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Motivation
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Problem

Fast top k document retrieval with an inverted index using a learned sparse 
representation: e.g.  SPLADE [Formal et al. SIGIR’21 and 22], uniCOIL, DeepImpact

Standard retrieval with dynamic index pruning: MaxScore or VBMW


Prior work: GTI [Mallia et al. SIGIR’22]

● Store both BM25 and learned weights of a document in an inverted index

● Uses BM25 based scoring to skip documents while final ranking uses a linear 

combination of learned neural weights and BM25 weights
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Weakness addressed

● When  becomes relatively small, the relevance drops significantly, 

indicating BM25 based guidance for pruning is too aggressive.

● Token inconsistency in BM25 model and a learned neural model creates 

un-smoothed weighting and results in significant relevance drop. 

k

Motivation
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Two level pruning guidance with different scoring and thresholding

● View pruning in standard MaxScore retrieval algorithm in two levels


○ Global level: partitioning of the non-essential and essential terms

○ Local level: skipping a document selected during possible deep visitation


● Allow different scoring/thresholding at these two levels and at final ranking


● 2GTI on VBMW is similar

Proposed Solution: 2GTI 
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 Maintain 3 top k queues with different rankings

●  uses ranking  for global pruning:    


●  uses ranking  for local pruning:         


●  uses ranking  for final ranking: 


Maintain 3 thresholds for dynamic index pruning

QGl Rα Global(d) = α ⋅ wBM25 + (1 − α) ⋅ wlearned

QLo Rβ Local(d) = β ⋅ wBM25 + (1 − β) ⋅ wlearned

QRk Rγ RankScore(d) = γ ⋅ wBM25 + (1 − γ) ⋅ wlearned

●  for essential term 
partitioning based on 


●  for minimum top k score 
based on 


●  for top  thresholding 
based on final ranking .
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Proposed Solution: 2GTI 
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Objective: Analyze relevance behavior of 2GTI formally and its 
competitiveness

(GTI is a special case of 2GTI with )
α = β = 1

Relevance Properties of 2GTI
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#1: Top documents agreed by top  of each ranking , , and  are 
kept on the top  by 2GTI.
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#2: Properly configured 2GTI can outperform the two-stage algorithm : 
retrieval with  and re-ranking with .


(1) When  or , the average rank score of the top  positions 
produced by 2GTI is equal or higher than this two-stage algorithm . 




(2) When  outmatches  which outmatches , 2GTI retrieves equal or 
more relevant results at top  positions than .

R2
Rα Rγ

α = β β = γ k
R2

∑
d∈2GTI

RankScore(γ)(d) ≥ ∑
d∈R2

RankScore(γ)(d)

Rγ Rβ Rα
k R2

Recall@k(2GTI ) ≥ Recall@k(R2)

Relevance Properties of 2GTI
#1: Top documents agreed by top  of each ranking , , and  are 
kept on the top  by 2GTI.
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MS MARCO Passage


● On MS MARCO Passage Dev, 


○ 2GTI-Accurate produces slightly higher MRR@10 (due to BM25 interpolation) 
than the original SPLADE while being 2.6x faster


○ 2GTI-Fast has similar MRR score while being 6.5x faster


● Similar trend observed in TREC DL’19 and DL’20

k = 1000

2.6x 
faster 

Evaluation

6.5x 
faster 

0.3937 278 (819)

0.3946 109 (478)
0.3937 43.1 (144)

milliseconds
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Token and weight alignment between BM25 index and learned index

For those missing weights in the BM25 model

○ /0: do nothing

○ /1: fill with 1

○ /s: fill with learned scores scaled by ratio of mean values of non-zero weights

Evaluation

Faster & 
more 
accurate

118

9.1

0.2687

0.3468

10.5x 
faster 

0.3933

0.3939

328

31.1
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Zero-shot performance (13 BEIR datasets)


Efficiency-driven SPLADE

● Apply 2GTI on the efficiency-driven SPLADE model [Lassance et al. 

SIGIR’22] with a relevance tradeoff ( )
k = 10

Evaluation

2.2x 
faster 

17.4
8.0

2.0x
6.1x 2.1x

2.5x
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● 2GTI retrieval manages 3 top k queues with 3 linear combinations of neural 
and BM25 weights to rank/skip docs    

○ Pruning decision is more accurate than GTI

○ Can outperform a two-stage retrieval algorithm at least


● Sample configurations for SPLADE++:  


○ : 


○ : 


○ : 


● Smooth weight alignment is necessary to address token inconsistency 
between BM25 and neural models


● For MS MARCO passages with SPLADE++, 5x to 7x faster than original 
MaxScore and GTI

Rα α ⋅ wBM25 + (1 − α) ⋅ wlearned, with α = 1
Rβ β ⋅ wBM25 + (1 − β) ⋅ wlearned, with β = 0 or 0.3

Rγ γ ⋅ wBM25 + (1 − γ) ⋅ wlearned,  with γ = 0.05

Thanks and Q/A?

Conclusions


