
Representation Sparsification with Hybrid Thresholding
for Fast SPLADE-based Document Retrieval

Yifan Qiao
Department of Computer Science, University of California

Santa Barbara, California, USA

Yingrui Yang
Department of Computer Science, University of California

Santa Barbara, California, USA

Shanxiu He
Department of Computer Science, University of California

Santa Barbara, California, USA

Tao Yang
Department of Computer Science, University of California

Santa Barbara, California, USA

ABSTRACT
Learned sparse document representations using a transformer-
based neural model have been found to be attractive in both rel-
evance effectiveness and time efficiency. This paper describes a
representation sparsification scheme based on hard and soft thresh-
olding with an inverted index approximation for faster SPLADE-
based document retrieval. It provides analytical and experimetal
results on the impact of this learnable hybrid thresholding scheme.

CCS CONCEPTS
• Information systems→ Retrieval efficiency.

KEYWORDS
Learned sparse representations, top-k retrieval, index pruning.

ACM Reference Format:
Yifan Qiao, Yingrui Yang, Shanxiu He, and Tao Yang. 2023. Representation
Sparsification with Hybrid Thresholding for Fast SPLADE-based Document
Retrieval. In Proceedings of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’23), July 23–27,
2023, Taipei, Taiwan. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3539618.3592051

1 INTRODUCTION
Recently learned sparse retrieval techniques [5–8, 10, 20, 23, 37]
have become attractive because such a representation can deliver a
strong relevance by leveraging transformer-based models to expand
document tokens with learned weights and can take an advantage
of traditional inverted index based retrieval techniques [24, 25]. Its
query processing is cheaper than a dense representation which
requires GPU support (e.g. [31, 32, 35]) even with efficiency opti-
mization through approximate nearest neighbor search [14, 34, 38].

This paper focuses on the SPLADE family of sparse represen-
tations [6–8] because it can deliver a high MRR@10 score for MS
MARCOpassage ranking [4] and a strong zero-shot performance for
the BEIR datasets [33], which are well-recognized IR benchmarks.
The sparsification optimization in SPLADE has used L1 and FLOPS
regularization to minimize non-zero weights during model learning,

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9408-6/23/07.
https://doi.org/10.1145/3539618.3592051

and our objective is to exploit additional opportunities to further in-
crease the sparsity of inverted indices produced by SPLADE. Earlier
static inverted index pruning research [1–3] for a lexical model has
shown the usefulness of trimming a term posting list or a document
by a limit. Yang et al. [36] conduct top token masking by limiting
the top activated weight count uniformly per document and grad-
ually reduce this weight count limit to a targeted constant when
training SPLADE. Motivated by these studies [1–3, 36] and since
they have not addressed learnability of a pruning limit through
relevance-driven training, this paper exploits a learnable threshold-
ing architecture to filter out unimportant neural weights produced
by the SPLADE model through joint training.

The contribution of this paper is a learnable hybrid hard and
soft thresholding scheme with an inverted index approximation to
increase the sparsity of SPLADE-based document and query feature
vectors for faster retrieval. In addition to experimental validation
with MS MARCO and BEIR datasets, we provide an analysis on
the impact of hybrid thresholding with joint training on index
approximation errors and training update effectiveness.

2 BACKGROUND
For a query 𝑞 and a document 𝑑 , after expansion and encoding,
they can be represented by vector ®𝑤 (𝑞) and ®𝑤 (𝑑) with length |𝑉 |,
where 𝑉 is the vocabulary set. The rank score of 𝑞 and 𝑑 is com-
puted as 𝑅(𝑞, 𝑑) = ®𝑤 (𝑞) · ®𝑤 (𝑑) = ∑ |𝑉 |

𝑖=1 𝑤
𝑞

𝑖
×𝑤𝑑

𝑖
. For sparse vectors

with many zeros, retrieval can utilize a data structure called in-
verted index during online inference for fast score computation
[24, 25]. The SPLADE model uses the BERT token space to pre-
dict the feature vector ®𝑤 . In its latest SPLADE++ model, it first
calculates the importance of 𝑖-th input token in 𝑑 for each 𝑗 in 𝑉 :
𝑤𝑖 𝑗 (Θ) = Transform(®ℎ𝑖)𝑇 ®𝐸 𝑗 + 𝑏 𝑗 , where ®ℎ𝑖 is the BERT embedding
of 𝑖-th token in 𝑑 , ®𝐸 𝑗 is the BERT input embedding for 𝑗-th token.
Transform() is a linear layer with GeLU activation and LayerNorm.
The weights in this linear layer, ®𝐸 𝑗 , and 𝑏 𝑗 are the SPLADE pa-
rameters updated during training and we call them set Θ. Then
the 𝑗-th entry 𝑤 𝑗 of document 𝑑 (or a query) is max-pooled as
𝑤 𝑗 (Θ) = max𝑖∈𝑑 {log(1 + ReLU(𝑤𝑖 𝑗 (Θ)))}. Notice that𝑤 𝑗 ≥ 0.

The loss function of SPLADE models [6–8] contains a per-query
ranking loss 𝐿𝑅 and sparsity regularization. The ranking loss has
evolved from a log likelihood based function for maximizing posi-
tive document probability to margin MSE for knowledge distillation.
This paper uses the loss of SPLADE with a combination that deliv-
ers the best result in our training process. 𝐿𝑅 is the ranking loss
with margin MSE for knowledge distillation [12]. The document
token regularization 𝐿𝐷 is computed on the training documents in

https://doi.org/10.1145/3539618.3592051
https://doi.org/10.1145/3539618.3592051
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3539618.3592051

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Yifan Qiao, Yingrui Yang, Shanxiu He, & Tao Yang

each batch based on FLOPS regularization. The query token regu-
larization 𝐿𝑄 is based on L1 norm. Let 𝐵 be a set of training queries
with 𝑁 documents involved in a batch. 𝐿𝑄 = ∑

𝑗∈𝑉
1
|𝐵 |

∑
𝑞∈𝐵 𝑤

𝑞

𝑗
;

𝐿𝐷 = ∑
𝑗∈𝑉 (1

𝑁

∑𝑁
𝑑=1𝑤

𝑑
𝑗
)2 .

Related work. Other than SPLADE, sparse retrieval studies
include SNRM [37], DeepCT [5], DeepImpact [23], and uniCOIL [10,
20]. The sparsity of a neural network is studied in the deep
learning community. Soft thresholding in [16] adopts a learnable
threshold with function 𝑆(𝑥, 𝑡) = 𝑅𝑒𝐿𝑈 (𝑥 − 𝑡) to make parameter
𝑥 zero under threshold 𝑡 . A hard thresholding function 𝐻 (𝑥, 𝑡) =
𝑥 when 𝑥 ≥ 𝑡 otherwise 0. Approximate hard thresholding [28]
uses a Gauss error function to approximate 𝐻 (𝑥, 𝑡) with smooth
gradients. Dynamic sparse training [21] finds a dynamic threshold
with marked layers. These works including the recent ones [9]
are targeted for sparsification of parameter edges in a deep neural
network. In our context, a token weight 𝑤 𝑗 is an output node
in a network. The sparsification of output nodes is addressed in
activation map compression [11] using ReLU as soft thresholding
together with L1 regularization. The work of [15] further boosts
sparsity with the Hoyer regularization and a variant of ReLU. The
above techniques have not been investigated in the context of
sparse retrieval, and the impact of thresholding on relevance and
query processing time with inverted indices, requires new design
considerations and model structuring for document retrieval, even
the previous work can be leveraged.

3 HYBRID THRESHOLDING (HT)

Doc d

SPLADE
Model

Query q

(a) Training loop

Inverted
Index

(b) Indexing and inference

Online
query
weights

Extended
Loss

Function

Model update

 Soft thresholding

 Sigmoid thresholding

SPLADE Soft thresholding

 Hard thresholding

Pos. or neg.
 doc d

SPLADE

Query q

Learned
thresholds

Figure 1: Hybrid thresholding with an index approximation

Design considerations. To zero out a token weight below a
learnable threshold, there are two options: soft thresholding [16],
and approximate hard thresholding [28]. For query token weights,
we find that soft thresholding does not affect relevance significantly.
For document token weights, our study finds that compared to soft
thresholding, hard thresholding can retain relevance better since it
does not change token weights when exceeding a threshold. Since
the subgradient for hard thresholding with respect to a threshold is
always 0, an approximation needs to be carried out for training. For
search index generation, an inverted index produced with the same
approximate hard thresholding as training keeps many unnecessary
non-zero document token weights, slowing down retrieval signifi-
cantly. Thus we directly apply hard thresholding with a threshold
learned from training, as shown in Figure 1. There is a gap between

trained document token weights and actual weights used in our
inverted index generation and online inference, and we intend to
minimize this gap (called an index approximation error).

Thus our design takes a hybrid approach that applies soft thresh-
olding to query token weights during training and inference and
applies approximate hard thresholding to document token weights
during trainingwhile using hard thresholding for documents during
index generation. For approximate hard thresholding, we propose
to use a logistic sigmoid-based function instead of a Gauss error
function [28]. This sigmoid thresholding simplifies our analysis of
the impact of its hyperparameter choice to index approximation
errors, and to training stability.

3.1 Trainable and approximate thresholding
Training computes threshold parameters 𝑡𝐷 , and 𝑡𝑄 for documents
and queries, respectively. From the output of the SPLADE model,
every token weight of a query is replaced with 𝑆(𝑤𝑞

𝑗
, 𝑡𝑄), which is

𝑅𝑒𝐿𝑈 (𝑤𝑞
𝑗
− 𝑡𝑄), and every document token weight is replaced with

𝐻 (𝑤𝑞
𝑗
, 𝑡𝐷) before their dot product is computed during training as

shown in Figure 1(a). Sigmoid thresholding 𝐻 is defined as:

Ĥ(𝑤𝑑𝑗 , 𝑡𝐷) = 𝑤𝑑𝑗 𝜎(𝐾 (𝑤𝑑𝑗 − 𝑡𝐷)) where 𝜎(𝑥) =
1

1 + 𝑒−𝑥
. (1)

Here 𝐾 is a hyperparameter to control the slope steepness of step
approximation that jumps from 0 to 1 when exceeding a threshold.

The indexing process uses hard thresholding to replace all doc-
ument weights that are below threshold 𝑡𝐷 as 0 as depicted in
Figure 1(b). The above post processing introduces an index approx-
imation error 𝐸 = |𝐻 (𝑤𝑑

𝑗
, 𝑡𝐷) − 𝐻 (𝑤𝑑

𝑗
, 𝑡𝐷)|. We derive its upper

bound as follows. Notice that𝑤 𝑗 ≥ 0, and for any 𝑥 ≥ 0, 1 +𝑥 ≤ 𝑒𝑥 .

𝐸 = 𝑤𝑑𝑗 𝜎(𝐾 (𝑤𝑑𝑗 − 𝑡𝐷)) =
𝑤𝑑
𝑗

1 + 𝑒𝐾 (𝑡𝐷−𝑤𝑑
𝑗

)
≤

𝑤𝑑
𝑗

2 + 𝐾 (𝑡𝐷 −𝑤𝑑
𝑗
)
.

When𝑤𝑑
𝑗
≥ 𝑡𝐷 , we can derive that

𝐸 = 𝑤𝑑𝑗 (1−𝜎(𝐾 (𝑤𝑑𝑗 − 𝑡𝐷))) = 𝑤𝑑𝑗 𝜎(𝐾 (𝑡𝐷 −𝑤𝑑𝑗))) ≤
𝑤𝑑
𝑗

2 + 𝐾 (𝑤𝑑
𝑗
− 𝑡𝐷)

.

Let 𝜎− denote 𝜎(𝐾(𝑤𝑑
𝑖
− 𝑡𝐷)). 0 < 𝜎− < 1. In both of the above

cases, the error upper bound is minimized when 𝐾 is large. This is
consistent with the fact that error 𝐸 is monotonically decreasing
as 𝐾 increases because 𝜕𝐸

𝜕𝐾
= −𝑤𝑑

𝑗
𝜎− (1 − 𝜎−) |𝑤𝑑

𝑗
− 𝑡𝐷 |≤ 0. When

|𝑤𝑑
𝑗
− 𝑡𝐷 | is big, the error is negligible and when |𝑤𝑑

𝑗
− 𝑡𝐷 | is small,

the error could become big with a small 𝐾 value. But as shown later,
an excessively large 𝐾 value could cause a big parameter update
during a training step, affecting joint training stability.

Let 𝐷𝑙𝑒𝑛 and 𝑄𝑙𝑒𝑛 be the non-zero token weight count of doc-
ument 𝑑 and query 𝑞, respectively. For our hybrid thresholding,
𝐷𝑙𝑒𝑛 = ∑

𝑗 1𝑤𝑑
𝑗
≥𝑡𝐷 , 𝑄𝑙𝑒𝑛 = ∑

𝑗 1𝑤𝑞

𝑗
≥𝑡𝑄 . Here 1𝑥≥𝑦 is an indicator

function as 1 if 𝑥 ≥ 𝑦 otherwise 0. When increasing 𝑡𝐷 and 𝑡𝑄 ,𝐷𝑙𝑒𝑛
and𝑄𝑙𝑒𝑛 decrease. Thus for a batch of training queries 𝐵, the origi-
nal SPLADE loss is extended as: 𝐿 = (1

|𝐵 |
∑
𝑞∈𝐵 𝐿𝑅)+𝜆𝑄𝐿𝑄 +𝜆𝐷𝐿𝐷 +

𝜆𝑇 𝐿𝑇 . The extra item added is 𝐿𝑇 = log(1 + 𝑒−𝑡𝐷) + log(1 + 𝑒−𝑡𝑄).
We retain the original 𝐿𝑄 and 𝐿𝐷 expressions because as𝑤𝑞

𝑗
or𝑤𝑑

𝑗

decreases, more weights can quickly be zeroed out.

Representation Sparsification with Hybrid Thresholding
for Fast SPLADE-based Document Retrieval SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

3.2 Threshold and token weight updating
We study the change of 𝑡𝐷 , 𝑡𝑄 ,𝑤𝑑𝑗 , and𝑤

𝑞

𝑗
after each training step

with a mini-batch gradient descent update. The analysis below uses
the first-order Taylor polynomial approximation and follows the
fact that sigmoid thresholding 𝐻 and soft thresholding function
𝑆 are used independently for a query and a document in the loss
function. Symbol 𝛼 is the learning rate. Let “𝑑 ⊳ 𝑞” mean 𝑑 is a
positive or negative document of query 𝑞.

∆𝑡𝐷 = 𝑡𝑛𝑒𝑤
𝐷

− 𝑡𝑜𝑙𝑑𝐷 = −𝛼 𝜕𝐿

𝜕𝑡𝐷
= −𝛼

(
1
|𝐵 |

∑︁
𝑞∈𝐵

𝜕𝐿𝑅

𝜕𝐻

𝜕𝐻

𝜕𝑡𝐷
+ 𝜆𝑇

𝜕𝐿𝑇

𝜕𝑡𝐷

)
= 𝛼

(
1
|𝐵 |

∑︁
𝑞∈𝐵

(
𝐾
𝜕𝐿𝑅

𝜕𝐻

∑︁
𝑑⊳𝑞

∑︁
𝑖

𝑤𝑑𝑖 (1 − 𝜎)−𝜎−
)

+ 𝜆𝑇
𝑒−𝑡𝐷

1 + 𝑒−𝑡𝐷

)
.

∆𝑡𝑄 = 𝑡𝑛𝑒𝑤
𝑄

− 𝑡𝑜𝑙𝑑𝑄 = −𝛼 𝜕𝐿

𝜕𝑡𝑄
= −𝛼

(
1
|𝐵 |

∑︁
𝑞∈𝐵

𝜕𝐿𝑅

𝜕𝑆

𝜕𝑆

𝜕𝑡𝑄
+ 𝜆𝑇

𝜕𝐿𝑇

𝜕𝑡𝑄

)
= 𝛼

(
1
|𝐵 |

∑︁
𝑞∈𝐵

(
𝜕𝐿𝑅

𝜕𝑆

∑︁
𝑖

1𝑤𝑞

𝑖
≥𝑡𝑄

)
+ 𝜆𝑇

𝑒−𝑡𝑄

1 + 𝑒−𝑡𝑄

)
.

∆𝑤𝑑𝑗 = 𝑤𝑑,𝑛𝑒𝑤
𝑗

−𝑤𝑑,𝑜𝑙𝑑
𝑗

≈
∑︁
𝜃 ∈Θ

𝜕𝑤𝑑
𝑗

𝜕𝜃
∆𝜃 = −

∑︁
𝜃 ∈Θ

𝜕𝑤𝑑
𝑗

𝜕𝜃
𝛼
𝜕𝐿

𝜕𝜃

= −𝛼
∑︁
𝜃 ∈Θ

𝜕𝑤𝑑
𝑗

𝜕𝜃

(
1
|𝐵 |

∑︁
𝑞∈𝐵

(
𝜕𝐿𝑅

𝜕𝐻

(∑︁
𝑑⊳𝑞

∑︁
𝑖

𝜕𝐻

𝜕𝑤𝑑
𝑖

𝜕𝑤𝑑
𝑖

𝜕𝜃

)
+

𝜕𝐿𝑅

𝜕𝑆

(∑︁
𝑖

𝜕𝑆

𝜕𝑤
𝑞

𝑖

𝜕𝑤
𝑞

𝑖

𝜕𝜃

))
+ 𝜆𝐷

𝜕𝐿𝐷

𝜕𝜃
+ 𝜆𝑄

𝜕𝐿𝑄

𝜕𝜃

)
.

Notice that 𝜕𝐻

𝜕𝑤𝑑
𝑖

= 𝜎− +𝐾𝑤𝑑
𝑖
𝜎− (1−𝜎−). The above results indicate:

• A significant number of terms in ∆𝑡𝐷 and ∆𝑤𝑑
𝑗
involve linear

coefficient𝐾 . This is verifiably true also for ∆𝑤𝑞
𝑗
. Although a large

𝐾 value can minimize the index approximation error |𝐻 (𝑤𝑑
𝑗
, 𝑡𝐷)−

𝐻 (𝑤𝑑
𝑗
, 𝑡𝐷)|, it can cause an aggressive change of token weights

and thresholds at a training iteration, making training overshoot
and miss the global optimum. Thus 𝐾 cannot be too large, and
our evaluation further studies this.

• If 𝜕𝐿𝑅
𝜕𝐻

≥ 0, ∆𝑡𝐷 ≥ 0, and the document threshold increases,
decreasing 𝐷𝑙𝑒𝑛. Otherwise document token threshold may de-
crease after a parameter update step during training, and the
degree of decreasing is reduced by a positive value 𝑒−𝑡𝐷

1+𝑒−𝑡𝐷 . Based
on the sign of 𝜕𝐿𝑅

𝜕𝑆
, we can draw a similar conclusion on ∆𝑡𝑄 .

4 EVALUATION
Our evaluation usesMSMARCOpassages [4] and BEIR datasets [33].
MS MARCO has 8.8M passages while BEIR has 13 different datasets
of varying sizes up-to 5.4M. As a common practice, we report the
relevance in terms of mean reciprocal rank MRR@10 for the MS
MARCO passage Dev query set with 6980 queries, and the nor-
malized discounted cumulative gain nDCG@10 [13] for its DL’19
and DL’20 sets, and also for BEIR. For retrieval with a SPLADE
inverted index, we report the mean response time (MRT) and 99th
percentile time (𝑃99) in milliseconds. The query encoding time is not
included. For the SPLADE model, we warm up it following [7, 17],

and train it with 𝜆𝑄 = 0.01 and 𝜆𝐷 = 0.008, and hybrid threshold-
ing. We use the PISA [26] search system to index documents and
search queries using SIMD-BP128 compression [18] and MaxScore
retrieval [24, 27]. Our evaluation runs as a single thread on a Linux
CPU-only server with Intel i5-8259U 2.3GHz and 32GB memory.
Similar retrieval latency results are observed on a 2.3GHz AMD
EPYC 7742 processor. The checkpoints and related code will be
released in https://github.com/Qiaoyf96/HT.

Table 1: Overall results on MS MARCO passages

Methods MRR MRT(𝑃99) MRT(𝑃99) nDCG nDCG Dlen
Dev 𝑘 = 10 𝑘 = 1000 DL’19 DL’20

SPLADE 0.3966 48.3(228) 127(408) 0.7398 0.7340 351
/DT [28] 0.3922 102(457) 262(786) 0.7392 0.7319 444
/Top305 [36] 0.3962 42.4(202) 114(369) 0.7353 0.7288 277
/Top100 [36] 0.3908 21.8(106) 62.5(196) 0.7192 0.7119 99
/DCP50% [2] 0.3958 30.0(145) 83.9(271) 0.7385 0.7321 175
/DCP40% [2] 0.3933 25.9(124) 73.3(235) 0.7335 0.7280 140
/DCP30% [2] 0.3912 21.6(101) 61.8(193) 0.7287 0.7217 105
/Cut0.5 0.3924 21.9(104) 62.6(195) 0.7296 0.7212 144
/Cut0.8 0.3885 15.6(70.4) 43.8(128) 0.7207 0.7118 112
/HT1 0.3955 22.8(108) 62.3(195) 0.7322 0.7210 140
/HT3 0.3942 14.2(67.2) 40.6(123) 0.7327 0.7228 106
/HT1-2GTI [30] 0.3959 10.0(49.1) 27.6(92.2) 0.7330 0.7210 140
/HT3-2GTI [30] 0.3942 6.9(33.9) 19.3(62.1) 0.7320 0.7228 106

Overall results withMSMARCO. Table 1 is a comparison with
the baselines on MS MARCO passage Dev set, DL’19, and DL’20.
It lists the average 𝐷𝑙𝑒𝑛 value, and top-𝑘 retrieval time with depth
𝑘 = 10 and 1000. Row 3 is for original SPLADE trained by ourselves
with an MRR number higher than 0.38 reported in [7, 17]. Rows 12
and 13 list the result of our hybrid thresholding marked as HT𝜆𝑇
and 𝐾 = 25. With 𝜆𝑇 = 1, SPLADE/HT1 converges to a point where
𝑡𝑄 = 0.4 and 𝑡𝐷 = 0.5, which is about 2x faster in retrieval. HT3 with
𝜆𝑇 = 3 converges at 𝑡𝑄 = 0.7 and 𝑡𝐷 = 0.8, resulting 3.1x speedup
than SPLADE while having a slightly lower MRR@10 0.3942. No
statistically significant degradation in relevance has been observed
at the 95% confidence level for both HT1 and HT3. The inverted
index size reduces from 6.4GB for original SPLADE to 2.8GB and
2.2GB for HT1 and HT3 respectively. When applying two-level
guided traversal 2GTI [30] with its fast configuration, Rows 14 and
15 show a further latency reduction to 6.9ms or 19.3ms.

We discuss other baselines listed in this table. Row 4 named
DT uses the thresholding scheme from [28]. Its training does not
converge with its loss function, and its retrieval is much slower.
Rows 5 and 6 follow joint training of top-𝑘 masking [36] with the top
305 tokens as suggested in [36] and with the top 100 tokens. Rows
7, 8 and 9 marked with DCP𝑥 follow document centric pruning [2]
that keeps 𝑥 of top tokens per document where 𝑥=50%, 40%, and 30%.
We did not list term centric pruning [1, 3] because [2] shows DCP
is slightly better in relevance under the same latency constraint.
Rows 10 and 11 with “/Cut0.5” and “/Cut0.8” apply a hard threshold
with 0.5 and 0.8 in the output of original SPLADE without joint
training. The index pruning options without learning from Rows
5 to 11 can either reduce the latency to the same level as HT, but
their relevance score is visibly lower; or have a relevance similar to
HT but with much slower latency. This illustrates the advantage of
learned hybrid thresholding with joint training.

Table 2 lists the zero-shot performance of HT when 𝑘 = 1000 by
applying the SPLADE/HT model learned from MS MARCO to the

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Yifan Qiao, Yingrui Yang, Shanxiu He, & Tao Yang

.
Table 2: Zero-shot performance on BEIR datasets

SPLADE SPLADE/HT1 SPLADE/HT3
Dataset nDCG MRT nDCG MRT nDCG MRT
DBPedia 0.430 135 0.435 64.2 0.426 32.3
FiQA 0.354 6.5 0.345 4.0 0.336 3.2
NQ 0.547 81.8 0.545 45.9 0.539 28.6
HotpotQA 0.678 481 0.680 265 0.678 140
NFCorpus 0.351 0.5 0.352 0.3 0.346 0.2
T-COVID 0.719 16.0 0.730 10.1 0.695 7.5
Touche-2020 0.307 15.0 0.306 9.3 0.313 4.5
ArguAna 0.440 20.8 0.463 7.8 0.500 4.1
C-FEVER 0.234 1375 0.219 681 0.213 332
FEVER 0.781 1584 0.778 559 0.764 264
Quora 0.806 17.5 0.776 9.2 0.792 4.5
SCIDOCS 0.151 6.9 0.155 3.0 0.151 2.0
SciFact 0.676 5.7 0.681 2.4 0.672 1.4
Average 0.498 - 0.497 2.0x 0.494 3.6x

BEIR datasets without any additional training. HT1 has a similar
nDCG@10 score as SPLADE without HT, while having a 2x MRT
speedup on average. HT3 is even faster with 3.6x speedup, and its
nDCG@10 drops in some degree to 0.494.

(a) Documents (b) Queries

Figure 2: Weight/threshold/sparsity changes during training

Figure 2 depicts the average values of𝑤𝑑
𝑗
, 𝑡𝐷 , and 𝐷𝑙𝑒𝑛 on the

left and𝑤𝑞
𝑗
, 𝑡𝑄 , and 𝑄𝑙𝑒𝑛 on the right during MS MARCO training

under 𝐻𝑇1. 𝑥-axis is the training epoch number. It shows that 𝐷𝑙𝑒𝑛
and 𝑄𝑙𝑒𝑛 decrease while 𝑡𝐷 and 𝑡𝑄 increase as training makes a
progress and SPLADE/HT1 converges after about 20 epochs.

Design options. Table 3 lists performance under 4 thresholding
combinations from Row 3 to Row 7. 𝑆[𝑥] means soft thresholding
function 𝑆() is applied to 𝑥 for both training and indexing where 𝑥
can be documents (D) or queries (Q). 𝐻 [x] means sigmoid thresh-
olding 𝐻 is applied in both training and indexing. 𝐻𝐻 [𝑥] means 𝐻
is applied in training and 𝐻 is applied in indexing. 𝜙[𝑥] means no
thresholding is applied to 𝑥 during training and indexing. When
thresholding is not applied to queries, 𝐻𝐻 [𝐷] is 1.3x faster than
𝑆[𝐷] when 𝑘 = 10 and 𝑘 = 1000 while their relevance scores are sim-
ilar. Shifting of document weight distribution by soft thresholding
significantly affects retrieval time. Rows 6 and 7 fix 𝐻𝐻 [𝐷] setting,
and show that soft thresholding is more effective in relevance than
hard thresholding for query tokens. Shifting of query weight dis-
tribution has less effect on latency while gaining more relevance
through model consistency between training and indexing.

Hyperparameter 𝐾 in sigmoid thresholding 𝐻 . Table 3 com-
pares 𝐻𝐻 [𝐷] with 𝐻 [𝐷] when varying 𝐾 from Row 8 to Row 14.
In these cases, training always uses 𝐻 while indexing uses 𝐻 or
𝐻 . When 𝐾 is small as 2.5, applying 𝐻 to both training and in-
dexing yields good relevance, but retrieval is about 1.8x slower

Table 3: Impact of design options. MS MARCO passages.

HT Config. MRR MRT(𝑃99) MRT(𝑃99) Qlen Dlen
𝜆𝑇 = 1 𝑘 = 10 𝑘 = 1000
Soft vs. hard thresholding in 4 combinations. Fix 𝐾 = 25.
𝜙[𝑄], 𝑆[𝐷] 0.3941 31.7(157) 91.5(315) 14.3 145
𝜙[𝑄], 𝐻𝐻 [𝐷] 0.3942 24.1(111) 70.7(219) 13.5 142
𝑆[𝑄], 𝐻𝐻 [𝐷] 0.3955 22.8(108) 62.3(195) 11.3 140
𝐻𝐻 [𝑄], 𝐻𝐻 [𝐷] 0.3904 24.9(106) 62.6(182) 9.0 142
Vary 𝐾 . 𝐻 [𝐷] vs. 𝐻𝐻 [𝐷]. Fix 𝑆[𝑄].
𝐻𝐻 [𝐷], 𝐾 = 2.5 0.3947 22.8(110) 62.6(199) 11.5 149
𝐻 [𝐷], 𝐾 = 2.5 0.3963 41.4(198) 112(358) 11.5 421
𝐻𝐻 [𝐷], 𝐾 = 25 0.3955 22.8(108) 62.3(195) 11.3 140
𝐻 [𝐷], 𝐾 = 25 0.3961 28.7(136) 76.9(239) 11.3 208
𝐻𝐻 [𝐷], 𝐾 = 250 0.3946 21.9(102) 60.5(189) 11.2 135
𝐻 [𝐷], 𝐾 = 250 0.3947 23.1(112) 63.9(203) 11.2 159
Usefulness of 𝐿𝑄 and 𝐿𝐷 . Fix 𝑆[𝑄], 𝐻𝐻 [𝐷], and 𝐾 = 25.
w/o 𝐿𝑄 0.3956 56.2(245) 166(502) 20.1 138
w/o 𝐿𝑄 , 𝐿𝐷 0.3954 99.4(434) 254(772) 25.9 421

because much more non-zero weights are kept in the index. When
𝐾 becomes large as 250, training does not converge to the global
optimum due to large update sizes, resulting in an MRR score lower
than 𝐾=25 even with no index approximation. 𝐾 = 25 has a reason-
able MRR while 𝐻𝐻 [𝐷] is up-to 26% faster than 𝐻 [𝐷].

Retaining 𝐿𝑄 and 𝐿𝐷 . Last three rows of Table 3 shows that the
query length is higher when 𝐿𝑄 is removed from the loss function,
and documents get longer when 𝐿𝐷 is removed further. The result
means 𝐿𝑄 and 𝐿𝐷 are useful in sparsity control together with 𝐿𝑇 .

5 CONCLUDING REMARKS
Our evaluation shows that learnable hybrid thresholding with index
approximation can effectively increase the sparsity of inverted in-
dices with 2-3x faster retrieval and competitive or slightly degraded
relevance (0.28% - 0.6% MRR@10 drop). Its trainability allows rele-
vance and sparsity guided threshold learning and it can outperform
index pruning without such an optimization. Our scheme retains a
non-uniform number of non-zero token weights per vector based
on a trainable weight and threshold difference for flexibility in rel-
evance optimization. Our analysis shows that hyperparameter 𝐾
in sigmoid thresholding needs to be chosen judiciously for a small
index approximation error without hurting training stability.

If a small relevance tradeoff is allowed, more retrieval time reduc-
tion is possible when applying other related orthogonal efficiency
optimization techniques [17, 19, 22, 24, 29, 30]. Applying hybrid
thresholding HT3 to a checkpoint of a recent efficiency-driven
SPLADE model [17] with 0.3799 MRR@10 on the MS MARCO pas-
sage Dev set, decreases the response time from 36.6ms to 21.7ms
(1.7x faster) when 𝑘=1000 while having 0.3868 MRR@10. This la-
tency can be further reduced to 14.2ms with the same MRR@10
number (0.3868) when 2GTI [30] is applied to the above index.

A future study is to investigate the use of the proposed hybrid
thresholding scheme for other learned sparse models [10, 20, 23].

Acknowledgments. We thank Wentai Xie and anonymous ref-
erees for their valuable comments and/or help. This work is sup-
ported in part by NSF IIS-2225942 and has used computing resource
of NSF’s ACCESS program. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

Representation Sparsification with Hybrid Thresholding
for Fast SPLADE-based Document Retrieval SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

REFERENCES
[1] Roi Blanco and Alvaro Barreiro. 2007. Boosting Static Pruning of Inverted Files.

In Proc. of SIGIR (Amsterdam, The Netherlands) (SIGIR ’07). Association for
Computing Machinery, New York, NY, USA, 777–778. https://doi.org/10.1145/
1277741.1277904

[2] Stefan Büttcher and Charles L. A. Clarke. 2006. A Document-Centric Approach
to Static Index Pruning in Text Retrieval Systems. In Proceedings of the 15th ACM
International Conference on Information and Knowledge Management (Arlington,
Virginia, USA) (CIKM ’06). Association for Computing Machinery, New York, NY,
USA, 182–189. https://doi.org/10.1145/1183614.1183644

[3] David Carmel, Doron Cohen, Ronald Fagin, Eitan Farchi, Michael Herscovici,
Yoelle S. Maarek, and Aya Soffer. 2001. Static Index Pruning for Information
Retrieval Systems. In Proc. of SIGIR (New Orleans, Louisiana, USA) (SIGIR ’01).
Association for Computing Machinery, New York, NY, USA, 43–50. https://doi.
org/10.1145/383952.383958

[4] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Fernando Campos, and
Ellen M. Voorhees. 2020. Overview of the TREC 2020 Deep Learning Track.
ArXiv abs/2102.07662 (2020).

[5] Zhuyun Dai and Jamie Callan. 2020. Context-Aware Term Weighting For First
Stage Passage Retrieval. Proceedings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (2020).

[6] Thibault Formal, C. Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2021. SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval.
ArXiv abs/2109.10086 (2021).

[7] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2022. From Distillation to Hard Negative Sampling: Making Sparse Neural IR
Models More Effective. Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval (2022).

[8] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking. Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval (2021).

[9] Elias Frantar and Dan Alistarh. 2022. SPDY: Accurate Pruning with Speedup
Guarantees. In Proceedings of the 39th International Conference on Machine Learn-
ing (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.).
PMLR, 6726–6743. https://proceedings.mlr.press/v162/frantar22a.html

[10] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical Match
in Information Retrieval with Contextualized Inverted List. NAACL (2021).

[11] Georgios Georgiadis. 2019. Accelerating convolutional neural networks via acti-
vation map compression. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 7085–7095.

[12] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2020. Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation. ArXiv abs/2010.02666 (2020).

[13] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[14] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Trans. on Big Data 7, 3 (2019), 535–547.

[15] Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr,
Michael Goin, William Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. 2020.
Inducing and Exploiting Activation Sparsity for Fast Inference on Deep Neural
Networks. In Proceedings of the 37th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 119), Hal Daumé III andAarti Singh
(Eds.). PMLR, 5533–5543. https://proceedings.mlr.press/v119/kurtz20a.html

[16] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek
Jain, Sham Kakade, and Ali Farhadi. 2020. Soft threshold weight reparameter-
ization for learnable sparsity. In International Conference on Machine Learning.
PMLR, 5544–5555.

[17] Carlos Lassance and Stéphane Clinchant. 2022. An efficiency study for SPLADE
models. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2220–2226.

[18] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second
through vectorization. Softw. Pract. Exp. 45, 1 (2015), 1–29.

[19] Jimmy Lin and Andrew Trotman. 2015. Anytime Ranking for Impact-Ordered
Indexes. In Proceedings of the 2015 International Conference on The Theory of
Information Retrieval (Northampton,Massachusetts, USA) (ICTIR ’15). Association
for Computing Machinery, New York, NY, USA, 301–304. https://doi.org/10.

1145/2808194.2809477
[20] Jimmy J. Lin and Xueguang Ma. 2021. A Few Brief Notes on DeepImpact, COIL,

and a Conceptual Framework for Information Retrieval Techniques. ArXiv
abs/2106.14807 (2021).

[21] Junjie LIU, Zhe XU, Runbin SHI, Ray C. C. Cheung, and Hayden K.H. So. 2020.
Dynamic Sparse Training: Find Efficient Sparse Network From Scratch With
Trainable Masked Layers. In International Conference on Learning Representations.
https://openreview.net/forum?id=SJlbGJrtDB

[22] Joel Mackenzie, Matthias Petri, and Alistair Moffat. 2021. Anytime Ranking on
Document-Ordered Indexes. ACM Trans. Inf. Syst. 40, 1, Article 13 (sep 2021),
32 pages.

[23] Antonio Mallia, O. Khattab, Nicola Tonellotto, and Torsten Suel. 2021. Learning
Passage Impacts for Inverted Indexes. SIGIR (2021).

[24] Antonio Mallia, Joel Mackenzie, Torsten Suel, and Nicola Tonellotto. 2022. Faster
Learned Sparse Retrieval with Guided Traversal. In Proceedings of the 45th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR 2022). 1901–1905.

[25] AntonioMallia, Giuseppe Ottaviano, Elia Porciani, Nicola Tonellotto, and Rossano
Venturini. 2017. Faster BlockMax WAND with Variable-sized Blocks. In Proc.
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 625–634.

[26] Antonio Mallia, Michal Siedlaczek, Joel Mackenzie, and Torsten Suel. 2019. PISA:
Performant indexes and search for academia. Proceedings of the Open-Source IR
Replicability Challenge (2019).

[27] Antonio Mallia, Michal Siedlaczek, and Torsten Suel. 2019. An Experimental
Study of Index Compression and DAAT Query Processing Methods. In Proc. of
41st European Conference on IR Research, ECIR’ 2019. 353–368.

[28] Jin-Woo Park and Jong-Seok Lee. 2020. Dynamic Thresholding for Learning
Sparse Neural Networks. In ECAI 2020. IOS Press, 1403–1410.

[29] Yifan Qiao, Yingrui Yang, Haixin Lin, Tianbo Xiong, Xiyue Wang, and Tao Yang.
2022. Dual Skipping Guidance for Document Retrieval with Learned Sparse
Representations. ArXiv abs/2204.11154 (April 2022).

[30] Yifan Qiao, Yingrui Yang, Haixin Lin, and Tao Yang. 2023. Optimizing Guided
Traversal for Fast Learned Sparse Retrieval. In Proceedings of the ACM Web
Conference 2023 (WWW ’23). ACM, Austin, TX, USA.

[31] Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, QiaoQiao She, Hua Wu,
Haifeng Wang, and Ji-Rong Wen. 2021. RocketQAv2: A Joint Training Method
for Dense Passage Retrieval and Passage Re-ranking. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, Online and Punta Cana, Dominican Republic,
2825–2835.

[32] Keshav Santhanam, O. Khattab, Jon Saad-Falcon, Christopher Potts, and Matei A.
Zaharia. 2021. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction. ArXiv abs/2112.01488 (16 Dec. 2021).

[33] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2). https://openreview.
net/forum?id=wCu6T5xFjeJ

[34] Shitao Xiao, Zheng Liu, Weihao Han, Jianjin Zhang, Defu Lian, Yeyun Gong, Qi
Chen, Fan Yang, Hao Sun, Yingxia Shao, Denvy Deng, Qi Zhang, and Xing Xie.
2022. Distill-VQ: Learning Retrieval Oriented Vector Quantization By Distilling
Knowledge from Dense Embeddings. Proc. of SIGIR (2022).

[35] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor Neg-
ative Contrastive Learning for Dense Text Retrieval. In International Conference
on Learning Representations. https://openreview.net/forum?id=zeFrfgyZln

[36] Jheng-Hong Yang, Xueguang Ma, and Jimmy Lin. 2021. Sparsifying Sparse
Representations for Passage Retrieval by Top-k Masking. CoRR abs/2112.09628
(2021). arXiv:2112.09628 https://arxiv.org/abs/2112.09628

[37] Hamed Zamani, Mostafa Dehghani, William Bruce Croft, Erik G. Learned-Miller,
and J. Kamps. 2018. From Neural Re-Ranking to Neural Ranking: Learning
a Sparse Representation for Inverted Indexing. Proceedings of the 27th ACM
International Conference on Information and Knowledge Management (2018).

[38] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping
Ma. 2022. Learning Discrete Representations via Constrained Clustering for
Effective and Efficient Dense Retrieval. In Proc. of Fifteenth ACM International
Conference on Web Search and Data Mining (WSDM ’22). ACM, New York, NY,
USA, 1328–1336.

https://doi.org/10.1145/1277741.1277904
https://doi.org/10.1145/1277741.1277904
https://doi.org/10.1145/1183614.1183644
https://doi.org/10.1145/383952.383958
https://doi.org/10.1145/383952.383958
https://proceedings.mlr.press/v162/frantar22a.html
https://proceedings.mlr.press/v119/kurtz20a.html
https://doi.org/10.1145/2808194.2809477
https://doi.org/10.1145/2808194.2809477
https://openreview.net/forum?id=SJlbGJrtDB
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=zeFrfgyZln
https://arxiv.org/abs/2112.09628
https://arxiv.org/abs/2112.09628

	Abstract
	1 Introduction
	2 Background
	3 Hybrid Thresholding (HT)
	3.1 Trainable and approximate thresholding
	3.2 Threshold and token weight updating

	4 Evaluation
	5 Concluding Remarks
	References

