducing computing cost.

10.2. Impact of Static Partitioning
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Fig. 16: Percentage of skipped comparison with static partitioning for Twitter 1M, 4M
and 10M under different thresholds.

Figure 16 shows the percentage of comparisons skipped using static data partition-
ing when varying the similarity threshold for Twitter dataset with 1M, 4M, and 10M
vectors. The norms discussed in Section 4 are set as t = 1 and s = 1. For Twitter 10M,
the skipped percentage is 38.44% with ⌧ = 0.9 and drops to 7.12% with ⌧ = 0.5. The
reason that a lower similarity threshold detects less dissimilar pairs is because the
upper bound ⌧

kd
j

k
s

in Formula (2) becomes smaller with a smaller ⌧ value. Thus static
filtering is most effective for applications using relatively high similarity thresholds.

Figure 17 shows the impact of choosing different r-norms discussed in Section 4 on
the percentage of comparisons skipped using static data partitioning. The similarity
threshold is ⌧ = 0.8 and Y axis is the percentage of pairs detected as dissimilar. For
Twitter, the percentage of pairs detected as dissimilar is 34% for r=4 compared to
17% for r=1. For ClueWeb, 19% of the total pairs under comparison are detected as
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dissimilar with r=3 while 10% for r=1. The results show that choosing r as 3 or 4 is
most effective.
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Fig. 17: Percentage of skipped comparison after static partitioning with different r-
norms.
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Fig. 18: Reduction percentage of execution time when incorporating different optimiza-
tion techniques.

Figure 18 shows the percentage of execution time reduction by using different opti-
mization techniques. The number of cores allocated is 120 for the Twitter and Clueweb,
and 20 cores for Email. We use static partitioning to detect dissimilarity of vectors,
form tasks with the circular load balancing strategy, and adopt dynamic computa-
tion filtering when the comparison of two vectors is detected to be unnecessary at
runtime [Bayardo et al. 2007; Xiao et al. 2008]. Each bar represents execution time
reduction ratio by using one or more optimization techniques compared to the base-
line. “Static” implies using static filtering over the baseline algorithm without addi-
tional dynamic filtering. “Static+Dynamic” uses static filtering after partitioning and
dynamic filtering over the baseline. “Static+dynamic+Circular” means that all three
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techniques are applied. Overall reduction from using all techniques leads to 75% for
Twitter, 42% for Clueweb, and 90% for Emails. Static partitioning with dissimilarity
detection leads to about 74% reduction for Twitter, about 29% for Clueweb, and about
73% for Emails. Adding the circular task mapping contributes an additional 2% for
Twitter, 19% for Clueweb, and 14% for Emails. For this case, dynamic computation fil-
tering after static elimination actually slows down the computation in these 3 datasets
from 1% to 7%. That is because dynamic filtering carries the overhead of extra compu-
tation while most dissimilar vectors are already detected by static partitioning. Notice
that features vectors of these datasets all use non-binary weights and we find that dy-
namic filtering integrated in our scheme does improve performance for binary vectors.

10.3. Performance Difference of PSS, PSS1 and PSS2
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In this subsection, we compare the performance of PSS1 and PSS2 with the base-
line PSS using multiple application benchmarks. We observe the same trend that PSS1
outperforms the baseline, and PSS2 outperforms PSS1 in all cases except for the YMu-
sic benchmark. Figure 19 shows the improvement ratio on the average task time after
applying PSS1 or PSS2 over the baseline PSS. Namely Time

PSS

Time

PSS1
and Time

PSS

Time

PSS2
. PSS

is cache-oblivious and each task handles a very large partition that fits into the main
memory (but not fast cache). For example, each partition for Clueweb can have around
500,000 web pages. Result shows PSS2 contributes significant improvement compared
to PSS1. For example, under Clueweb dataset, PSS1 is 1.2x faster than the baseline
PSS while PSS2 is 2.74x faster than PSS. The split size s for PSS1 and s and b for
PSS2 are optimally chosen.

While PSS1 outperforms PSS in most datasets, there is an exception for Yahoo! mu-
sic benchmark. In this case, PSS1 is better than baseline, which is better than PSS2.
This is due to the low sharing pattern in Yahoo! music dataset. The benefits of PSS2
over PSS1 depend on how many features are shared in area B. Figure 20 shows the
average and maximum number of features shared among b vectors in area B, respec-
tively. Sharing pattern is highly skewed and the maximum sharing is fairly high. On
the other hand, the average sharing value captures better on the benefits of coalesc-
ing. The average number shared exceeds 2 or more for all data when b is above 32 (the
optimal b value for PSS2) except Yahoo! music. In the Yahoo! music data, each vector
represents a song and features are the users rating this song. PSS2 slows down the
execution due to the relatively low level of interest intersection among users.
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Fig. 20: The left is the average number of shared features among b vectors. The right
is the maximum number of features shared among b vectors.

10.4. Cache Behavior and Cost Modeling for PSS1
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Fig. 21: The average running time in log scale per PSS1 task under different values for
split size s. The partition size S for each task is fixed, S = s⇥ q.

The gain from PSS to PSS1 is achieved by the splitting of the hosted partition data.
Figure 21 shows the average running time of a PSS1 task including I/O in log-scale
with different values of s. Notice that the partition size (S = s ⇥ q) handled by each
task is fixed. The choice of split size s makes an impact on data access cost. Increasing
s does not change the total number of basic multiplications and additions needed for
comparison, but it does change the traversal pattern of memory hierarchy and thus
affects data access cost. For all the datasets shown, the lowest value of the running
time is achieved when s value is ranged between 0.5K and 2K, consistent with our
analytic results.

We demonstrate the cache behavior of PSS1 modeled in Section 6.2 with the Twitter
dataset.

Figure 22(a) depicts the real cache miss ratios for L1 and L3 reported by perf, as well
as the estimated L1 miss ratio which is D1/D0, and the estimated L3 miss ratio which
is D3/D2. L1 cache miss ratio grows from 3.5%, peaks when s = 8K, and gradually
drops to around 9% afterwards when s value increases. L3 cache miss ratio starts from
3.65% when s=100, reaches the bottom at 1.04% when s= 5K, and rises to almost 25%
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Fig. 22: Estimated and real cache miss ratios (a) for PSS1 tasks. Actual vs. estimated
average task time (b) for PSS1 in 3M Twitter dataset while split size varies.

when s= 500K. The figure shows that the estimated cache miss ratio approximates the
trend of the actual cache miss ratio well.

To validate our cost model, we compare the estimated cost with experimental results
in Figure 22(b). Our estimation of cache miss ratios fits the real ratios quite well, rea-
sonably predicts the trend of ratio change as split size changes. When s is very small,
the overhead of building and searching the inverted indexes are too high and thus the
actual performance is poor. When s ranges from 50K to 80K, the actual running time
drops. This is because as s increases, there is some benefit for amortizing the cost of
inverted index lookup. Both the estimated and real time results suggest that the opti-
mum s value is around 2K. Given the optimum s, PSS1 is twice faster than when s is
10K.

10.5. Impact of Parameters and Cache Behavior for PSS2
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Fig. 23: Each square is an s ⇥ b PSS2 implementation (where
P

s = S) shaded by its
average task time for Twitter dataset. The lowest time is the lightest shade.

The gain of PSS2 over PSS1 is made by coalescing visits of vectors in B with a
control. Figure 23 depicts the average time of the Twitter tasks with different s and b,
including I/O. The darker each square is, the longer the execution time is. The shortest
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Table VI: Optimal parameters for PSS1 and PSS2 on AMD or Intel architecture.

Architecture
Estimated Actual

PSS1 PSS2 PSS1 PSS2
s s b s s b

AMD 3,472 2,315 32 4,000 2,000 32
Intel 2,604 1,736 32 4,000 4,000 32

running time is achieved when b = 32 and s is between 5K to 10K. When b is too small,
the number of features shared among b vectors is too small to amortize the cost of
coalescing. When b is too big, the footprint of area C and B becomes too big to fit into
L2 cache.
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Fig. 24: Estimated and real L3 cache ratios of PSS2 given s=2K with different b (a) and
given b=32 with different s (b). Experiment uses Twitter benchmark with 256K vectors
in each partition (s · q=256K).

Figure 24 compares the estimated and real L3 cache ratios, as well as average task
running time. When s is fixed as 2K records, optimal b is shown as 32 for both cache
miss ratio and running time. When b is fixed as 32 records, s = 2K provides the lowest
point in cache miss ratio and running time. When s or b are chosen larger than the
optimal, running time increases due to higher cache miss ratio. Our analytical model
correctly captured the trend and optimal values.

Table VI lists the optimal parameters for PSS1 and PSS2 on AMD and Intel ma-
chines we have tested. As an example, here we illustrate how to calculate the optimal
parameters for PSS2 on AMD machines. As explained in Section 7, the optimal case is
achieved when S

i

, B, C all fit in L2 cache, i.e. S
i

+B + C  L2 capacity.
Similar to the results reported for AMD architecture in the other subsections, we

observe 3.7x speedup for PSS1 over cache-oblivious PSS, and 3.6x speedup for PSS2
over PSS1.

Notice such computation could be affected by the workload. For example, when the
L2 cache is shared among two cores, and both cores are running cache-intensive com-
putations, L2 cache size in effect is reduced to 1MB. With other parameters fixed, the

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.



A:34

optimal case is reduced by half when twice as many share-cache processes are run-
ning. Reduced range means the same amount of vectors originally fit in faster cache,
now needs to be swapped out and introduces a cache miss.

10.6. Approximated APSS with LSH and PSS
We assess the benefit of integrating PSS with LSH when conducting approximated
APSS. Table VII reports the runtime breakdown of conducting APSS for 20M Tweets
with 95% target recall for all pairs with cosine similarity over 0.95 using 50 cores.
Notice that when a higher value of k is used, the more time is spent on sequential LSH
computation, including computing random projection and data copy. When a relatively
lower value of k is used, the majority time is spent on the actual similarity comparison
conducted in parallel within each bucket. This is because when signature bits k is
used in LSH step, each round of input data is split to 2

k buckets after applying k hash
functions. When a relatively high value of k is chosen, each data split becomes too
small and the cost of data split and data copy contribute to a higher overhead. For the
case that applies 4 rounds LSH with 9-bit signature random projection, incorporating
LSH method takes 276 minutes in total and computes all pairs similarity with 100%

precision and 98.1% recall.

k l
Time (minute)

LSH PSS Total
5 3 118 445 563
7 3 135 145 280
9 4 202 74 276
11 4 220 93 313

Table VII: Runtime breakdown of conducting approximated APSS for 20M Tweets with
95% target recall for all pairs with cosine similarity ⌧ over 0.95 using 50 cores.

Table VIII shows the tradeoff of running time with precision and recall when using
the integrated LSH/PSS method, pure LSH, and pure PSS. The pure LSH method with
a relatively high number of signature bits (k) could provide over 95% recall ratio with
more rounds (l) of LSH, but it is hard to make the precision over 94%. On the other
hand, the pure PSS method guarantees 100% precision and recall rate, but it takes
8.8x as much time as the integrated LSH/PSS. The result from this table shows that
integration of PSS with LSH improves both recall and precision while saving time in
exact APSS within each bucket.

Method k l Time (minute) Precision Recall

Pure LSH
10 4 219 0.0014% 97.4%
15 5 351 1.2% 95.5%
20 7 590 93.6% 95.5%
25 10 991 93.7% 96.1%

Pure PSS � � 2, 435 100% 100%

LSH + PSS 9 4 276 100% 98.1%

Table VIII: Comparison of three methods for similarity among 20M Tweets. Experi-
ments are conducted using 50 cores. Precision and recall reported are for all pairs with
cosine similarity ⌧ over 0.95.
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Table IX reports the runtime breakdown of conducting APSS for 40M ClueWeb data
with 95% target recall for all pairs with cosine similarity over 0.95 using 300 cores.
Same trend as Twitter data is observed with a trade-off between the number of signa-
ture bits k and the number of records in each data bucket. For the case that applies
4 rounds LSH with 11-bit signature, the speedup of using LSH method against the
parallel time (79, 845 hours as extrapolated from Figure 14) is 16, 138x speedup over
300 cores, which means incorporating LSH method is at least 71x faster over parallel
time with Partition-based method, assuming 75.6% parallel efficiency as shown in Fig-
ure 14. Such speedup demonstrates that incorporating LSH with our partition-based
similarity search method makes it more accessible to solve the problem of a much
larger size. Table X compares Pure LSH, Pure PSS, and LSH+SSH method for 40M
ClueWeb dataset using 300 cores. Pure LSH method with relatively high number of
signature bits (k) could provide higher than > 5% recall with more rounds (l) of LSH,
but precision is hard to improve over 94%, and more rounds means longer process time.
On the other hand, Pure PSS method guarantees 100% precision and recall rate, but
takes 71x as much time as our adopted method which applies LSH before PSS.

k l
Time (minute)

LSH PSS Total
9 4 108 365 473

11 4 114 182 297
13 5 156 171 327

Table IX: Runtime breakdown of conducting APSS for 40M ClueWeb data with 95%

target recall for all pairs with cosine similarity ⌧ over 0.95 using 300 cores.

Method k l Time (minute) Precision Recall

Pure LSH
15 5 173 0.13% 95.5%
20 7 269 92.1% 95.5%
25 10 446 93.1% 96.1%

Pure PSS � � 21, 123 100% 100%

LSH + PSS 11 4 297 100% 96.5%

Table X: Comparison of three methods for similarity among 40M ClueWeb dataset.
Experiments are conducted using 300 cores. Precision and recall reported are for all
pairs with cosine similarity ⌧ over 0.95. Due to resource limitation, estimated running
time is marked in gray.

The algorithm implemented in Ivory [Ture et al. 2011] package applies sliding win-
dow mechanism on sorted signatures in order to reduce search space, but introduces
approximation errors and can at most achieve 0.59 precision and 0.76 recall with 1, 000-
bit signatures, 0.74 precision and 0.81 recall with 2, 000-bit signatures, 0.86 precision
and 0.78 recall with 3, 000-bit signatures for Jaccard similarity ⌧ = 0.3 [Ture et al.
2011]. With consideration of target precision rate, target recall rate, and the similarity
level, we provide a guideline for method choices that meet different requirement and
runs relatively fast. We summarize the cases in Table XI. When pairs with very little
similarity need to be compared (for example, cosine similarity ⌧ < 40%), LSH method
is not very helpful especially when target recall is high, because the hashing to buck-
ets separates pairs that have low similarity. Depending on the target precision level,
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one picks Ivory for lower precision but higher speed, or PSS for higher precision but
lower speed. On the other hand, if target recall rate is low, LSH+PSS method is still
faster than Ivory or PSS, making it a good choice. For the cases where a modest to high
level of similarity level is required, LSH+SSH method is the top choice due to the fast
speed, 100% precision, and much higher recall rate it guarantees.

⌧ Targeted recall Target precision Method choice
Low Low - LSH + PSS
Low High Low to modest Ivory
Low High High PSS

Modest to high - - LSH + PSS

Table XI: A guideline for method choices that meet different requirements of the tar-
geted recall and precision ratios for similarity threshold ⌧ .

10.7. Similarity Measures
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Fig. 25: L3 cache miss ratio m3 and average task time of PSS1 with different similarity
measures. Experiments run on Twitter benchmark with 200K vectors in each partition
(s⇥ q = 200K).

We assess the modified PSS1 and PSS2 in handling Jaccard and Dice metrics. Fig-
ure 25 shows how the average running time and level 3 cache miss ratios change when
different similarity measures are applied. Like the cosine metric, there is a valley in
the performance curve and an optimum split point can be chosen. The average task
time for Jaccard and Dice metrics are shorter than that for the cosine metric. This is
because they use the binary feature values while the cosine metric supports floating-
point values. For the three binary similarity measures, the float multiplication is not
needed and the value of  is smaller. Notice the L3 cache miss ratios are not affected
here since  is the cost of addition and multiplication.

Figure 26 displays the contour graphs for L3 cache miss ratio m3 and average task
time of PSS2 with Jaccard coefficient measure. Similar to cosine coefficient, Jaccard
coefficient algorithm reaches the shortest running time when s is around 4000 and b
is around 32. The running time is up-to 3x longer when either s or b is too big or too
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Fig. 26: L3 cache miss ratio m3 (a) and average task time (b) of PSS2 with Jaccard
coefficient measure. Split size s and number of vectors in B b are chosen different
values. Experiments run on Twitter benchmark with 200K vectors in each partition.

small. Like the case for the cosine metric, we observe a similar trend in the change of
Level 3 cache miss ratio. Our cache performance analysis for choosing parameters of
PSS1 and PSS2 with the cosine metric could be applied to Jaccard or Dice similarity.

10.8. Incremental Updates
We evaluate the use of incremental computing with PSS. When new vectors arrive, we
accumulate them in a new partition and set the threshold size for triggering PSS as
the median size of partitions. Once the new partition grows over the threshold size, a
one-to-all PSS-based job is started to compare only the new partition with all original
partitions and then new vectors are distributed to partitions based on their dissim-
ilarity relationship. Table XII shows the time cost of our approach with two differnt
content change rates using 300 cores when 100K tweets are added to a set of 20M
tweets. We also list the result of the naïve approach that contacts PSS from scratch
and the result illustrates the cost advantage of incremental update.

Initial size Update ratio Naïve method Our approach
20M records 0.5% 510 minutes 10 minutes
20M records 5% 558 minutes 57 minutes

Table XII: Runtime comparison between naïve method and our approach for similarity
comparison of 100K Tweets or 1M Tweets update to an original set of 20M Tweets
using 300 cores.

11. CONCLUSIONS
The main contribution of this paper is a framework of a partitioned similarity search
algorithm with cache-conscious data layout and traversal. The partition-based ap-
proach yields coarse-grain parallelism, which reduces unnecessary communication and
simplifies the runtime comparison of vectors and parallel computation implementa-
tion. Static dissimilarity detection filters out unwanted comparisons as earlier as pos-
sible and avoids unnecessary I/O, which is most effective for applications using rela-
tively high similarity thresholds. The evaluation shows that PSS can be one or two
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orders of magnitude faster than the other parallel solutions for exact APSS. When ap-
proximation of APSS is allowed, PSS can be used with LSH for accomplishing high
recalls.

The partition-based approach simplifies the runtime computation and allows us to
focus on the speedup of inter-partition comparison by exploiting memory hierarchy
with a cache-conscious data layout and traversal pattern design. Specifically, we were
able to predict the optimum data-split size by identifying the data access pattern, mod-
eling the cost function, and estimating the task execution time. The key techniques
are to 1) split data traversal in the hosted partition so that the size of temporary
vectors accessed can be controlled and fit in the fast cache; 2) coalesce vectors with
size-controlled inverted indexing so that the temporal locality of data elements visited
can be exploited. Our analysis provides a guidance for optimal parameter setting. The
evaluation results show that the optimized code can be upto 2.74x as fast as the orig-
inal cache-obvious design. Vector coalescing is effective if there is a decent number of
features shared among the coalesced vectors.

Given partitions have different sizes, it will be interesting in the future to study
partition-specific optimization. For example, some of parameters in Table I such as k
and p

s

are estimated based on the entire dataset and partition-specific modeling may
enhance performance. Currently the execution of PSS tasks is completely independent
and as they share some data partitions, opportunities exist in optimizing shared data
movement and cache locality.
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