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ABSTRACT
The previous two-phase method for searching versioned doc-
uments seeks a cost tradeoff by using non-positional infor-
mation to rank document versions first. The second phase
then re-ranks top document versions using positional infor-
mation with fragment-based index compression. This paper
proposes an alternative approach that uses cluster-based re-
trieval to quickly narrow the search scope guided by ver-
sion representatives at Phase 1 and develops a hybrid index
structure with adaptive runtime data traversal to speed up
Phase 2 search. The hybrid scheme exploits the advantages
of forward index and inverted index based on the term char-
acteristics to minimize the time in extracting positional and
other feature information during runtime search. This paper
compares several indexing and data traversal options with
different time and space tradeoffs and describes evaluation
results to demonstrate their effectiveness. The experiment
results show that the proposed scheme can be up-to about
4x as fast as the previous work on solid state drives while
retaining good relevance.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords
Versioned data, positional inverted index, query processing,
search in document archives

1. INTRODUCTION
Organizations and companies archive many versions of

digital data such as web pages, internal emails, source code,
test data, and multimedia documents. Such data is critical
for internal investigation, regulatory compliance, and elec-
tronic discovery [15]. It is not uncommon for many busi-
nesses to retain archived collections for 10 to 15 years and
in some industries the retention periods may be as long as
100 years or more [16]. A long period of data retention im-
plies many versions may have to be maintained. The size
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growth of an archival dataset also becomes rapid with ad-
vancements in cloud computing, content authoring, media
sharing, and low-cost computer devices. The previous work
on versioned data has studied the compression algorithms to
identify shared data fragments among different versions [43].
Even though the index space for a versioned data collection
can be compressed dramatically through fragmentation and
deduplication, it is still time consuming to search the full
index structure because a search procedure still has to deal
with a large number of documents with many versions. A
two-phase approach [22, 33] has been proposed to find top
results first using a non-positional index and then rerank
the selected top results with a positional index. Still there
is a large number of versions to go through in Phase 1 even
without a positional index.

This paper is focused on processing conjunctive keyword
queries on versioned datasets and our key idea is to ex-
tend the concept of cluster-based retrieval [1, 28, 30, 40] for
representative-guided two-phase search and develop a per-
cluster hybrid index to localize data access at Phase 2. Us-
ing representatives of document versions with full positional
information reduces the number of top clusters needed to
retain a good relevancy. The tradeoff is that Phase 2 re-
quires memory caching of index or the use of solid state
drives (SSD). To speedup Phase 2 search, we develop hy-
brid per-cluster indexing with adaptive traversal of forward
and inverted structure. Our evaluation shows that the pro-
posed scheme is up-to about 4x as fast as the two-phase
approach [22] when the search index is available from mem-
ory or from an SSD.

The rest of this paper is organized as follows. Next, we
describe the background information and related work. Sec-
tion 3 discusses design considerations in adopting cluster-
based retrieval for searching versioned documents with rep-
resentative guidance. Section 4 discusses the hybrid index-
ing and search options for fast Phase 2 query processing.
Section 5 presents our experimental results on three real
datasets which shows the accuracy and efficiency of the pro-
posed techniques. Finally, Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
Search index can contain positional and non-positional in-

formation. The non-positional information indicates if a text
word appears in a document or not while the positional in-
formation further captures the location of text words ap-
peared in a document. The use of positional information
is critical when query relevancy is sensitive to the proxim-
ity of query words matched in a document, but it incurs
significant search cost. Non-positional indexing for search-



ing versioned data is studied in [3, 8, 9, 11, 23, 24, 25].
Numbers in the index are compressed further [2, 35, 41, 45].
One approach for the versioned compact index by Broder et
al. [9] considers content sharing patterns among versioned
documents with a tree structure and this work is further ex-
tended by Herscovici et al. [25] based on multiple sequence
alignment. Another approach by Claude et al. is based
on run-length, Lempel-Ziv or grammar-based compression
with self-indexing [11] and the grammar-based compression
such as re-pairing is also used for the document listing prob-
lem which searches substrings or phrases in versioned docu-
ments [12, 18, 20].

Positional versioned data indexing is studied in [43, 11,
22]. The work of Zhang and Suel [43] uses the content-
dependent partitioning method such as Winnowing [34] and
2MIN [38] to divide a versioned document into fragments
and then each unique fragment after duplicate detection
is only indexed once. The above partitioning technique
is related to landmark-based indexing proposed by Lim et
al. [29] for efficient index update when document content is
changed. We adopt the fragment-based redundant content
compression [43, 22] because fragments explicitly capture
positional information and also because the work by He et
al. [22] shows that it has a higher compression ratio than
that of [11]. Grammar-based compression techniques [11,
20, 18, 12] have been used for phrase queries and we are
more interested in exploiting more general positional infor-
mation. It is possible to adopt some of such techniques in
version cluster index compression and this can be consid-
ered in the future work. While the tree-based compression
or sequence alignment technique for content sharing [9, 25]
does not address the positional information, some of their
ideas are leveraged in our work for computing the posting
intersection within each document version cluster.

We illustrate the fragment concept in more details as fol-
lows. Once a page is represented by a set of fragments in-
stead of terms directly, the inverted index contains frag-
ments in its compressed data layer. The posting for a term
is a set of fragments instead of a page list and there is an-
other data structure that maps a fragment to a set of page
IDs that use this fragment. Noted that the above index
structure can be augmented with term frequency informa-
tion. Figure 1(a) is an example of the term-to-fragment
index, following the compression scheme in [43, 22]. Each
document version is divided into a set of fragments. The
inverted index shows a list of fragment IDs that contain a
term represented by a term ID. In this example, term “t1” is
in fragments f1, f3, and others. Figure 1(b) shows an exam-
ple of the fragment-to-version reuse table which is the list of
page IDs that use this fragment. In this example, fragment
f1 is used by document versions v1, v7, and so on.

The above compression for versioned data does make in-
verted indices more complex and its data layout increases
the cost of data traversal during document matching. In
[43], the search algorithm first identifies a set of fragments
that contain a query term and then uses the fragment-page
reuse table to locate versions containing each term and the
offset of each occurrence within the versions. The inter-
section for processing multiple conjunctive query words is
arranged accordingly and those version pages which con-
tain all the query terms are scored and ranked. The ad-
vantage of using the compact page-fragment-term structure
is a substantially smaller index compared to the standard
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Figure 1: (a) Term-fragment inverted index. (b) Fragment-
version reuse table that lists versions sharing each fragment.

document-term inverted index. On the other hand, the in-
tersection of multiple postings takes more resources by going
through the term-fragment-page mapping. Searching with
this fragment-driven approach is still expensive.

The work by He and Suel [22] extends the fragment-guided
two-phrase search based on [33, 43]. Phase 1 uses non-
position index while Phase 2 contains detailed position infor-
mation. Runtime query processing searches non-positional
inverted index first to retrieve the top K results and then
re-rank these top K results by accessing the full positional
index of these versions. The above two-phase search is mo-
tivated by the earlier research on cluster-based retrieval [1,
40, 30] for non-versioned documents. Using a non-positional
index at Phase 1 is also motivated by relevancy studies [5, 6]
and the argument is that having a sufficiently large number
of top K at Phase 1 without positional information can still
deliver a good relevancy. Still there is a large number of
versions to go through even without positional index.

Document ranking using cluster-based retrieval and lan-
guage models is studied by Liu and Croft [30], and cluster
ranking is addressed by Kurland and Krikon [28]. Index
optimization for cluster-based retrieval for traditional disk
storage is studied in Altingovde et al. [1]. We revisit the
cluster-based retrieval techniques as the storage seek over-
head of random access has been reduced significantly with
today’s SSDs. The recent work for searching non-versioned
data in Bai et al. [7] considers the use of flash-memory drives
to store the per-document forward index. We exploit adap-
tive use of hybrid cluster-specific index structure.

3. CLUSTER-BASED RETRIEVAL WITH
REPRESENTATIVES

3.1 Design Considerations
Our objective is to develop a faster search scheme with

much faster query processing time, especially when there is
a large number of versions. Our design considerations are
discussed as follows. 1) Since versions of documents have
highly repetitive content, most likely there exists a version
or a composed version that could capture the majority of
text features for many versions of each document. Our work
is motivated by the cluster-based retrieval [40, 30, 28, 1]
which was proposed to rank non-versioned data by exploit-
ing document similarity in clustered results. For versioned
datasets, exploiting document similarity can be more impor-
tant to reduce search time because of high similarity among
versions of documents. Thus we adopt the concept of the
cluster-based retrieval and consider versions of a document
as a group. We compose a representative which captures
positional and non-positional information for each version



cluster to facilitate cluster ranking. A phased search can
start with a set of representatives instead of the entire doc-
ument collection. Since the number of representatives is
modest after removing the versioning effect, it is not neces-
sary to avoid positional information in Phase 1 index and
save index space cost.

2) There is a storage access cost to retrieve cluster-specific
information for each selected cluster at Phase 2. For non-
versioned data, the work in [1] studies a per-term cluster
posting so that the number of disk seeks is controlled as the
number of query words. We can extend this work to build
per-term index structure for versioned documents, but the
repetition of cluster information from one term to another
becomes extremely large. Consider the SSD storage with
low seek time (e.g. 0.1 ms) is getting popular, we can afford
to access a modest number of clusters dynamically.

3) Fragment-based index compresses versioned data signif-
icantly while runtime index traversal becomes slow in order
to fetch positional information access during Phase 2. This
gives opportunities for optimization and we will present a
hybrid indexing solution that combines the strength of for-
ward and inverted index.

The two-phase query processing workflow is depicted in
Figure 2. The first phase is going through the representative
index and retrieving the top k representatives. The second
phase is searching on the related index clusters and aggre-
gating the matched results from these clusters. Since each
document has many versions, to ensure diversified results,
we restrict the number of versions shown for each document
in the final result list and a user can select a document and
view more versions of the same document if interested.

For final result ranking, we follow the previous work in
text ranking with proximity (e.g. [10, 27, 36, 37, 44]). Our
study focuses on the construction of index that can provide
basic ranking features which can be used to compose scores
for these ranking schemes.

3.2 Cluster Representatives
To aid the top k ranking of clusters at Phase 1, we com-

pose a representative for each cluster to provide essential
ranking features. The representative for each version group
is a superdocument that is artificially composed from a spe-
cific version of a document. Our objective here is to create
a superdocument that includes terms that appear in all ver-
sions of a document while capturing the majority of distance
relationship among these terms. The position information of
a representative superdocument is built based on the longest
version. More specifically, let si be the super document for
document di with m versions. Denote these versions as vi,1,
vi,2 ... vi,m. Let vi,l be the longest version for di. Let T (si)
be the set of terms included in super document si. Let
Pos(t, si) be a position information set for term t in T (si).
The index for representatives with the longest version is de-
fined as

t ∈ T (si) if ∃j, 1 ≤ j ≤ m and t ∈ T (vi,j).

Pos(t, si) =

{
Pos(t, vi,l) if t ∈ T (vi,l)
∞ if t ∈ T (si)− T (vi,l).

Namely for the extra terms in set “T (si) − T (vi,l)” added
to the superdocument we will treat the appearance of these
terms in an unknown position with the∞ offset value. In the
ranking process for document retrieval, a position with the
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Figure 2: Representative-guided search workflow for query
processing

∞ value will not contribute to the position related weight
in the final score aggregation. We can also consider other
options to form a superdocument, for example, based on
the latest version. Since a superdocument contains terms
from all members of the group, there may be false positives
introduced during Phase 1 keyword matching.

During offline data processing, each document version is
divided into fragments using a content partitioning algo-
rithm called TTTD (Two Thresholds Two divisors) based
on the work of [17, 31], which is a similar but faster method
comparing the ones used in [43, 22]. Since content redun-
dancy among representatives is modest or less significant,
we can use the traditional index structure for representatives
without using fragments for simplicity and efficiency. Note
that the meta information for each version of a document
also contains a timestamp. The time data will be useful for
user queries containing temporal constraints. The offline in-
dex may also be partitioned based on a coarse-grained time
interval to optimize the index search if that matches the
users’ query pattern. Studies on versioned data search with
a time range are in [8, 21, 39]. This paper focuses on con-
junctive query processing and the time range can be added
as a filter in the search process.

4. HYBRID PER-CLUSTER INDEXING AND
TRAVERSAL

Phase 2 query processing needs to identify document ver-
sions from selected clusters that really match required key-
words, and compute a ranking score. It would be more ex-
pensive to compute scores for all versions and then filter
out those that do not contain all conjunctive keywords. We
discuss how to gather basic feature data from the index for
intersection and scoring below. The basic feature data in-
cludes the positional information of each term in a version
and frequency information can be derived from this process
if it is not explicitly stored.

As we adopt the fragment-based compression in the per-
cluster index with the positional information, one option is
that an intersection algorithm uses the term-fragment list
and looks up a fragment-version reuse table dynamically to
determine if all conjunctive query words included in an ver-
sion. From our experiments, we find the dynamic conversion
is very time-consuming. It is much faster to construct the
term-version posting first before performing the intersection
operation and how to optimize the traversal of index data
structure is the key to accomplish a low search time.



4.1 Indexing and Search Options for Phase 2
We discuss two indexing options first with different time

and space tradeoffs in considering the traversal of cluster-
specific inverted index or forward index and then design a
hybrid option.

• Option A: Each posting list of a term in a version clus-
ter index is composed of fragments and the positions
of this term in each fragment. The runtime search
process extracts this list from the term-fragment in-
dex and traverses a per-cluster fragment-version reuse
table to reconstruct a term-version posting with posi-
tions for each term. This derived term-version posting
includes the positional and frequency information and
after that, a multi-keyword intersection is conducted
using such postings.

• Option B: Compared to Option A, this option adds
the extra storage space overhead to explicitly store
the term-version posting of each term, and a version-
fragment forward index, but it does not need to main-
tain the local fragment-version reuse table. As the
version posting of each term without positional infor-
mation is available in advance, the intersection of term
postings can be conducted quickly first without a need
to dynamically re-construct such postings. Once a set
of matched versions is derived through the intersec-
tion, the query-time process derives positional infor-
mation by finding all fragments included in these ver-
sions through the forward index, and then by using a
binary search on a term-fragment posting to extract
the positional information of each term at each docu-
ment version.

For example, given query “Marine Science”, for each
version cluster derived from Phase 1, we directly use
the term-version postings of “Marine” and “Science” to
conduct an intersection. Assume v1 and v2 contain
both terms, then we use the version-fragment forward
index to identify possible fragments and their positions
in v1 and v2 that may contain each term. Finally a bi-
nary search using the term-fragment postings of “‘Ma-
rine” and “Science” identifies the text positions in real
fragments that truly contain these two words.

A detailed discussion of data structure choices of above
two options is in Section 4.3 summarized in Table 1. There
is a time and space tradeoff between Option A and Option
B. Option B can be faster than Option A in many cases
while it does use slightly more space. On the other hand,
Option A can outperform Option B some time, for example,
queries using rare terms. We model the time cost of Options
A and B as follows.

T imeCostA = k · (Γ +

q∑
i=1

fi · µi · ρi · τ + Π), and

T imeCostB = k · (Γ + Π +

q∑
i=1

m · γ · (log(fi) + ρi) · τ)

where k is the number of top clusters selected by Phase 1; q
is the number of query terms; fi is the number of fragments
for term ti’s posting at a cluster; m is the number of matched
document versions after query intersection; Γ is the average

Figure 3: An example of data traversal in Option C that
selects the Option A or Option B approach for each query
word at each cluster.

cost of loading a cluster index to memory from a fast storage;
Π is the average cost of posting intersection for conjunctive
keywords; µi is the average number of document versions
using a fragment that contains term ti; ρi is the average
number of positions of term ti in one fragment; γ is the
average number of fragments included in one version. τ is
the average memory access time.

The index data for each cluster is organized separately
and the runtime system loads the data k times for the se-
lected top k clusters from a fast solid state drive. For our
tested applications, the data size for each cluster to be load
is less than 5KB and the per-cluster index I/O time Γ is
about 0.28 milliseconds or less using SSDs. The overhead is
not overwhelming when fetching the index data for top few
hundred clusters. Π represents the cost of intersection and
we discuss this part in next subsection.

From the cost model of options A and B, one can infer that
if a query term ti is rare, and fi is very small, this case favors
the use of Option A. On the other hand, if ti is a popular
word, and fi is very large, this case favors Option B. We are
devising Option C that compares the relative cost ratio of
Options A and B for extracting positional information and
adaptively select one of them based on the characteristics of
each term ti searched in each cluster. The query-time work
flow of Option C is summarized in Algorithm 1.

Figure 3 illustrates an example of Option C in processing
the query “Marine Science”. First, the intersection finds
v1 and v2 contain “Marine” and “Science”. For keyword
“Marine”, the threshold condition leads to the use of Option
A traversal. From the fragment posting of “Marine”, a list
of fragments are found and they correspond to versions v1,
v2, v5 and so on. Only v1 and v2 are acceptable from the
intersection results, then the position at v1 is computed as
3 and the position at v2 is computed as 78+12 which is
90. For keyword “Science”, a different path is taken: from
version-fragment mapping, v1 contains a list of fragments,
such as f1 and f2. By doing a binary search on the Term-
frag list of “Science”, we know in version v1 only f1 contains



1 Load the cluster index and accumulate statistics.
2 Perform the intersection of version postings.
3 for each query word ti do
4 If fi · µi · ρi ≤ m · γ · (log(fi) + ρi),
5 Use the term-fragment posting of ti to get

fragments and term positions within fragments.
6 Convert into term positions within all versions

by accessing the fragment reuse table.
7 Else
8 If needed, set L as a list of fragments for all

matched versions.
9 Search ti’s fragment posting to find term

positions for the fragments in L.
10 Derive term positions within matched versions.

11 end

Algorithm 1: Option C that extracts position and
other meta information of the matched versions
within each cluster.

“Science” and position 4 is derived at version v1. We do the
same procedure with v2 and position 4 is derived at version
v2.

It should be noted that Option C’s decision path is cluster
dependent. Namely this method selects Option A or B based
on the difference of fi ·µi ·ρi and ·m ·γ(log(fi)+ρi) for each
cluster. Thus for the same query word, one cluster can make
a selection different from another cluster. The time cost of
Option C can be modeled as

k · (Γ + Π +

q∑
i=1

min(fi · µi · ρi, m · γ(log(fi) + ρi)) · τ)

which is usually smaller than that of Option A or Option B.

4.2 Term-version Posting Intersection
Term-version posting intersection without position infor-

mation is used in Options B and C and we can leverage
the ideas of the work in [9, 25]. When the number of ver-
sions is modest for each version cluster, the intersection to
identify versions of a document containing all keywords can
be extremely fast by representing the posting using a bit
operation [13]. For a large number of versions, the intersec-
tion with bit operations is less effective. Since versions of a
document tend to be similar, when a word appears in one
version, it appears in another version with a good proba-
bility unless this word is added to a version and is deleted
shortly after a few versions. With this data characteristic in
mind, a long bit vector can be represented succinctly by a
small set of intervals. Each interval represents consecutive
version numbers that contain this keyword.

When each version posting is represented by a set of in-
tervals, the intersection algorithm of posting intervals from
multiple words can be conducted by modifying the inte-
ger set intersection algorithm by Culpepper and Moffat [13]
with a change in Golomb search to accommodate the inter-
val boundary comparison. For interval list intersection of
two words, assume one word has n1 non-overlapping inter-
vals and anther word has n2 non-overlapping intervals where
n1 < n2. The maximum number of new intervals produced
as the result of intersection is n1 + n2 − 1. The time cost
of this intersection is O(n1 log n1+n2−1

n1
). For q word inter-

section, the corresponding bit-vectors have n1, · · ·nq inter-

vals with n1 ≤ · · · ≤ nq. The total number of subinter-
vals produced can be high, but less than H where H =
min(V,

∑q
i=1 ni−1) and V is the total number of document

versions in a cluster. The total time cost is bounded by
Π = O((q − 1)H log H

n1
). Because n1, n2, · · · , nq tend to be

small in a cluster index, the time cost Π is not significant.
Note that the hashing-based intersection [14] does not work
well as the intersection of two intervals requires an inequal-
ity comparison of interval boundary values. Skip-based syn-
chronization points [13] may be used with extra space while
adding them has not given a visible improvement for this
problem in our experiments.

4.3 Index Storage Layout and Cost
We discuss the data layout for the cluster specific index

structures used in the above three options, and assess the
space cost difference in an approximated manner. The se-
quence of numbers used in each data structure is further
compressed by storing their delta gaps and using one of
number compression methods with fast query-time decom-
pression such as var-Byte, Simple-9, PforDelta, and Opt-
PFD [35, 45, 42, 41]. Through experimentations, we find
that a combination of Simple-9 [2] and var-Byte gives a com-
petitive compression performance in our context.

We estimate the storage need of each index option ap-
proximately before applying the aforementioned number se-
quence compression. This gives a rough space assessment
assuming the number compression brings is at a similar level
of space reduction proportionally. Since small integer values
typically use less space after number compression, and to im-
prove the accuracy of the space cost estimation, we associate
the integer size as a coefficient. Document IDs and word IDs
need a 4-byte integers in general, we assume that the ver-
sion numbers of each document and position numbers need
integers with 1 to 2 bytes. Also we perform the fragment
ID localization under each cluster so that local fragment IDs
may be ranged with 2 bytes or less.

We will use the following additional symbols in addition
to ones used in time cost analysis. W: the number of distinct
words at a cluster. R: the number of fragments at a cluster.
V: the version number at a cluster. µ: the average num-
ber of versions using a fragment at cluster. ψ: the average
number of fragments per term at a cluster. β: the average
size of the posting bitvector of a term discussed below.

Term-to-version posting bitvectors: The extra term-
to-version posting for Options B and C records version IDs
that contain a term without positional information. When
V is not too large, an internal bit vector representation is
appropriate. When V becomes modestly large, we consider
a hybrid compression as follows. Since versions of a doc-
ument are similar, either many versions shared the same
words or they have little in common for other words used
in the cluster. The characteristic of a posting bit vector for
our version dataset is that each vector either contains lots
of 1’s or lots of 0’s. We can either use a few intervals to
represent a bit vector or follow a hierarchical compression
scheme from [19]. The root of a tree structure in [19] can
use bit value 1 to represent a large consecutive number of
1’s when 1 is dominating a bit vector. Otherwise the root
uses 0 to represent a large consecutive number of 0’s. The
space for bit vectors of W terms is β ·W .

Term-to-fragment posting: This posting contains a
fragment list and term positions at each fragment. Because



most of terms appear in a fragment once, we follow the idea
from [43, 22] to store a sequence of fragment and position
pairs. The sequence of numbers for each entry in this index
is: (term ID, meta information, fragment ID, position, frag-
ment ID, position, · · · ). The meta information represents
the number of pairs and other control flags. The size of
term-to-fragment index is (5 + 4ψ) ·W .

Local fragment-to-version reuse table: Following the
same strategy for a term-to-fragment posting, we record the
number of version and position pairs in the sequence: (frag-
ment ID, meta information, version ID, position, version ID,
position, . . . ). Total size is (3 + 4µ) ·R.

Version-to-fragment mapping: Similarly, the number
sequence of an entry in this mapping is: (version ID, meta
information, fragment ID, position, fragment ID, position,
· · · ). The total size of the forward index is (3 + 4γ) · V .

Considering the total number of fragment occurrences in a
local reuse table or in a forward mapping index across all the
document versions remains a constant in a cluster, we can
show that µR = γV . Thus, the version-fragment mapping
and fragment-version mapping have very similar size.

Following data structure choices used in each option, the
total space cost of each option for each cluster before number
compression is estimated as:

SpaceCostA ≈ ((5 + 4ψ)W + 3R+ 4γV ),

SpaceCostB ≈ ((β + 5 + 4ψ)W + 3V + 4γV ),

SpaceCostC ≈ ((β + 5 + 4ψ)W + 3R+ 3V + 8γV ).

There is some additional space need for meta information
such as version document length, which is less significant.
The difference ratio between Options A and B is approxi-
mately

βW + 3V − 3R

(5 + 4ψ)W + 3V + 4γV
.

The difference ratio between Options B and C is approxi-
mately

4γV + 3R

(β + 5 + 4ψ)W + 3R+ 4V + 8γV
.

Note that R << γV assuming high redundancy among ver-
sions of the same document. From the experiment data we
have tested, ψ ≈ 2 and γ is in between 13 and 20. When
V << W , β ≈ 3 and the difference between A and B is
about β

5+4ψ
which is 23% and the difference between B and

C is small. When V >> W , the difference between A and B
is small and the difference between B and C is close to 50%.

Table 1 summaries the data structure choices in three op-
tions. Option C is faster than Option A or Option B while
incurring a modest increase in storage cost.

Per-cluster Option Option Option
data structure A B C

Posting bitvectors no yes yes
Term-to-frag. index yes yes yes

Frag.-to-version reuse table yes no yes
Version-to-frag. mapping no yes yes

Table 1: Data structure choices for three options.

How much does storage space overhead increase by build-
ing separate index for each cluster? We compare space cost

difference between Option C and a corresponding global in-
dex with no cluster separation. Since there are full or par-
tial duplicates among documents, the separation of index
by clusters has a space disadvantage that some of term IDs
appear redundantly in the local term-to-fragment postings.
Some of fragment IDs also appear redundantly in both term-
to-fragment postings and the local reuse tables. On the
other hand, the fragment IDs after localization and version
IDs in a cluster index uses less number of bytes compared to
a global index and we assume a 1:2 ratio for fragment IDs,
version IDs but still 1:1 ratio for positions. The global index
space is modeled

SpaceCostglobal ≈ βWn+5M+6δψWn+(6δR+6V+12γV )n

where n is the number of documents; M is the number of
distinct words globally; δ is the ratio of fragments which are
not shared among documents. In our test datasets, M ≈
0.05nW and δ is between 0.7 and 1. V , W , and R have
the same meaning as before, except it is an average number
per cluster. Thus the space difference ratio between global
index and option C is

[5(1− M
nW

) + (4− 6δ)ψ] ·W + (3− 6δ)R− 3V − 4γV

(β + 5 + 4ψ)W + 3R+ 3V + 8γV
.

When V >> W , the difference ratio is about −3−4γ
3+8γ

which

is close to −50%. Namely the global index is about 50%

larger. When V << W , the difference is about 5+(4−6δ)ψ
β+5+4ψ

and thus the global index is up-to 28.8% smaller.

5. EVALUATIONS

5.1 Settings
Our evaluation objective is 1) to demonstrate the bene-

fits of searching versioned data with cluster-based retrieval
in terms of query search time difference, 2) to compare the
index options in building the Phase 2 index in terms of time
and space cost, 3) to assess the impact of relevance for us-
ing a core representative index with positional information.
In this context, we study the impact of using different rep-
resentatives. We have developed a prototype to implement
the proposed approach with C++. Code is compiled with
G++ using optimization flag -O1. Experiments are con-
ducted on a Linux CentOS 6.6 server with 8 cores of 3.1GHz
AMD Bulldozer FX8120, 16GB memory, Kingston HyperX
3K 240GB SSD and a 1TB Western Digital Caviar Black
hard disk drive (HDD) with 7200 RPM. All experiments
store the index data in the SSD except Table 3 which com-
pares time performance when the search index is stored in
HDD and in SSD.

Since there are no standard benchmarks for versioned
search, we have crawled the following three versioned datasets
for evaluation. 1) The first one is from Wikipedia (called
Wiki), which consists of 4.1 million articles and on average
each distinct document contains 13 versions. The versions
are archived in a monthly crawled gap from April 2013 to
April 2014. On average each document version has 1.9 KB
and each fragment has 156 bytes. 2) The second dataset
is a web dataset (called Web) of 5 million pages and there
are 20 versions per document on average. The dataset was
crawled in 2014 from two university domains. After removal
of HTML tags, each document has 3.1KB and each fragment
has 191 bytes on average. 3) The last dataset is from GitHub



(called GitHub) with 8.8 million versioned documents in to-
tal. Those are Linux code documents dated from April 2005
to April 2014 with 439 versions per document. Searchable
text is extracted from the source code using function names
and embedded comments, and each document corresponds
to one source file. After pre-processing, each document has
3.35 KB and each fragment has 167 bytes on average.

Ranking function. Following the previous text ranking
techniques (e.g. [10, 27, 37, 44]), the text feature in our im-
plementation leveraging non-positional information is stan-
dard Okapi BM25, differentiated by where they appear in
the fields of a document such as title and body. We also
use a text proximity feature that leverages positional infor-
mation: the length of a minimum text span [36] to cover
query words at each field, scaled by the percentage of query
words covered. The overall ranking score linearly combines
weighted BM25 and proximity features.

We compare our Representative-guided Two-phase Search
(RTP) with the following approaches: 1) One phase search
(OP). The implementation is based on [43] using the posi-
tional index with fragments. This is essentially the same as
Phase 1 of RTP except that OP searches the entire index. 2)
Two phase search (TP). This is based on [22] and the Phase
1 implementation ranks top-K results with non-positional
index. Phase 2 re-ranks the selected top K results using
the positional index with fragments. For RTP, we select the
number of representatives k ranked at Phase 1 between 10
to 100 to produce good final top 10 results as an answer.
For TP, K is chosen to be K = k ∗ V so that there are
enough good results selected from each cluster at Phase 1,
which allows re-ranking at Phase 2 to produce relevant re-
sults competitive to RTP. The three datasets have different
V values, affecting K values and performance difference of
TP and RTP in addition to relevancy. We will also show
the relevance results of RTP and TP with different k and K
values.

For search time measurement, we report the average query
processing time for each query set through 25 runs when
excluding or including the index load overhead from a disk
drive. We have generated 500 synthetic queries for each
dataset with query length distribution following a query log
study in [4] for the purpose of performance assessment.

For relevance, the standard relevance metric for document
search is NDCG [26]. Since there are many versions for each
document with similar content and some of which can be
considered as near duplicates, showing too many results per
document would affect result diversity [32]. Thus we restrict
the displaying of top results and only show v versions per
document. A user can request for accessing more versions
from a selected document when needed. We expect v to be
1 or 2 at most in practice. In our evaluation, we use v = 1
and collect the NDCG value at top 10 positions. We call the
modified NDCG score as vNDCG1@10.

5.2 A Comparison on Overall Search Time
For fair comparison, to prepare same number of candidate

pages in Phase 2 for TP and RTP, we set K = k ·V . We use
K = 2000 and k = 100 for the Web with V = 20, K = 1000
and k = 77 for Wiki with V = 13, and K = 5000 and k = 12
for GitHub with V = 439. Table 2 lists the time cost of RTP,
OP and TP in milliseconds when the search index is kept
in memory. OP that navigates all versions of documents is
much more time consuming than TP and RTP. For example,

Time (ms) OP TP RTP

Web
Phase1 5899 34.56 16.26
Phase2 0 115.5 21.36
Total 5899 150.0 37.62

Wiki
Phase1 1047 5.378 3.868
Phase2 0 119.9 28.81
Total 1047 125.3 32.68

GitHub
Phase1 5846 46.50 2.394
Phase2 0 539.0 139.7
Total 5846 585.5 142.1

Table 2: Query processing time in milliseconds when the
search index is preloaded to memory.

Time (ms) OP TP RTP

Web
SSD 5901 153.4 67.28
HDD 5950 252 938.6

Wiki
SSD 1049 128.7 55.92
HDD 1098 227.3 738.2

GitHub
SSD 5848 588.9 147.4
HDD 5897 687.5 303.6

Table 3: Query processing time in milliseconds including the
index load cost from an SSD or HDD.

it takes up-to 156x more time than RTP. In terms of TP vs.
RTP, for GitHub with a large number of versions, RTP is
about 4.12x as fast as TP. On the other hand, for the Web
and Wiki datasets with a modest number of versions, RTP
is about 3.99x as fast as TP on Web data and 3.83x on Wiki
data.

Table 2 also lists the cost distribution of Phase 1 and
Phase 2 time in detail. RTP’s Phase 1 is faster than that
of TP because RTP’s Phase 1 search scope focused on rep-
resentatives is much smaller while Phase 1 of TP searches
the index of all document versions even positional informa-
tion is skipped. Phase 1 of RTP has more time advantage
for the GitHub dataset in which there are more versions per
document. Note that TP’s Phase 1 time reported here is
higher than ”a few ms” reported in [22]. This is because K
parameter selected for Phase 1 in our experiment is larger
in order to improve relevance.

Comparing TP and RTP’s Phase 2 time, RPT is 5.41x
as fast as TP on Web dataset, 4.16x on Wiki dataset and
3.86x on GitHub dataset. While our optimization plays a
significant role, one reason is that extracting the positional
information in [22] uses a global term-fragment index. Fol-
lowing our analysis on Option B in Section 4.1, if we replace
cost of searching local reuse table to a global reuse table,
then the cost of position information extraction increases by
a ratio of logFi

log fi
where Fi is the average posting length of

global term-fragment index, which is much larger than fi.
This corroborates a benefit of cluster-based retrieval.

Table 3 shows the total processing time per query includ-
ing the index loading overhead from an SSD or HDD. The
gap between TP and RTP is narrowed because RTP has
to access the index per version cluster separately and this
results in more random disk block reads. Fortunately the
fast SSD seek time for random I/O still allows RTP to out-
perform others. RTP is 2.28x as fast as TP on the Web
dataset, 2.30x on Wiki and 3.99x on GitHub. RTP is 87.7x
as fast as OP on the Web dataset, 18.8x on Wiki and 39.7x
on GitHub. The SSD I/O cost is about 44%, 41%, or 4% of



the overall time, respectively for these datasets. Searching
the GitHub dataset incurs the smallest I/O cost percentage
because the number of versions per cluster is the highest
and its k value is the smallest. The above I/O cost may
be further reduced in the future with more code optimiza-
tion. When the index resides in HDD, OP is still the slowest
because its slow performance in Phase 1. RTP is 6.34x as
fast as OP on the Web dataset, 1.49x on Wiki and 19.4x
on GitHub. Comparing to TP, the time advantage of RTP
diminishes in Phase 2 because of high random I/O cost. For
GitHub with 439 versions per document, RTP is 2.26x as
fast as TP. For Web wth 20 versions per page and Wiki
with 13 versions per document, TP is 3.72x and 3.25x as
fast as RTP. Thus we recommend RTP to be used when the
search index can be stored in an SSD. It is suitable for HDDs
only when handling a very large number of versions.

5.3 A Comparison of Phase 2 Indexing and
Traversal Options

Time (ms) Position extraction Intersection Scoring

Web 9.570 0.24 11.55
Wiki 15.87 0.25 12.69

GitHub 96.47 1.44 41.77

Table 4: Cost distribution of RTP at Phase 2

Table 4 shows the cost distribution of RTP in-memory
search time at Phase 2. The feature extraction time is sig-
nificant and this demonstrates the importance of reducing
conversion time in Phase 2 computation.

Time (ms) Web Wiki GitHub

Option A 35.74 20.81 128.5
Option B 9.778 23.57 124.6
Option C 9.57 15.87 96.47

Cluster-choice A 36.34% 91.67% 89.37%
Optimum 8.472 13.55 77.67

Table 5: In-memory search time with different options for
Phase 2.

Table 5 lists the average query processing time of Phase 2
with various options. Row marked “Optimum” is computed
by choosing the minimum value among Option A and B for
each query in searching each cluster. The switch condition
listed in Algorithm 1 may not find the best choice in all
cases and thus this row represents the lower time bound
an optimum algorithm may achieve. Row marked “Cluster-
choice A” lists the percentage of the clusters that choose
Option A as the traversal method decided by Option C.
Option B can be 265% faster than Option A for Web, but
can be 13% slower for Wiki. Option C adaptively predicts
the winner between Option A and B, and is getting closer
to what the optimum can accomplish. Compared to Option
A and B, Option C is up-to 273% faster for Web , 48.5% for
Wiki, and 33.2% for GitHub.

Why is Option A slower than Option B even 89.37% of
clusters choose Option A traversal? The reason is that
choosing Option A gives an improvement of 0.5523ms per
cluster than choosing Option B in this case. In compari-
son, 10.63% clusters choose Option B, which gives an im-
provement of 5.484ms per cluster than choosing Option A.

In general, we find that choosing Option A often delivers
a relatively smaller time reduction while taking Option B
often yields a bigger reduction. One reason is that Option
B is often chosen when handling popular words, which tend
to carry more shares of the overall search cost. For Wiki,
choosing Option A reduces time by 0.0430ms per cluster
while time reduction is 0.304ms per cluster when choosing
Option B. For Web, time reduction 0.01191ms per cluster
than choosing Option A and it is 0.8575ms per cluster when
choosing Option B.

Index(MB) Web Wiki GitHub

Option A 907 614 264
Option B 1225 905 452
Option C 1411 1008 654

Global 1237 1044 991

Table 6: Phase 2 index size of different options

Index(MB) Web Wiki GitHub

Posting bitvectors 323 294 155
Term-fragment index 721 511 62

Fragment-version reuse table 186 103 202
Version-fragment mapping 181 100 235

Table 7: Phase 2 index size of different structures

Table 6 shows the compressed Phase 2 index storage size
in megabytes under different options. Note that the un-
compressed index size can be upto an order of magnitude
larger than the numbers reported here. The row marked
with “Global” combines all data structures without cluster
separation as explained at the end of Section 4.3. The order
of the space usage is Option C, Option B and Option A.
Option C does use more space for accomplishing the fastest
processing time. For Web and Wiki datasets in which V
is modest, the space difference ratio between Option A and
Option B is about 26% and 32%. This is close to our storage
cost analysis in Section 4.3 which estimates an approximated
difference bound as 23%. From GitHub’s result in which the
number of version is large, the space difference ratio between
Option B and Option C is about 31%. That is also within
the estimated upper bound 50%.

Option C has similar cost as the global index for Wiki.
For GitHub, the global index takes about 50% more space
than Option C, which is about the same as what the space
anlysis has estimated when V is very large. For Web with a
modest number of versions, the global index uses 12.3% less
space than Option C, which does not exceed the estimated
upper bound 28.8%.

Table 7 shows the size of different components in our in-
dex. For Web and Wiki’s results with a modest number of
versions, term-to-fragment index is the largest component.
On the other hand, for GitHub dataset, term-to-fragment in-
dex becomes less significant. That is because the fragment-
based compression [43] becomes more effective for a large
number of versions.

5.4 A Comparison on Relevance Scores
For single-word queries, the relevance of RTP is about the

same as that of TP and OP and we report the results of rel-
evance evaluation on queries with two or more words. We



have randomly sampled 50 queries per dataset with a distri-
bution following the log study in [4]. Here are some sample
queries on the three datasets: 1) Web: dentist insurance,
teaching assistant salary, student research grant application,
international student center visa application; 2) Wiki: heart
disease, England football team, second world war death,
united nations security council members; 3) GitHub: Eth-
ernet adapter, virtual memory access, virtual device data
block, Linux kernel boot load device driver. There are four
students involved in rating the final results of the differ-
ent search methods with a score leveled from 0 to 3. Here
relevance level 3 means the selected version is perfect for an-
swering the query and level 0 means irrelevant. The names
of search methods are not revealed to the evaluators as we
union results from all algorithms together. Thus there is no
bias in the rating process.

The default representative of RTP uses a superdocument
that starts from the longest version (SLO) as the basis and
then includes all words from versions. We have compared
another way of selecting the representatives: the superdoc-
ument starts from the latest version(SLA).

vNDCG1@10 Web Wiki GitHub

OP 0.6478 0.7012 0.6889
K=200, 130, 4390 TP 0.4268 0.4833 0.5166

(k=10) RTP 0.6157 0.6460 0.6137
K=400, 260, 8780 TP 0.5856 0.6364 0.6253

(k=20) RTP 0.6557 0.6974 0.6664
K=1000, 650, 21950 TP 0.6460 0.6888 0.6780

(k=50) RTP 0.6560 0.6988 0.6782
K=2000, 1300, 43900 TP 0.6468 0.6912 0.6823

(k=100) RTP 0.6562 0.6988 0.6868

Table 8: Relevance scores of RTP compared with the other
methods in terms of vNDCG@10 for different k values and
K=k*V

Table 8 lists the vNDCG1@10 results of RTP with SLO
method compared to OP and TP for the three datasets.
The table lists the number of top documents (K) selected at
Phase 1 for TP and the corresponding number of top clusters
(k) selected at Phase 1 at RTP. For example, “K=200, 130,
4390 (k=10)” means that TP selects top 200, 130, and 4390
for three datasets Web, Wiki and GitHub respectively while
RTP selects top 10 clusters which contain K pages in total.
For a smaller K (and k), RTP is doing better than TP by
taking the proximity into account earlier. Still both RTP
and TP have an insufficient coverage of relevant results in
Phase 1 and thus have a relatively lower score compared to
OP. When increasing the number of top results in Phase 1,
the relevancy gap between TP and RTP becomes smaller
and also both are getting closer to OP.

Figure 4 depicts the vNDCG1@10 scores of different repre-
sentative selection options when k is 20 and SLO is the best
choice among these options. The relevance score of SLO is
7.5% higher than SLA for Web, 1.3% lower for Wiki, and
0.7% lower for GitHub. On average, SLO is better than SLA
by 1.83%. We also assess the impact of adding all words from
versions to the superdocuments. LA means using the latest
version without adding words from other documents. LO
means using the longest version without adding words from
other documents. For all three datasets, the superdocument-
based selection (SLA or SLO) is in general more effective
than LA or LO. For the Wiki dataset, SLA is 4.39% better
than LA and SLO is 0.87% better than LO. For the Web

Web Wiki GitHub
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Figure 4: Impact of representative selection on vNDCG1@10
relevance scores

dataset, SLA is 5.48% better than LA and SLO is 4.39%
better than LO. For GitHub data, SLA improves 0.89% over
LA and SLO improves 1.73% over LO. The longest version
is more effective in representing the positional information.
Adding the extra terms in a super version provides 2.33%
relevance improvement on average.

Ratio LA LO SLA SLO

Web 50.32% 95.19% 100.00% 100.00%
Wiki 94.26% 98.73% 100.00% 100.00%

GitHub 92.64% 96.60% 100.00% 100.00%

Table 9: Word coverage of the four representative selection
methods

Table 9 shows the average distinct word coverage ratio
(AWCR) for the four representative selection algorithms.
Word coverage ratio of a document group is calculated by di-
viding the total number of distinct words in a document rep-
resentative by that of all versions of this document. AWCR
is the average word coverage ratio of all documents. Since
SLA and SLO have a non-positional index which covers
words from all versions of a document, the AWCR value of
SLA and SLO is 100%. LO has a word coverage 89% higher
than LA for the Web dataset, which indicates SLO has a sig-
nificantly better positional information coverage than SLA.
This explains why vNDCG score of LO is 8.6% better than
LA and the score of SLO is 7.5% better than SLA in Fig-
ure 4. For other datasets, the AWCR value of LA is closer
to LO in Table 9 and that explains the relevance score of
SLA and SLO is close in Figure 4.

6. CONCLUDING REMARKS
The main contribution of this paper is a hybrid indexing

method with adaptive runtime traversal in supporting fast
two-phase versioned data search and an integration with
cluster-based retrieval using guided representatives. Our
evaluation with a prototype implementation using three datasets
shows the following results.

1) RTP has a significant efficiency advantage on SSDs. It
is suitable for HDDs only when there is a very large number
of versions. RTP can be 3.83x to 4.12x as fast as the TP
method if the search index is in memory. When the overhead
of loading the index from an SSD is included, RTP can be
2.28x to 3.99x as fast as TP. Both approaches can be one
or two orders of magnitude faster than a classical one-phase
algorithm on SSDs while delivering competitive relevancy
with a proper choice of top K or k value.

2) The hybrid index with adaptive traversal (Option C)
can be up-to 273% faster than Options A and B in Phase



2 in-memory query processing. Option C design represents
a time-space tradeoff as Option A can use up-to 59.6% less
compressed space while Option B can use up-to 30.9% less.
On average, the space cost of Option C is more or less com-
parable to that of a global index.

The proposed work is focused on conjunctive queries and
one future study is to consider disjunctive queries. Another
future study is to investigate the incremental index update
with time-based partitioning. When a new version is added,
fragments shared with other document versions need to be
identified and an approximation under a certain time inter-
val may be applied for cost reduction. The Phase 1 index
may be changed following the traditional index update tech-
niques if the cluster representative changes and the update
for a cluster index is fairly local.

Acknowledgments. We thank the anonymous referees
for their thorough comments. This work is supported in
part by NSF IIS-1528041 and IIS-1118106. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the NSF.

7. REFERENCES
[1] I. S. Altingovde, E. Demir, F. Can, and O. Ulusoy. Incremental

cluster-based retrieval using compressed cluster-skipping
inverted files. ACM Trans. Inf. Syst., 26(3):15:1–15:36, 2008.

[2] V. N. Anh and A. Moffat. Index compression using fixed binary
codewords. In Proc. of 15th Australasian Database
Conference, pages 61–67, 2004.

[3] P. G. Anick and R. A. Flynn. Versioning a full-text information
retrieval system. In SIGIR, pages 98–111, 1992.

[4] A. Arampatzis and J. Kamps. A study of query length. In Prc.
of ACM SIGIR, pages 811–812, 2008.
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