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Abstract

This paper revisits dynamic pruning through
rank score thresholding in cluster-based sparse
retrieval to skip the index partially at cluster
and document levels during inference. It pro-
poses a two-parameter pruning control scheme
called ASC with a probabilistic guarantee
on rank-safeness competitiveness. ASC uses
cluster-level maximum weight segmentation
to improve accuracy of rank score bound es-
timation and threshold-driven pruning, and is
targeted for speeding up retrieval applications
requiring high relevance competitiveness. The
experiments with MS MARCO and BEIR show
that ASC improves the accuracy and safeness
of pruning for better relevance while delivering
a low latency on a single-threaded CPU.

1 Introduction

Fast and effective document retrieval is a critical
component of large-scale search systems. This
can also be important for retrieval-augmented gen-
eration systems which are gaining in popularity.
Retrieval systems fall into two broad categories:
dense (single or multi-vector) (Karpukhin et al.,
2020; Ren et al., 2021; Xiao et al., 2022; Wang
et al., 2023; Santhanam et al., 2022) and sparse
(lexical or learned) (Dai and Callan, 2020; Mallia
et al., 2021a; Lin and Ma, 2021; Gao et al., 2021;
Formal et al., 2021; Shen et al., 2023). Efficient
dense retrieval relies on approximation techniques
with notable relevance drops (Johnson et al., 2019;
Malkov and Yashunin, 2020; Kulkarni et al., 2023;
Zhang et al., 2023), whereas sparse retrieval takes
advantage of fast inverted index implementations
on CPUs. Well-trained models from these two cat-
egories can achieve similar relevance numbers on
the standard MS MARCO passage ranking task.
However, for zero-shot out-of-domain search on
the BEIR datasets, learned sparse retrieval exhibits
stronger relevance than BERT-based dense mod-
els. Accordingly, this paper focuses on optimizing

online inference efficiency for sparse retrieval. An-
other reason for this focus is that sparse retrieval
does not require expensive GPUs, and thus can sig-
nificantly lower the infrastructure cost for a large-
scale retrieval system that hosts data partitions on
a massive number of inexpensive CPU servers.

A traditional optimization for sparse retrieval
is rank-safe threshold-driven pruning algorithms,
such as MaxScore (Turtle and Flood, 1995),
WAND (Broder et al., 2003), and BlockMax
WAND (BMW) (Ding and Suel, 2011), which accu-
rately skip the evaluation of low-scoring documents
that are unable to appear in the final top-k results.
Two key extensions of these pruning methods are
cluster-based pruning and rank-unsafe threshold
over-estimation. Cluster-based (or block-based)
pruning extends rank-safe methods to skip the eval-
uation of groups of documents (Dimopoulos et al.,
2013; Mallia et al., 2021b; Mackenzie et al., 2021).
However, the cluster bounds estimated by current
methods are often loose, which limits pruning op-
portunities. Threshold over-estimation (Macdonald
et al., 2012; Tonellotto et al., 2013; Crane et al.,
2017) relaxes the safeness, and allows some po-
tentially relevant documents to be skipped, trading
relevance for faster retrieval. However, there are
no formal analysis or guarantee on the impact of
rank-unsafeness on relevance and its speed gain
can often come with a substantial relevance drop.

This paper revisits rank score threshold-driven
pruning for cluster-based retrieval in both safe and
unsafe settings. We introduce a two-parameter
threshold control scheme called ASC, which
addresses the above two limitations of current
threshold-driven pruning methods. ASC uses
cluster-level maximum weight segmentation to im-
prove the accuracy of cluster bound estimation and
offer a probabilistic guarantee on rank-safeness
when used with threshold over-estimation. Conse-
quently, ASC is targeted at speeding up retrieval in
applications that desire high relevance.



Our evaluation shows that ASC makes sparse
retrieval with SPLADE (Formal et al., 2022), uni-
COIL (Lin and Ma, 2021), and LexMAE (Shen
et al., 2023) much faster while effectively retaining
their relevance. ASC takes only 9.7ms with k = 10
and 21ms with k = 1000 for LexMAE on a single-
threaded consumer CPU to search MS MARCO
passages with 0.4252 MRR. It takes only 5.59ms
and 15.8ms respectively for SPLADE with over
0.3962 MRR. When prioritizing for a small MRR
relevance loss, ASC can be an order of magnitude
faster than other approximation baselines.

2 Background and Related Work

Problem definition. Sparse document retrieval
identifies top-k ranked candidates that match a
query. Each document in a data collection is mod-
eled as a sparse vector with many zero entries.
These candidates are ranked using a simple additive
formula, and the rank score of each document d is
defined as: RankScore(d) =

∑
t∈Qwt,d, where

Q is the set of search terms in the given query,
wt,d is a weight contribution of term t in document
d, possibly scaled by a corresponding query term
weight. Term weights can be based on a lexical
model such as BM25 (Jones et al., 2000) or are
learned from a neural model. Terms are tokens in
these neural models. For a sparse representation, a
retrieval algorithm uses an inverted index with a set
of terms, and a document posting list for each term.
A posting record in this list contains a document
ID and its weight for the corresponding term.

Threshold-driven skipping. During sparse
retrieval, a pruning strategy computes the up-
per bound rank score of a candidate docu-
ment d, referred to as Bound(d), satisfying
RankScore(d) ≤ Bound(d). If Bound(d) ≤ θ,
where θ is the rank score threshold to be in the top-
k list, this document can be safely skipped. WAND
uses the maximum term weight of documents in
a posting list for their score upper bound, while
BMW and its variants (e.g. VBMW (Mallia et al.,
2017)) use block-based maximum weights. MaxS-
core uses a similar skipping strategy with term par-
titioning. A retrieval method is called rank-safe if
it guarantees that the top-k documents returned are
the k highest scoring documents. All of the above
algorithms are rank-safe.

Threshold over-estimation is a “rank-unsafe”
skipping strategy that deliberately over-estimates
the current top-k threshold by a factor (Macdonald

et al., 2012; Tonellotto et al., 2013; Crane et al.,
2017). There is no formal analysis of the above
rank-safeness approximation, whereas our work
generalizes and improves threshold over-estimation
for better rank-safeness control in cluster-based re-
trieval with a formal guarantee.

Live block filtering and cluster-based re-
trieval. Live block filtering (Dimopoulos
et al., 2013; Mallia et al., 2021b) clusters docu-
ment IDs within a range and estimates a range-
based maximum score for pruning. Anytime Rank-
ing (Mackenzie et al., 2021) extends cluster skip-
ping inverted index (Can et al., 2004; Hafizoglu
et al., 2017) which arranges each posting list as
“clusters” for selective retrieval, and searches top
clusters under a time budget. Without early termi-
nation, Anytime Ranking is rank-safe and concep-
tually the same as live block filtering with an opti-
mization that cluster visitation is ordered dynami-
cally. Contemporary work in (Mallia et al., 2024)
introduces several optimizations for live block fil-
tering called BMP with block reordering and thresh-
old overestimation and shows that a block-based
(cluster-based, equivalently) retrieval still repre-
sents a state-of-the-art approach for safe pruning
and for approximate search.

Our work can be effectively combined with the
above work using maximum cluster-level score
bounds and threshold over-estimation, and is fo-
cused on improving accuracy of cluster score
bounds and threshold-driven pruning to increase
index-skipping opportunities and introduce a prob-
abilistic rank-safeness assurance.

Efficiency optimization for learned sparse
retrieval. There are orthogonal techniques to
speedup learned sparse retrieval. BM25-guided
pruning skips documents during learned index
traversal (Mallia et al., 2022; Qiao et al., 2023b).
Static index pruning (Qiao et al., 2023a; Lassance
et al., 2023) removes low-scoring term weights
during index generation. An efficient version of
SPLADE (Lassance and Clinchant, 2022) uses L1
regularization for query vectors, dual document
and query encoders, and language model middle
training. Term impact decomposition (Mackenzie
et al., 2022a) partitions each posting list into two
groups with high and low impact weights. Our
work is complementary to the above techniques.

Approximation with score-at-a-time retrieval
(SAAT). The above retrieval approaches often
conduct document-at-a-time (DAAT) traversal
over document-ordered indexes. The SAAT re-
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Figure 1: Flow of ASC with two-parameter pruning con-
trol and segmented cluster-level maximum term weights

trieval over impact-ordered indexes is an alterna-
tive method used together with earlier termina-
tion such as JASS (Lin and Trotman, 2015) and
IOQP (Mackenzie et al., 2022b).

An experimental study (Mackenzie et al., 2023)
compares DAAT and SAAT for a number of sparse
models and indicates that while no single system
dominates all scenarios, it confirms that DAAT
Anytime code is a strong contender, especially for
SPLADE when maintaining the small MRR@10
loss. Since IOQP has been shown to be highly
competitive to an optimized version of JASS, the
baselines in Section 4 includes Anytime and IOQP.

Big-ANN competition for sparse retrieval.
NeurIPS 2023 Big-ANN competition sparse
track (Big-ANN, 2024) uses 90% recall of safe
search top 10 results as the relevance budget to se-
lect the fastest entry for MS MARCO dev set with
SPLADE, and this metric drives a different opti-
mization tradeoff compared to our paper. Our paper
prioritizes MRR@10 competitiveness of approxi-
mate retrieval with a much tighter relevance loss
budget before considering gains in latency reduc-
tion. Appendix D provides a comparison of ASC
with two top winners of this competition. Refer-
ence (Bruch et al., 2024) is listed for the Pinecone
entry with no open source code released, and it
presents an approach to combine dense and sparse
retrieval representations with random projection,
which is orthogonal to our approach.

3 Cluster-based Retrieval with
Approximation and Segmentation

The overall online inference flow of the proposed
scheme during retrieval is shown in Figure 1. Ini-
tially, sparse clusters are sorted in a non-increasing
order of their estimated cluster upper bounds. Then,
search traverses the sorted clusters one-by-one to
conduct approximate retrieval with two-level prun-
ing with segmented term maximum weight.

We follow the notation in (Mackenzie et al.,

Figure 2: ASC predicts more accurate cluster bounds,
which allows it to prune more aggressively. Cluster
bound tightness is the average ratio of the actual and
estimated cluster bounds, calculated with Formula (1).

2021). A document collection is divided into m
clusters {C1, · · · , Cm}. Each posting list of an
inverted index is structured using these clusters.
Given query Q, the BoundSum formula below
estimates the maximum rank score of a document
in a cluster. Anytime Ranking visits clusters in a
non-increasing order of BoundSum values.

BoundSum(Ci) =
∑
t∈Q

max
d∈Ci

wt,d. (1)

The visitation to cluster Ci can be pruned if
BoundSum(Ci) ≤ θ, where θ is the current top-
k threshold. If this cluster is not pruned, then
document-level index traversal and skipping can
be conducted within each cluster following a stan-
dard retrieval algorithm. Any document within
such a cluster may be skipped for evaluation if
Bound(d) ≤ θ where Bound(d) is computed on
the fly based on an underlying retrieval algorithm
such as MaxScore and VBMW.

Design considerations. The cluster-level
BoundSum estimation in Formula (1) can be
loose, especially when a cluster contains diverse
document vectors, and this reduces the effective-
ness of pruning. As an illustration, Figure 2
shows the bound tightness of Anytime for MS
MARCO Passage clusters, calculated as the ratio
between the average actual and estimated bound:
1
m

∑m
i=1

maxdj∈Ci
RankScore(dj)

BoundSum(Ci)
, where m is the

number of clusters. A bound tightness near 1 means
the bound estimate is accurate, whereas a value
near 0 means a loose estimate. The average bound
tightness increases with m because smaller clusters
are more similar. ASC improves the tightness of
the cluster bound estimation for all values of m.

Limited threshold over-estimation can be help-
ful to deal with a loose bound estimation. Specif-
ically, over-estimation of the top-k threshold is



applied by a factor of µ, where 0 < µ ≤ 1,
and the above pruning conditions are modified
as BoundSum(Ci) ≤ θ

µ and Bound(d) ≤ θ
µ .

Threshold over-estimation with µ allows skipping
more low-scoring documents when the bound es-
timation is too loose. However, thresholding is
applied to all cases uniformly and can incorrectly
prune many desired relevant documents when the
bound estimation is already tight.

To improve the tightness of cluster-level bound
estimation using Formula (1), one can decrease the
size of each cluster. However, there is a significant
overhead when increasing the number of clusters.
One reason is that for each cluster, one needs to
extract the maximum weights of query terms and
estimate the cluster bound, which can become ex-
pensive for a large number of query terms. Another
reason is that MaxScore identifies a list of essential
query terms which are different from one cluster
to another. Traversing more clusters yields more
overhead for essential term derivation, in addition
to the cluster bound computation.

3.1 ASC: (µ, η)-approximate retrieval with
segmented cluster information

The proposed ASC method stands for (µ, η)-
Approximate retrieval with Segmented Cluster-
level maximum term weights. ASC segments clus-
ter term maximum weights to improve the tightness
of cluster bound estimation and guide cluster-level
pruning. It employs two parameters, µ and η, satis-
fying 0 < µ ≤ η ≤ 1, to detect the cluster bound
estimation tightness and improve pruning safeness.
Details of our algorithm are described below.

Extension to the cluster-based skipping in-
dex. Each cluster Ci is subdivided into n segments
{Si,1, · · · , Si,n} through random uniform partition-
ing during offline processing. The index for each
cluster has an extra data structure which stores the
maximum weight contribution of each term from
each segment within this cluster. During retrieval,
the maximum and average segment bounds of each
cluster Ci are computed as shown below:

MaxSBound(Ci) =
n

max
j=1

Bi,j , (2)

AvgSBound(Ci) =
1

n

n∑
j=1

Bi,j , (3)

and Bi,j =
∑
t∈Q

max
d∈Si,j

wt,d.
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BoundSum 3.3 9.8 13.7 16.3
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Anytime-µ=0.9 Pruned Pruned Kept Kept
MaxSBound 3.1 9.6 9.7 13.6
AvgSBound 3.0 9.2 7.6 12.4
ASC µ=0.9, η=1 Pruned Kept Pruned Kept

(b) Decisions of dynamic cluster-level pruning during retrieval

Figure 3: A cluster pruning example

Two-level pruning conditions. Let θ be the current
top-k threshold of retrieval in handling query Q.

• Cluster-level: Any cluster Ci is pruned when its
maximum and average segment bounds satisfy

MaxSBound(Ci) ≤
θ

µ
(4)

and

AvgSBound(Ci) ≤
θ

η
. (5)

• Document-level: If a cluster is not pruned, then
when visiting such a cluster with a MaxScore
or another retrieval algorithm, a document d is
pruned if Bound(d) ≤ θ

η .

Figure 3(a) illustrates a cluster skipping index of
four clusters for handling query terms t1, t2, and
t3. This index is extended to include two maxi-
mum term weight segments per cluster for ASC
and these weights are marked in a different color
for different segments. Document term weights in
posting records are not shown. Assume that the
current top-k threshold θ is 9, Figure 3(b) lists the
cluster-level pruning decision by Anytime Rank-
ing without and with threshold overestimation and
by ASC. The derived bound information used for
making pruning decisions is also illustrated.

Extra online space cost for segmented max-
imum weights. The extra space cost in ASC is



to maintain non-zero maximum term weights for
multiple segments at each cluster in a sparse for-
mat. For example, Figure 3 shows four non-zero
maximum segment term weights at Cluster 1 are
accessed for the given query. To save space, we use
the quantized value. Our evaluation uses 1 byte for
each weight, which is sufficiently accurate to guide
pruning. For MS MARCO passages in our eval-
uation, the default configuration has 4096 clusters
and 8 segments per cluster. This results in about
550MB extra space. With that, the total cluster-
based inverted SPLADE index size increases from
about 5.6GB for MaxScore without clustering to
6.2GB for ASC. This 9% space overhead is still ac-
ceptable in practice. The extra space overhead for
Anytime Ranking is smaller because only cluster-
level maximum term weights are needed.

3.2 Formal Properties

With any integer 0 < k′ ≤ k, we call a retrieval al-
gorithm (µ, η)-approximate if 1) the average rank
score of any top k′ results produced by this algo-
rithm is competitive to that of rank-safe retrieval
within a factor of µ; and 2) the expected average
rank score of any top k′ results produced by this
algorithm is competitive to that of rank-safe re-
trieval within a factor of η. When choosing η = 1,
we call a (µ, η)-approximate retrieval algorithm to
be probabilistically safe. ASC satisfies the above
condition and Theorem 4 gives more details. The
default setting of ASC uses η = 1 in Section 4.
The theorems on properties of ASC are listed be-
low and Appendix A lists the proofs. We show
that Theorem 3 is also true for Anytime Ranking
with threshold overestimation and without early
termination and we denote it as Anytime-µ.

Theorem 1

BoundSum(Ci) ≥ MaxSBound(Ci)

≥ max
d∈Ci

RankScore(d).

The above result shows that Formula (2) provides
a tighter upperbound estimation than Formula (1)
as demonstrated by Figure 2.

In ASC, choosing a small µ value prunes clusters
more aggressively, and having the extra safeness
condition using the average segment bound with
η counteracts such pruning decisions. Given the
requirement µ ≤ η, we can choose η to be close to
1 or exactly 1 for being safer. When the average
segment bound is close to their maximum bound

Figure 4: Correlation between the tightness of
the estimated bound and the ratio of AvgSBound
and MaxSBound. As AvgSBound approaches
MaxSBound, the quality and tightness of the bound
increases, and the probability of pruning decreases.

in a cluster, this cluster may not be pruned by ASC.
This is characterized by the following property.

Theorem 2 Cluster-level pruning in ASC does not
occur to cluster Ci when one of the two following
conditions is true:

• MaxSBound(Ci) >
θ
µ

• MaxSBound(Ci) − AvgSBound(Ci) ≤(
1
µ − 1

η

)
θ.

The difference between the maximum and av-
erage segment bounds provides an approximate
indication of the estimated bound tightness. The
value of this heuristic is demonstrated in Fig-
ure 4, which shows the correlation between bound
tightness and the ratio of AvgSBound(Ci) to
MaxSBound(Ci) for all clusters. The data is
from the MS MARCO Passage dataset with 4096
clusters and 8 segments per cluster. Figure 4
shows that when this ratio approaches 1, the av-
erage bound tightness increases and its variation
decreases. By the above theorem, when the gap be-
tween MaxSBound(Ci) and AvgSBound(Ci)
is small (and thus their ratio is near 1), cluster-
level pruning will not occur. Therefore, ASC will
not prune clusters that already have high-quality
and tight bound estimates. Table 6 will further cor-
roborate the results of Theorem 2: that ASC should
not prune clusters when this gap is small.

Define Avg(x,A) as the average rank score
of the top-x results by algorithm A. Let integer
k′ ≤ k. The theorem below characterizes the ap-
proximate rank-safeness of pruning in ASC and
Anytime-µ.

Theorem 3 The average top-k′ rank score of
ASC and Anytime-µ without imposing a time



budget is the same as any rank-safe re-
trieval algorithm R within a factor of µ.
Namely Avg(k′,ASC) ≥ µAvg(k′, R), and
Avg(k′,Anytime-µ) ≥ µAvg(k′, R).

The theorem below characterizes the extra prob-
abilistic approximate rank-safeness of ASC.

Theorem 4 The average top-k′ rank score of ASC
achieves the expected value of any rank-safe re-
trieval algorithm R within a factor of η. Namely
E[Avg(k′,ASC)] ≥ ηE[Avg(k′, R)] where E[]
denotes the expected value.

The probabilistic rank-safeness approximation
of ASC relies upon a condition where each docu-
ment having an equal chance to be in any segment
within a cluster. That is true because our segmenta-
tion method is random uniform partitioning.

4 Evaluation

Datasets and metrics. We use the MS MARCO
Passage ranking dataset (Craswell et al., 2020) with
8.8 million English passages. We report mean re-
ciprocal rank (MRR@10) for the Dev set which
contains 6980 queries, and nDCG@10 for the
TREC deep learning (DL) 2019 and 2020 sets.
We also report recall, which is the percentage of
relevant-labeled results that appear in the final top-
k results. Retrieval depth k tested is 10 or 1000.
We also evaluate on BEIR (Thakur et al., 2021), a
collection of 13 publicly available English datasets
totaling 24.6 million documents. The size of each
dataset ranges from 3,633 to 5.4M documents.
Experimental setup. Documents are clustered
using k-means on dense vectors. Details, including
a comparison between a few alternatives such as
sparse vectors, are in Appendix B.

Sparse models tested include a version of
SPLADE (Formal et al., 2021, 2022), uni-
COIL (Lin and Ma, 2021; Gao et al., 2021), and
LexMAE (Shen et al., 2023). We primarily use
SPLADE to assess ASC because LexMAE, fol-
lowing dense models such as SimLM (Xiao et al.,
2022) and RetroMAE (Wang et al., 2023), uses
MS MARCO title annotations. This is considered
as non-standard (Lassance and Clinchant, 2023).
SPLADE does not use title annotations.

ASC’s implementation uses C++, extended from
Anytime Ranking code’s release based on the PISA
retrieval package (Mallia et al., 2019a). The index
is compressed with SIMD-BP128. MaxScore is
used to process queries because it is faster than
VBMW for long queries (Mallia et al., 2019b;

Qiao et al., 2023b) generated by SPLADE and
LexMAE. We applied an efficiency optimization to
both the ASC and Anytime Ranking code in extract-
ing cluster-based term maximum weights when
dealing with a large number of clusters. IOQP
uses the authors’ code release (Mackenzie et al.,
2022b). A comparison to other recent methods in
the NeurIPS Big-ANN Competition are presented
in Appendix D. All timing results are collected by
running as a single thread on a Linux server with
Intel i7-1260P and 64GB memory. Before tim-
ing queries, all compressed posting lists and meta-
data for tested queries are pre-loaded into mem-
ory, following the common practice. Our code
will be released under the Apache License 2.0 at
https://github.com/Qiaoyf96/ASC.

For all of our experiments on MS MARCO Dev
queries, we perform pairwise t-tests on the rele-
vance between ASC and corresponding baselines.
“†” is tagged when significant drop is observed from
MaxScore retrieval at 95% confidence level.
Baseline comparison on MS MARCO. Table 1
lists the overall comparison of ASC with two base-
lines using SPLADE model on the MS MARCO
Dev and TREC DL’19/20 test sets. Column “Loss”
is the percent difference of MRR@10 compared
to exact search. Recall@10 and Recall@1000 are
reported for retrieval depth k = 10 and 1000, re-
spectively. Retrieval mean response time (MRT)
and 99th percentile latency (P99) in parentheses are
reported in milliseconds. The column marked “C%”
is the percentage of clusters that are not pruned dur-
ing retrieval. For the original rank-safe MaxScore
without clustering, we have incorporated document
reordering (Mackenzie et al., 2021) to optimize its
index based on document similarity, which short-
ens its latency by about 10-15%.

Anytime Ranking is configured to use 512 clus-
ters with no early termination. ASC is configured
with 4096 clusters and 8 segments. Appendix C ex-
plains the above cluster configuration for Anytime
and ASC to deliver low latency under competitive
relevance. Rank-safe ASC uses µ = η = 1 and
rank-unsafe ASC uses η = 1 with µ = 0.9 for
k = 10 and µ = 0.5 for k = 1000. As shown
in Table 1, these choices yield a tiny MRR@10
loss ratio. For Anytime-µ with over-estimation,
we choose the same or higher µ value as ASC to
demonstrate ASC improves relevance while gain-
ing the speedup under such a setting.

Comparing the three rank-safe versions in Ta-
ble 1, ASC is about 2.9x faster than Anytime for

https://github.com/Qiaoyf96/ASC


Table 1: A comparison with baselines using SPLADE on MS MARCO passages. No time budget

MS MARCO Dev DL’19 DL’20
Methods C% MRR (Loss) Recall MRT (P99) Speedup nDCG (Recall) nDCG (Recall)

Retrieval depth k = 10
Exact Search
IOQP - 0.3966 0.6824 207 (461) 29x 0.7398 (.1764) 0.7340 (.2462)
MaxScore - 0.3966 0.6824 26.4 (116) 3.7x 0.7398 (.1764) 0.7340 (.2462)
Anytime Ranking 69.8% 0.3966 0.6824 20.7 (89.3) 2.9x 0.7398 (.1764) 0.7340 (.2462)
ASC 49.1% 0.3966 0.6824 7.19 (26.7) - 0.7398 (.1764) 0.7340 (.2462)
Approximate
IOQP-10% - 0.3782† (4.6%) 0.6541† 24.0 (52.2) 4.3x 0.7381 (.1781) 0.7047 (.2350)
Anytime-µ=0.9 62.7% 0.3815† (3.8%) 0.6111† 15.3 (61.1) 2.7x 0.7392 (.1775) 0.7126 (.2382)
ASC-µ=0.9, η=1 7.99% 0.3964 (0.05%) 0.6813 5.59 (18.7) - 0.7403 (.1764) 0.7338 (.2464)

Retrieval depth k = 1000
Exact Search
IOQP - 0.3966 0.9802 214 (465) 6.4x 0.7398 (.8207) 0.7340 (.8221)
MaxScore - 0.3966 0.9802 65.8 (209) 2.0x 0.7398 (.8207) 0.7340 (.8221)
Anytime Ranking 93.0% 0.3966 0.9802 50.1 (158) 1.5x 0.7398 (.8207) 0.7340 (.8221)
ASC 54.3% 0.3966 0.9802 33.5 (103) - 0.7398 (.8207) 0.7340 (.8221)
Approximate
IOQP-10% - 0.3782† (4.6%) 0.9746 24.4 (53.1) 1.5x 0.7381 (.8124) 0.7047 (.8081)
Anytime-µ = 0.7 88.9% 0.3963 (0.07%) 0.9696† 37.1 (127) 2.3x 0.7398 (.7881) 0.7340 (.7937)
ASC-µ=0.7, η=1 21.7% 0.3966 (0.0%) 0.9799 25.4 (78.8) 1.6x 0.7398 (.8188) 0.7340 (.8218)
ASC-µ=0.5, η=1 8.10% 0.3962 (0.1%) 0.9739 15.8 (48.2) - 0.7398 (.7977) 0.7355 (.7989)

k = 10, and 1.5x faster for k = 1000, because seg-
mentation offers a tighter cluster bound as shown
in Theorem 1. ASC is 29x faster than IOQP with
k = 10. Safe IOQP is substantially slower than
Anytime, which differs from the finding of (Mallia
et al., 2024), possibly because of the difference in
data clustering and SPLADE versions.

For approximate retrieval when k = 10, ASC
has 3.9% higher MRR@10, 11% higher recall, and
is 2.7x faster than Anytime with µ = 0.9. When
k = 1000, ASC is 2.3x faster than Anytime under
similar relevance. Even with µ being as low as 0.5,
ASC offers competitive relevance. This demon-
strates the importance of Theorem 4. For this rea-
son, ASC is configured to be probabilistically safe
with η = 1 while choosing µ value modestly below
1 for efficiency. For k = 10, there is a very small
MRR loss (≤ 0.1%) compared to the original re-
trieval, but ASC performs competitively while it is
up to 4.7x faster than the original MaxScore with-
out using clusters. Approximate IOQP is config-
ured to visit 10% of documents, which is a default
choice in (Mackenzie et al., 2022b). ASC outper-
forms IOQP-10% with 4.8% higher MRR@10 and
3.7% higher recall while ASC is 4.3x faster.

Table 2 compares latency in milliseconds and
Recall@10 of approximate retrieval under a dif-
ferent and fixed MRR@10 loss compared to rank-
safe retrieval with 0.3966 MRR@10 and 0.6824
Recall@10. Rows marked with “R@10” list Re-
call@10 of approximate search. To meet the rele-
vance budget under each fixed MRR loss ratio, we

Table 2: Performance at a fixed MRR@10 loss. k = 10

MRR Loss 10% 5% 2% 1% 0.5%
Anytime-µ 15ms (7.8x) 16 (5.9x) 17 (4.4x) 18 (3.9x) 19 (4.0x)

R@10: 0.5412 0.5921 0.6287 0.6570 0.6682
IOQP 12ms (6.3x) 22 (8.1x) 55 (14x) 90 (20x) 153 (33x)

R@10: 0.6271 0.6548 0.6741 0.6775 0.6782
ASC 1.9ms (−) 2.7 (−) 3.9 (−) 4.4 (−) 4.7 (−)

R@10: 0.5878 0.6315 0.6639 0.6707 0.6759
µ = 0.50 0.70 0.80 0.83 0.85
η = 0.95 0.95 1.00 1.00 1.00

vary µ for ASC and Anytime, and the percent of
documents visited for IOQP to minimize latency.
The configuration of µ and η for ASC is listed in
Table 2. The results show that when the MRR loss
is controlled within 1-2%, ASC is about 4x faster
than Anytime and is 13x to 33x faster than IOQP.

Choice of η for ASC. While η = 1 is recom-
mended for probabilistic safeness, setting η < 1 is
useful in some cases to obtain a shorter latency
when relevance loss budget allows. For exam-
ple, when MRR@10 loss is allowed to be 5%
or 10%, ASC uses η = 0.95 in Table 2. Other-
wise if η is kept as 1, ASC cannot significantly
reduce latency to take advantage of the lower rele-
vance requirement, even with a lower µ value. For
k = 1, 000 which is not shown in Table 2, set-
ting (µ = 0.3, η = 0.8) yields 0.3953 MRR@10
and 10.3ms latency while (µ = 0.3, η = 1)
yields 0.3960 MRR@10 and 15.2ms latency. Both
choices meet MRR@10 loss 0.5% budget, and
η = 0.8 is a faster choice. If we keep η = 1,
and drop µ to as low as 0.1, it still yields 0.3960
MRR@10 and the latency of 15.2ms.



Table 3: Retrieval latency at different retrieval depth k

k 10 50 100 200 1000
Safe pruning with MRR@10 0.3966 for MS MARCO passage Dev set

Anytime-µ 20.7ms (2.9x) 26.3 (2.1x) 31.3 (1.9x) 35.1 (1.7x) 50.1 (1.5x)
IOQP 207ms (29x) 208 (16x) 209 (13x) 210 (10x) 214 (6.4x)
ASC 7.19ms (−) 12.7 (−) 16.1 (−) 20.1 (−) 33.5 (−)

Unsafe pruning with 0.5% MRR@10 loss budget
Anytime-µ 19.0ms (4.0x) 24.2 (4.1x) 27.7 (4.4x) 30.5 (4.4x) 32.1 (3.1x)
IOQP 153ms (32x) 155 (26x) 158 (25x) 156 (22x) 161 (16x)
ASC 4.71ms (−) 5.92 (−) 6.23 (−) 6.96 (−) 10.3 (−)

Table 4: Other learned sparse retrieval models

uniCOIL LexMAE
Methods MRR (Recall) MRT MRR (Recall) MRT

Retrieval depth k = 10. No time budget
Exact Search
IOQP 0.352 (.617) 81 0.425 (.718) 163
MaxScore 0.352 (.617) 6.0 0.425 (.718) 47
Anytime 0.352 (.617) 5.0 0.425 (.718) 27
ASC 0.352 (.617) 1.8 0.425 (.718) 12
Approximate
IOQP-10% 0.320† (.568†) 11 0.405† (.693†) 18
Anytime-µ=0.9 0.345† (.585†) 4.2 0.413† (.654†) 22
ASC-µ=0.9, η=1 0.352 (.614) 1.4 0.425 (.718) 9.7

Retrieval depth k = 1000. No time budget
Exact Search
IOQP 0.352 (.958) 82 0.425 (.988) 165
MaxScore 0.352 (.958) 19 0.425 (.988) 94
Anytime 0.352 (.958) 14 0.425 (.988) 67
ASC 0.352 (.958) 8.8 0.425 (.988) 49
Approximate
IOQP-10% 0.320† (.937†) 12 0.405† (.985) 20
Anytime-µ=0.7 0.351 (.940†) 8.9 0.425 (.978) 46
ASC-µ=0.5, η=1 0.351 (.946) 4.0 0.425 (.980) 21

Impact of retrieval depth k. Table 3 with safe
pruning or unsafe pruning under 0.5% MRR loss
budget shows that ASC can deliver a fairly large
speedup under different retrieval depth k, espe-
cially under the unsafe pruning setting. When
k becomes smaller, ASC can often achieve more
speedup. For a large-scale search system with tens
of thousands of index partitions, the retrieval depth
for each partition tends to be small in practice for a
faster retrieval time, making ASC potentially more
useful.
Use of ASC in uniCOIL and LexMAE. Table 4
applies ASC to uniCOIL and LexMAE for MS
MARCO passage Dev set and shows MRR@10,
Recall@10 or @1000 (in Column “Recall”), and
latency (denoted as MRT in milliseconds). The
conclusions are similar as the ones obtained above
for SPLADE.
Zero-shot out-of-domain retrieval. Table 5 shows
average nDCG@10 and latency in milliseconds for
13 BEIR datasets. SPLADE training is only based
on MS MARCO passages. For smaller datasets,
the number of clusters is proportionally reduced
so that each cluster contains approximately 2000
documents, which is aligned with 4096 clusters
setup for MS MARCO. The number of segments

Table 5: Zero-shot performance with SPLADE on BEIR

MaxScore Anytime-µ =0.9 ASC
Dataset nDCG MRT nDCG MRT nDCG MRT

Retrieval depth k = 10

DBPedia 0.443 81.2 0.431 58.1 0.442 40.7
FiQA 0.358 3.64 0.356 2.49 0.358 1.86
NQ 0.555 44.9 0.545 39.8 0.549 18.2
HotpotQA 0.682 323 0.674 270 0.680 158
NFCorpus 0.352 0.17 0.350 0.15 0.352 0.15
T-COVID 0.719 5.20 0.673 2.48 0.719 2.23
Touche-2020 0.307 4.73 0.281 2.27 0.307 1.83
ArguAna 0.432 9.07 0.411 9.17 0.432 8.27
C-FEVER 0.243 895 0.242 735 0.243 555
FEVER 0.786 694 0.782 587 0.786 372
Quora 0.806 5.16 0.795 2.05 0.806 1.53
SCIDOCS 0.151 2.53 0.150 2.17 0.151 1.96
SciFact 0.676 2.54 0.673 2.45 0.676 2.31
Average 0.501 1.91x 0.490 1.35x 0.501 -

Retrieval depth k = 1000

Average 0.501 3.25x 0.498 1.95x 0.499 -

Table 6: K-means segmentation vs. random uniform

k=1000 K-means Random
µ, η MRR (Recall) T MRR (Recall) T
0.3, 1 0.393 (.939†) 9.92 0.396 (.972) 15.3
0.4, 1 0.393 (.942†) 10.5 0.396 (.972) 15.4
0.5, 1 0.395 (.959†) 13.8 0.396 (.974) 15.8
0.6, 1 0.397 (.977) 18.1 0.397 (.979) 17.2
0.7, 1 0.397 (.980) 24.4 0.397 (.980) 21.7
1, 1 0.397 (.980) 34.8 0.397 (.980) 33.5

Bound Tightness MaxSbound−AvgSBound
Actual

Random 0.55 0.49
K-means 0.53 0.69

is kept at 8. ASC has η = 1, and its µ = 0.9 for
k = 10 and µ = 0.5 for k = 1000. We use µ = 0.9
for Anytime Ranking without early termination.
LexMAE has slightly lower average nDCG@10
0.495, and is omitted due to the page limit.

ASC offers nDCG@10 similar as MaxScore
while being 1.91x faster for k = 10 and 3.25x
faster for k = 1000. Comparing with Any-
time, ASC is 1.35x faster and has 2.2% higher
nDCG@10 on average for k = 10, and it is 1.95x
faster while maintaining similar relevance scores
for k = 1000.
Segmentation choices. ASC uses random even
partitioning to segment term weights of each clus-
ter and satisfy the probabilistic safeness condition
that each document in a cluster has an equal chance
to appear in any segment. Another approach is
to use k-means sub-clustering based on document
similarity. The top portion of Table 6 shows ran-
dom uniform partitioning is more effective than
k-means when running SPLADE on MS MARCO
passages with 4098 clusters and 8 segments per
cluster. Random uniform partitioning offers equal
or better relevance in terms of MRR@10 and Re-



Table 7: Anytime vs. ASC (η=1) with time budgets

Model Setup MRR (Recall) MRT (P99)
Retrieval depth k = 10. Time budget 10ms

SPLADE Anytime-µ = 1 0.370† (.632†) 8.34 (10.3)
ASC-µ = 1 0.395 (.679) 5.14 (10.1)
Anytime-µ = 0.9 0.360† (.575†) 7.70 (10.2)
ASC-µ = 0.9 0.395 (.678) 4.21 (10.0)

LexMAE ASC-µ = 0.9 0.423 (.713) 5.14 (10.2)
Retrieval depth k = 1000. Time budget 20ms

SPLADE Anytime-µ = 1 0.364† (.865†) 19.1 (20.4)
ASC-µ = 1 0.395 (.973) 18.2 (20.1)
Anytime-µ = 0.9 0.363† (.864†) 19.1 (20.3)
ASC-µ = 0.7 0.395 (.973) 15.2 (20.0)

LexMAE ASC-µ = 0.7 0.423 (.974†) 16.9 (20.1)

call@1000, especially when µ is small. As µ af-
fects cluster-level pruning in ASC, random seg-
mentation results in a better prevention of incor-
rect aggressive pruning, although this can result
in less cluster-level pruning and a longer latency.
To explain the above result, the lower portion of
Table 6 shows the estimated bound tightness (ratio
of actual bound to MaxSBound), and average dif-
ference of MaxSBound and AvgSBound scaled
by the actual bound. Random uniform partition-
ing gives slightly better cluster bound estimation,
while its average difference of MaxSBound and
AvgSBound is much smaller than k-means sub-
clustering. Then, when µ is small, there are more
un-skipped clusters, following Theorem 2.

The above result also indicates cluster-level prun-
ing in ASC becomes safer due to its adaptiveness
to the gap between the maximum and average
segment bounds, which is consistent with Theo-
rem 2. The advantage of random uniform partition-
ing shown above corroborates with Theorem 4 and
demonstrates the usefulness of possessing proba-
bilistic approximate rank-safeness.

5 Compatibility with other speedup
techniques

Table 7 lists MRR@10 and Recall@1000 of com-
bining ASC with early termination technique of
Anytime Ranking (Mackenzie et al., 2021) under a
time budget on MS MARCO Dev set for SPLADE
mainly. Last row lists ASC performance with Lex-
MAE for each k value. 512 clusters are configured
for Anytime Ranking, and “4096 clusters*8 seg-
ments” are for ASC. Comparing to Table 1, there
is a small relevance degradation for ASC with time
budgets, but the 99th percentile time is improved
substantially by this combination. Under the same
time budget, this ASC/Anytime combination has

higher MRR@10 and Recall@1000 than Anytime
Ranking alone in both retrieval depths.

We also apply ASC with static index prun-
ing (Qiao et al., 2023a) for a version of SPLADE
used in Big-ANN competition as discussed in
Appendix D below. The exact search with safe
Anytime Ranking delivers 0.383 MRR@10 with
20.2ms with k = 10. ASC takes 3.8ms with 0.5%
MRR loss, and it only takes 0.81ms when follow-
ing the Big-ANN relevance budget (90.5% recall
to top-10 exact search results).

Term impact decomposition (Mackenzie et al.,
2022a) is an orthogonal optimization on posting
lists. Our preliminary test shows that it does not
work well with SPLADE as its posting clipping
and list splitting increase original SPLADE latency
from 66ms to 95ms and 110ms, respectively. Thus
our evaluation didn’t include this optimization.

6 Concluding Remarks

ASC is an (µ, η)-approximate control scheme for
dynamic threshold-driven pruning that aggressively
skips clusters while being probabilistically safe.
ASC can speed up retrieval applications that still
desire high relevance effectiveness. For example,
when MRR loss is constrained to under 1-2%, the
mean latency of ASC is about 4x faster than Any-
time Ranking and is 13x to 33x faster than IOQP
for MS MARCO Passage Dev set with k = 10.

Our evaluations with the MS MARCO and BEIR
datasets show that µ = 0.5 for k = 1000, and
µ = 0.9 for k = 10 are good choices with η = 1
to retain high relevance effectiveness. Our findings
recommend η = 1 for probabilistic safeness and
varying µ from 1 to 0.5 for a tradeoff between
efficiency and effectiveness. Setting η < 1 is useful
to obtain a shorter latency when relevance loss
budget allows.
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7 Limitations

Space overhead. There is a manageable space
overhead for storing cluster-wise segmented max-
imum weights. Increasing the number of clusters
for a given dataset is useful to reduce ASC latency
up to a point, but then the overhead of additional
clusters leads to diminishing returns.
Dense retrieval baselines and GPUs. This paper
does not compare ASC to dense retrieval baselines
because dense models represent a different cate-
gory of retrieval techniques. ASC achieves up to
0.4252 MRR@10 with LexMAE for MS MARCO
Dev, which is close to the highest number 0.4258
obtained in state-of-the-art BERT-based dense re-
trievers (Xiao et al., 2022; Wang et al., 2023; Liu
et al., 2023). The zero-shot performance of ASC
with SPLADE on BEIR performs better than these
dense models. The above dense model studies use
expensive GPUs to reach their full relevance ef-
fectiveness. Approximate nearest neighbor search
techniques of dense retrieval have been devel-
oped following IVF cluster search (Johnson et al.,
2019) and graph navigation with HNSW (Malkov
and Yashunin, 2020). But there is a significant
MRR@10 drop using these approximation tech-
niques.

Although GPUs are readily available, they are
expensive and more energy-intensive than CPUs.
For example, AWS EC2 charges one to two orders
of magnitude more for an advanced GPU instance
than a CPU instance with similar memory capacity.
Like other sparse retrieval studies, our evaluation
is conducted on CPU servers.
Code implementation choice and block-based
pruning. Our evaluation uses MaxScore instead
of VBMW because MaxScore was shown to be
faster for relatively longer queries (Mallia et al.,
2019b; Qiao et al., 2023b), which fits in the case of
SPLADE and LexMAE under the tested retrieval
depths. A previous study (Mallia et al., 2021b)
confirms live block filtering with MaxScore called
Range-MaxScore is a strong choice for such cases.
It can be interesting to examine the use of different
base retriever methods in different settings within
each cluster for ASC in the future.

Instead of the live block filtering code, ASC
implementation was extended from Anytime Rank-
ing’s code because of its features that support
dynamic cluster ordering and early termination.
ASC’s techniques can be applied to the framework
of contemporary BMP (Mallia et al., 2024) to im-

prove block max estimation and add a probabilistic
guarantee for its threshold-driven block pruning.
Alternatively, the techniques introduced in BMP,
such as partial block (cluster) sorting and hybrid
cluster structure with a forward index could also
improve our code implementation.
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A Proofs of Formal Properties
Proof of Theorem 1. Without loss of gener-

ality, assume in Cluster Ci, the maximum cluster
bound MaxSBound(Ci) is the same as the bound
of Segment Si,j . Then

MaxSBound(Ci) = Bi,j =
∑
t∈Q

max
d∈Si,j

wt,d

≤
∑
t∈Q

max
d∈Ci

wt,d = BoundSum(Ci).

For any document d, assume it appears in j-th
segment of Ci, then

RankScore(d) =
∑
t∈Q

wt,d ≤
∑
t∈Q

max
d∈Si,j

wt,d

= Bi,j ≤ MaxSBound(Ci).

■
Proof of Theorem 2. When a cluster Ci is not

pruned by ASC, that is because one of Inequalities
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(4) and (5) is false. When Inequality (4) is true but
Inequality (5) is false, we have

MaxSBound(Ci) ≤
θ

µ
and −AvgSBound(Ci) ≤ − θ

η
.

Add these two inequalities together, that proves
this theorem.

■
Proof of Theorem 3. Let L(x) be the top-k′

list of Algorithm x. To prove Avg(k′,ASC) ≥
µAvg(k′, R), we first remove any document that
appears in both L(ASC) and L(R) in both side of
the above inequality. Then, we only need to show:∑

d∈L(ASC),d ̸∈L(R)

RankScore(d)

≥ µ ·
∑

d∈L(R),d̸∈L(ASC)

RankScore(d).

For the right side of above inequality, if the
rank score of every document d in L(R) (but
d ̸∈ L(ASC)) does not exceed the lowest score
in L(ASC) divided by µ, then the above inequality
is true. There are two cases to prove this condition.

• Case 1. If d is not pruned by ASC, then d is
ranked below k′-th position in ASC.

• Case 2. Document d is pruned by ASC when
the top-k threshold is θASC. The final top-k
threshold when ASC finishes is ΘASC. If this
document d is pruned at the cluster level, then
RankScore(d) ≤ maxnj=1Bi,j ≤ θASC

µ ≤
ΘASC

µ . If it is pruned at the document level,

RankScore(d) ≤ θASC
η ≤ θASC

µ ≤ ΘASC
µ .

In both cases, RankScore(d) does not exceed the
lowest score in L(ASC) divided by µ.

Anytime-µ with no early termination behaves
in the same way as ASC with µ = η. Thus this
theorem is also true for Anytime-µ.

■
Proof of Theorem 4: Define Top(k′,ASC) as

the score of top k′-th ranked document produced
by ASC. ΘASC = Top(k,ASC).

The first part of this proof shows that for any
document d such that d ∈ L(R) and d ̸∈ L(ASC),
the following inequality is true:

E[RankScore(d)] ≤ Top(k′,ASC)

η
.

There are two cases that d ̸∈ L(ASC):

• Case 1. If d is not pruned by ASC, then
d is ranked below k′-th position in ASC.
RankScore(d) ≤ Top(k′,ASC).

• Case 2. If document d is pruned at the document
level by ASC when the top k-th rank score is
θASC,

RankScore(d) ≤
θASC

η
≤

Top(k,ASC)

η
≤

Top(k′,ASC)

η
.

If document d is pruned at the cluster level, notice
that ASC uses random uniform partitioning, and
thus this document has an equal chance being in
any segment within its cluster.

E[RankScore(d)] ≤
∑n

j=1 Bi,j

n
≤

θASC

η

≤
Top(k,ASC)

η
≤

Top(k′,ASC)

η
.

The second part of this proof shows the prob-
abilistic rank-safeness approximation inequality
based on the expected average top-k′ rank score.
Notice that list size |L(R)|= |L(ASC)|= k′, and
|L(R) − L(S) ∩ L(ASC)|= |L(ASC) − L(R) ∩
L(ASC)| where minus notation ‘−’ denotes the set
subtraction. Using the result of the first part, the
following inequality sequence is true:

E[
∑

d∈L(R)

RankScore(d)]

=E[
∑

d∈L(R)∩L(ASC)

RankScore(d)] + E[
∑

d∈L(R),d ̸∈L(ASC)

RankScore(d)]

≤E[
∑

d∈L(R)∩L(ASC)

RankScore(d)] + E[
∑

d∈L(R),d ̸∈L(ASC)

Top(k′,ASC)

η
]

≤E[
∑

d∈L(R)∩L(ASC)

RankScore(d)] + E[
∑

d∈L(ASC),d̸∈L(R)

RankScore(d)

η
]

≤E[
∑

d∈L(ASC)

RankScore(d)]
1

η
.

Thus E[Avg(k′,ASC)] ≥ ηE[Avg(k′, R)].
■

B Clustering Choices

In this section, we provide a comparison between
different clustering methods for ASC. We assume
that a learned sparse representation is produced
from a trained transformer encoder T . For exam-
ple, SPLADE (Formal et al., 2021, 2022) and Lex-
MAE (Shen et al., 2023) provide a trained BERT
transformer to encode a document and a query.
There are two approaches to represent documents
for clustering:

• K-means clustering of sparse vectors. Encoder
T is applied to each document in a data collec-
tion to produce a sparse weighted vector. Similar
as Anytime Ranking (Mackenzie et al., 2021),
we follow the approach of (Kulkarni and Callan,
2015; Kim et al., 2017) to apply the Lloyd’s k-
means clustering (Lloyd, 1982). Naively apply-
ing the k-means algorithm to the clustering of



learned sparse vectors presents a challenge owing
to their high dimensionality and a large number
of sparse vectors as the dataset size scales. For
example, each sparse SPLADE document vector
is of dimension 30,522 although most elements
are zero. Despite its efficacy and widespread use,
the k-means algorithm is known to deteriorate
when the dimensionality grows. Previous work
on sparse k-means has addressed that with feature
selection and dimension reduction (Zhang et al.,
2020; Dey et al., 2020). These studies explored
dataset sizes much smaller than our context and
with different applications. Thus our retrieval ap-
plication demands new considerations. Another
difficulty is a lack of efficient implementations
for sparse k-means in dealing with large datasets.
We address the above challenge below by tak-
ing advantage of the dense vector representation
produced by the transformer encoder as counter-
parts corresponding to their sparse vectors, with
a much smaller dimensionality.

• K-means clustering of dense vector counter-
parts. Assuming this trained transformer T is
BERT, we apply T to each document and pro-
duce a token embedding set {t1, t2, · · · , tL} and
a CLS token vector. Here ti is the BERT output
embedding of i-th token in this document and L
is the total number of tokens of this document.
Then, we have three ways to produce a dense
vector of each document for clustering.

– The CLS token vector.
– The element-wise maximum pooling of all

output token vectors. The i-th entry of this
dense vector is maxLj=1 ti,j where ti,j is the
i-th entry of j-th token embedding.

– The element-wise mean pooling of all out-
put token vectors. The i-th entry of this
dense vector is 1

L

∑L
j=1 ti,j where ti,j is the

i-th entry of j-th token embedding.

In addition to the above options, we have com-
pared the use of a dense representation based on
SimLM (Wang et al., 2023), a state-of-the-art
dense retrieval model.

Table 8 compares the performance of these five
vector representations for k-means clustering for
ASC. Results are shown with and without segmen-
tation in a safe mode (µ = η = 1) for SPLADE-
based sparse retrieval on MS MARCO with 4096
clusters and 8 segments per cluster. The column

Table 8: K-means clustering of MS MARCO passages
for safe ASC (µ = η = 1) with SPLADE sparse model

w/o segmt. w/ segmt.
Passage representation MRT %C MRT %C
Sparse-SPLADE 55.9 67% 35.6 53%
Dense-SPLADE-CLS 68.2 80% 41.6 64%
Dense-SPLADE-Avg 56.3 76% 37.3 58%
Dense-SPLADE-Max 54.1 68% 33.5 54%
Dense-SimLM-CLS 63.3 78% 40.1 60%

marked “%C” shows the percentage of clusters that
are not pruned during ASC retrieval, and MRT is
the mean response time in milliseconds. All vec-
tors are clustered using the FAISS library (Johnson
et al., 2019) which provides an efficient k-means
clustering implementation. Sparse vectors are clus-
tered based on a sample of 100,000 documents
because of their high dimensionality. Our results
show that maximum pooling of SPLADE-based
dense token vectors and direct clustering of the
sparse SPLADE vectors have a similar latency and
outperform the other three options. Considering the
accuracy and implementation challenge in cluster-
ing high-dimension sparse vectors, our evaluation
chooses max-pooled dense vectors derived from
the corresponding transformer model.

C Impact of varying #clusters for
Anytime Ranking and ASC

Figure 5 shows the latency of Anytime and ASC
for k = 10 with safe pruning and a similar trend
is seen for k = 1000. Table 9 shows their perfor-
mance with threshold over-estimation (µ = 0.9).
We present latency results for two versions of Any-
time Ranking. The original Anytime, with its la-
tency denoted as “Orig.”, becomes significantly
slower as the number of clusters increase. There-
fore, we added an optimization (denoted as “Opt.”)
in extracting cluster maximum weights as noted in
Section 4. The fastest configuration for Anytime
Ranking is with 512 clusters. Lowering the number
of clusters to a smaller number such as 256 or 128
increases Anytime’s latency because the maximum
cluster bound estimation becomes less accurate.

The above result shows that ASC performs bet-
ter with 4096 clusters when varying the number of
clusters from 128 to 4096 when k = 10. We do
not use a larger number of clusters because that
increases the space overhead for ASC. The find-
ing is similar for different choices of µ and for
k = 1000. Figure 6 examines the relation of Re-



Table 9: Performance of Anytime Ranking vs. ASC when varying #clusters for threshold overestimation. k = 10.

Cluster Anytime Ranking µ = 0.9 ASC µ = 0.9, η = 1
Count MRR (Re) Orig. Opt. MRR (Re) MRT

128 0.381 (0.604) 16.8 16.0 0.397 (0.682) 14.0
256 0.380 (0.607) 16.5 15.6 0.397 (0.682) 13.5
512 0.382 (0.611) 16.3 15.3 0.397 (0.682) 10.5

1024 0.380 (0.611) 20.0 17.8 0.396 (0.681) 7.41
2048 0.384 (0.615) 29.1 20.4 0.396 (0.681) 6.05
4096 0.381 (0.611) 53.2 24.1 0.396 (0.681) 5.59

Figure 5: The effect of the number of clusters on latency.
For Anytime (Orig.) and Anytime (Opt.), latency grows
significantly with clusters. ASC is the fastest method for
all clusters and exhibits the slowest growth in latency of
all methods.

call@1000 and latency for ASC when varying µ
under different numbers of clusters and segments.
Each curve represents a distinct number of clusters
and number of segments per cluster. Each curve
has 5 markers from left to right, denoting µ = 0.4,
0.5, 0.6, 0.7, and 1, respectively. A greater number
of clusters improves cluster bound estimation and
allows finer-grained pruning decisions, however
it also introduces additional overhead for visiting
each cluster, as discussed in Section 3. This figure
shows that the best configuration of ASC is 4096
clusters and 8 segments per cluster for all values of
µ.

D Comparison to NeurIPS ’23 Big-ANN
Methods

The sparse track of NeurIPS 2023 competition
for fast approximate nearest neighbor search (Bi-
ANN) (Big-ANN, 2024) uses 90% recall of top 10
result of the exact search baseline as the relevance
budget to select the fastest entry for MS MARCO
dev set. The SPLADE version used in the Big-
ANN competition has 0.383 MRR@10, which is
different than our version with 0.3966. Top en-
tries in Big-ANN can use any range of techniques,

Figure 6: Recall vs. latency of ASC (η=1) for varying
values of µ at retrieval depth k = 1000. For each fixed
number of clusters and segments, µ varies from 0.4, 0.5,
0.6, 0.7, to 1.

including unpublished optimizations or specializa-
tion. On the other hand, this paper is focused on a
single optimization topic solved with general tech-
niques, namely improving threshold-driven prun-
ing based on cluster rank score bounds. Thus the
purpose of this evaluation study is to demonstrate
how ASC can make cluster-based retrieval compet-
itive for the Big-ANN setting.

We compare ASC with the two best open-source
submissions: PyANNS and SHNSW. The Sparse
track measures relative recall against top 10 ex-
act search and throughput with eight simultaneous
threads. To follow a common practice, Table 10
reports reciprocal rank (MRR@10), Recall@10,
and single-thread latency (MRT) in milliseconds
on our machine. Table 10 also reports the recall
to top-10 exact search as “R2Exact”. The exact
search baseline is rank-safe Anytime Ranking with
512 clusters, the same configuration as Section 4.

The Big-ANN competition prioritizes efficiency
under a relatively loose approximation loss bud-
get, whereas ASC is designed to preserve pruning
safeness while reducing the latency. Thus we con-
figure all models to minimize latency for meeting
the following two loss budget settings.

• Preserve 90% of top-10 exact search. The best



Table 10: A comparison with BigANN methods using
SPLADE on MS MARCO Passage Ranking

Methods MRR(Recall) R2Exact MRT
Preserve 90% of top-10 exact search

Exact search 0.383 (0.670) 100% 20.2
SHNSW 0.339 (0.601) 90.0% 0.87
PyANNS 0.110 (0.603) 90.3% 0.48
ASC 0.342 (0.604) 90.5% 0.81

Preserve 99% of top-10 exact search
Exact search 0.383 (0.670) 100% 20.2
SHNSW 0.379 (0.665) 99.1% 19.9
PyANNS 0.122 (0.665) 99.1% 15.6
ASC 0.381 (0.667) 99.5% 3.80

performing parameters were selected from the
submitted configurations. For PyANNS qdrop =
0.1 and ef = 60 and for SHNSW ef = 52. For
ASC, we use 512 clusters with 16 segments each,
µ = 0.85, η = 1 after applying static pruning.

• Preserve 99% of top-10 exact search. We select
the best performing configuration for PyANNS
with qdrop = 0.0 and ef = 2000 and for
SHNSW with ef = 2000. For ASC, we use 4096
clusters with 8 segments each, µ = 0.9, η = 1.

Table 10 shows that ASC is 4.1x to 5.2x faster
than PyANNS and SHNSW respectively for the
99% setting while having better MRR@10. Notice-
ably PyANNS suffers 68% MRR@10 loss. For the
90% setting, ASC is 7% faster and has 0.9% higher
MRR@10 than SHNSW. Even though PyANNS
is faster than ASC, its MRR@10 loss is over 71%,
which is huge.

The above result shows that the competition met-
ric for Big-ANN drives a different optimization
tradeoff compared to our paper. This is because
our paper prioritizes MRR@10 competitiveness of
approximate retrieval with a much tighter relevance
loss budget before considering latency reduction
gains. Configurations of ASC with unsafe prun-
ing listed in Table 1 of Section 4 are within a 0.1%
MRR@10 loss budget for Dev set. Thus while ASC
makes a cluster-based retriever more competitive
in the Big-ANN tradeoff setting, ASC is designed
to speed up retrieval applications that desire high
relevance effectiveness.
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