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ABSTRACT
This paper proposes an algorithm called Imprecise Spectrum
Analysis (ISA) to carry out fast dimension reduction for doc-
ument classification. ISA is designed based on the one-sided
Jacobi method for Singular Value Decomposition (SVD).
To speedup dimension reduction, it simplifies the orthog-
onalization process of Jacobi computation and introduces a
new mapping formula for transforming original document-
term vectors. To improve classification accuracy using ISA,
a feature selection method is further developed to make
inter-class feature vectors more orthogonal in building the
initial weighted term-document matrix. Our experimental
results show that ISA is extremely fast in handling large
term-document matrices and delivers better or competitive
classification accuracy compared to SVD-based LSI.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
Latent Semantic Indexing (LSI) with SVD is an effective

dimension reduction method for document classification and
other information analysis tasks. The computational over-
head of SVD is known to be a bottleneck in dealing with
large data sets. Even there are various advancements of the
computational methods for SVD (e.g. [12, 7, 10, 1, 5]), SVD
computation is still very expensive for larger matrices [11].

In this paper, we propose a fast dimension reduction al-
gorithm called imprecise spectrum analysis (ISA) for docu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–29, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$5.00.

ment classification with training data. There are three key
optimization strategies in ISA to speedup computation while
sustaining a good accuracy.

First, we start with the one-sided Jacobi method which is
more accurate numerically than the QR method [4]. Given
a weighted term-matrix matrix H, the most time consuming
part of the Jacobi method is an orthogonalization process ex-
pressed as HV = B where V contains right-singular vectors
and B is further decomposed as B = UΛ where U contains
left-singular vectors and Λ is a diagonal matrix containing
singular values of H. We simplify the orthogonalization pro-
cess with an approximation.

Second, to minimize the negative impact of imprecise com-
putation, we consider a weighting design in constructing the
initial matrix H. We make column vectors of H more or-
thogonal by utilizing terms’ global scores and class-oriented
characteristics.

Finally, we use a fast mapping formula in transforming
original feature vectors into a reduced space. Given an orig-
inal document-term vector d, the new dimension-reduced
vector dlsi is computed as dT H. We show this formula has
the functional equivalence to dlsi = dT UΛ and has com-
petitive or better accuracy compared to the other existing
methods.

2. BACKGROUND
A document-term vector d can be transformed into a low

dimension vector dlsi in an LSI space with the following
standard mapping formula [3]: dlsi = dT UΛ−1 where d is the
original document vector dm×1, U is a column-orthogonal
matrix m × r, Λ is a diagonal matrix r × r, and dlsi is the
target pseudo-document which has a much lower dimension
k (≤ r) than the original space Hm×n. Some work [10, 9]
uses another mapping formula: dlsi = dT U.

The main cost of LSI in those mapping models is deriving
the matrix U and Λ in decomposing the matrix H. Among
those computing SVD methods, one-sided Jacobi method
has the form HV = B for a given matrix H(m × n) of
rank r. Namely the Jacobi method starts from matrix H
and performs a sequence of sweeps which essentially post-
multiplies H with V and yields matrix B whose columns are
orthogonal. The above iterative computation of the Jacobi
method performs the following sequence of sweeps to make
columns in H orthogonal. Each sweep uses the following
plane rotation:

[(Hk+1)i, (Hk+1)j ] = [(Hk)i, (Hk)j ][
cos θ − sin θ
sin θ cos θ

], (1)



where (Hk)i and (Hk+1)i are the i-th column in H before
and after the k-th plane rotation, and θ is a rotation an-
gle that is designed to produce two orthogonal columns [6].
When all pair vectors are orthogonal under a precision value,
by normalizing columns of B by the norm of vectors, we can
get B = UΛ and then H = UΛV T .

It is very time-consuming to perform the above orthogo-
nalization computation in the Jacobi method. For exam-
ple, for a sparse document-term matrix H from the 20-
newsgroup corpus, we found that before the first sweep,
there were only 5% non-orthogonal pair vectors while this
sparse matrix has 5% of non-zero elements. Then many
sweeps of the Jacobi method are spent with a plane rota-
tion on getting a 100%-orthogonal matrix B, and the entire
process is slow. This uneconomic practice encouraged us to
challenge the fundamental problem: can LSI for feature se-
lection perform well when we relax the rigorously orthogonal
constraint on matrix B?

3. DESIGN
An analysis on the LSI space [10] shows that feature vec-

tors of those two documents from different topic classes
should be nearly orthogonal. In this way, LSI does a partic-
ularly good job of classifying documents. Our approach is to
relax the orthogonal constraint of B in the above one-sided
Jacobi algorithm. Meanwhile, we make those pairs of vec-
tors from different classes to be orthogonal as much as pos-
sible through feature scoring by extending a scoring formula
called CFC [8] in constructing the initial matrix H. With
this in mind, we can consider key pairs of vectors in H are
near orthogonal, and thus we remove the time-consuming
matrix rotation process in the Jacobi computation. Then
the one-sided Jacobi computation can be simplified as the
following steps:

• Construct matrix H and then use matrix H as an im-
precise matrix B.

• Compute the l2 norm of all column vectors in B and
sort these vectors according to norm.

• Get an imprecise decomposition by B = UΛ.

To carry out dimension reduction which uses Uk and di-
agonal matrix Λ, we can select top k norms and take them
as top k scalar values in the diagonal matrix Λ. and use cor-
responding normalized vectors as the matrix Uk. In the rest
of this section, we present our weighting formula for initial
matrix construction and an error upper-bound when using
top k vectors to approximate. We will also present our de-
sign for mapping document vectors into the reduced space
with analytic results that justify the choice of mapping.

3.1 Initial Matrix Construction and Error Bound
We construct an initial matrix H in a way such that two

document vectors in different topic classes have an orthogo-
nal trend. To do this, we extend CFC score [8] by exploiting
summarized class information extracted from training data.

Table 1: Term definitions.
Term Description

n total # of document vectors
|C| total # of classes
ci,j # of times that term ti occurs

in the j-th document
nj total # of terms in the j-th document
ci =

Pn
j=1 ci,j , ti’s occurrences in corpus

CFi # of classes containing ti in training data

The terms used in this paper is defined in Table 1. Our
scoring formula to construct a term-document matrix H is
called CFC-E, where weight hi,j for term ti and document
j in matrix H is defined as:

hi,j =ei × cfi, where

cfi =log(
|C|
CFi

),

ei =1 +
1

log n

nX
j=1,ci,j �=0

ci,j

ci
log

ci,j

ci
.

(2)

After construction of the initial matrix H, we use this
matrix H as the target matrix B. Then ISA uses the top
k vectors with the maximum norm values from the normal-
ized and sorted matrix H. This essentially means that we
approximate the original matrix H with Hk which contains
these top k vectors. We can derive the bound of errors raised
from this approximation. Given an m×n matrix H, the rel-
ative error ratio of top k vectors to approximate H can be
given as

||H − Hk||F
||H||F ≤

r
1 − k

n
(3)

where ||H||F is the the Frobenius norm of H.
Using top k vectors is consistent with the strategy used in

SVD-based matrix approximation. The more important a
vector in matrix U or V is, the bigger the corresponding σi

in matrix Λ will be and thus top k singular values with their
corresponding singular vectors are selected in SVD-based
matrix approximation.

3.2 Design of Mapping Formula
In general, we model the mapping formula as

dlsi = dT UF(Λ).

With F(Λ) = Λ−1, it is the traditional formula dlsi =
dT UΛ−1. For mapping original vectors, the selected vector
ui is multiplied by a weight factor of 1

σi
. With F(Λ) = I,

we have dlsi = dT U . We find from our experiments that
the accuracy of mapping model with F(Λ) = Λ−1 is not
as good as the one with F(Λ) = I when the dimension of
pseudo vectors k is large. This is because the singular value
(Λ) becomes small for a large k value and inverse Λ−1 be-
comes too large in the LAS2 algorithm [2], which leads to a
big numerical error.

From the above experimental finding, we infer that it is
reasonable to let the mapping formula multiply weights to
important vectors ui proportionally according to values of
σi. Thus we propose a mapping formula with F(Λ) = Λ,
namely, dlsi = dT UΛ. This gives each selected vector ui a
positive weight σi in the mapping process, which is consis-
tent to the heuristic that the more important vector ui is,
the bigger weight σi is applied. Our experiments presented
in 4.1 verify that classification performance of mapping with
F(Λ) = Λ is close to that with F(Λ) = I.

We will show that dlsi = dT UΛ has the same effect as
dlsi = dT H for replacing the part did

T
j of Equation 4 shown

below in SVM-based classification. This means that we can
choose dlsi = dT H to map vectors with an advantage that
H can be used directly without any expensive computation
other than a normalization process.

We analyze the functional equivalence of the above map-
ping formulas for classification tasks as follows. Given an



SVM-based classifier, for a dual Wolfe optimization prob-
lem LD:

LD =
X

αi − 1

2

X X
αiαjyiyjdid

T
j , (4)

where yi is the label of the vector di and αi is the La-
grange multipliers, if dimension reduction is carried out in
LSI space, the part did

T
j will be replaced by (dlsi)i(dlsi)

T
j . If

we use the mapping formula dlsi = dT UΛ, the part did
T
j in

Equation 4 can be substituted by dT
i UΛ(UΛ)T dj . In the sin-

gular value decomposition H = UΛV T for an initial matrix
H, we have the transformation

HHT = UΛV T (UΛV T )T = UΛV T V ΛUT .

We can get HHT = UΛ(UΛ)T because V T V = I. Conse-
quently, the part did

T
j can be replaced in dT

i UΛ(UΛ)T dj =

dT
i HHT dj . We get an equivalent mapping formula dlsi =

dT H from the mapping formula dlsi = dT UΛ.

4. EVALUATION
Table 2 lists different algorithms and approaches com-

pared in our experiments and our evaluation has the fol-
lowing objectives:

• Demonstrate the rationality of dlsi = dT UΛ and eval-
uate the effect between ISA and dlsi = dT UΛ.

• Demonstrate that ISA performs extremely fast.

Table 2: Different approaches.
Names Descriptions

Base classification without dimension reduction

SVD-1 standard reduction with dlsi = dT UΛ−1

SVD the same as SVD except that dlsi = dT U

SVD1 standard reduction with dlsi = dT UΛ
ISA imprecise spectrum analysis

To assess the performance of different mapping formu-
las in classifying tasks, we use an SVM classifier to carry
out classifying tasks, and use standard macro-averaging F1
(MacroF1) and micro-averaging F1 (MicroF1) as the accu-
racy metrics to evaluate the performance. As for SVD com-
putation, we use LAS2 algorithm in the latest SVDLIBC
library 1. Three datasets used for experiments are summa-
rized below.

WebKB. WebKB 2 contains seven categories and 8,203
pages (7,031 training and 1,172 testing). For the“Title”,“H1”,
and “URL” parts in the page, we give the weight 5 times
more than those in “Body”. We kept 28,473 unigram terms
that occurred at least once in the training set.

20-newsgroup. This dataset from 20 Usenet newsgroups3

consists of 19,899 messages (13,272 training and 6,627 test-
ing) and 31,138 unigram terms. We only keep “Subject”,
“Keywords”, and “Content” while words in “Subject” and
“Keywords” are given the weight 5 times more than those in
“Contents”.

Reuters-21578. This dataset4 contains 6,495 training
texts, 2,557 testing texts and 11,430 unique unigram terms
in this 52-category corpus. Words in titles are given the
weight 5 times more than those in abstracts.

1http://tedlab.mit.edu/∼dr/SVDLIBC/
2http://www.cs.cmu.edu/afs/cs/project/theo-
20/www/data
3http://kdd.ics.uci.edu/databases/20newsgroups
4http://ronaldo.cs.tcd.ie/esslli07/sw/step01.tgz

For above three corpora, we used the tokenizer tool pro-
vided in the Trinity College sample. Stemming and word
clustering were not applied. Entropy score for initial matrix
H are extracted from the whole corpus. Original document
vectors are constructed with TF-IDF score.

Parameter Settings. The SVMTorch package 5 and
SV Mmulticlass package6 are used in classifying tasks. The
two SVM classifiers can perform multi-class tasks directly
with one-vs-others decomposition and default parameter val-
ues. Experiments were performed on a machine with Intel
Core2 Duo 2.8 GHz CPU, 4 GB memory.

4.1 Rationality of SVD1
On the spectrum of pseudo-document’s dimension, the

precision in classifying tasks is used to describe the per-
formance of different mapping formulas. We construct H
with e× cf in Reuters-21578, e in WebKB and tf × e in 20-
newsgroup respectively because different scores for H can il-
lustrate the stable performance of SVD1 more convincingly.

Figure 1: Performance of three mapping formulas
for dimension reduction in Reuters and WebKB.

Fig. 1 shows that SVD and SVD1 have produced a com-
parable performance while they outperform SVD-1 signifi-
cantly especially for a larger dimension size. For MicroF1,
the difference between SVD and SVD1 is relatively small,
and is getting bigger with larger dimension size. In WebKB,
after dimension is bigger than 2000, SVD1 exhibits more
stable performance while SVD-1’s performance drops. For
MacroF1, SVD is slightly better than SVD1, and SVD1 is
sometime slightly better, especially for a larger dimension.
Overall speaking, SVD1’s performance is close to SVD and
they perform better than SVD-1 for a higher dimension.

4.2 SVD1 vs. ISA
Fig. 2 shows that ISA can become competitive to SVD1

after dimension 5,000 in Reuters. If we use the full size of H,
Fig. 2 shows that ISA can perform as well as SVD1 on high
dimensions. ISA’s performance is lower on low dimensions
because training data is not sufficient, while SVD1 uses full
training matrix and performs better.

Table 3 lists the results of comparison for the Reuters
dataset. For example, we select the top k=1000 vectors in
matrix H according to the norm of those vectors, then, LAS2
is used to carry out singular value decomposition for H1000.
ISA uses H1000 fully in its mapping formula dlsi = dT H1000.

5http://www.idiap.ch/∼bengio/projects/SVMTorch.html
6http://svmlight.joachims.org/svm multiclass.html



Figure 2: SVD1 vs. ISA in Reuters-21578 and 20-
newsgroup.

Table 3: Performance comparison between SVD1
and ISA in Reuters-21578 after SVD is applied to
top k vectors.

Hk ISA SVD1
MicroF1 MacroF1 MicroF1 MacroF1

k=1000 0.8868 0.7162 0.8858 0.7164
k=2000 0.9116 0.7651 0.9116 0.7653
k=3000 0.9214 0.7858 0.9221 0.7866
k=4000 0.9245 0.7996 0.9245 0.7996
k=5000 0.9280 0.8028 0.9280 0.8001
k=6000 0.9292 0.8016 0.9292 0.8010

Table 3 shows that ISA can still perform as well as SVD1
on all dimensions when SVD also only uses the same set of
top vectors.

4.3 Processing time cost
For LSI-based classification, two key steps are dimension

reduction computation and training using SVM. For LAS2,
Table 4 illustrates the cost of a few choices of targeted di-
mensions and processing time is extremely slow for larger
dimensions. ISA only needs to sort the initial matrix H
after normalization, so ISA took less than one second to
perform matrix decomposition for three corpora.

Table 4: Elapsing seconds of LAS2 and ISA for ma-
trix computation with different targeted dimensions.

Dim Reuters 20-Newsgroups
LAS2 ISA LAS2 ISA

1000 270 0.29 298 0.37
3000 3340 0.29 4266 0.37
6000 7757 0.29 32059 0.37

In Table 5, for each sample dimension, the training pro-
cess had been carry out 10 times with SV Mmulticlass in 20-
newsgroup. We extracted the smallest time-cost for LAS2
while the biggest time-cost for ISA. Table 5 shows that
SVD’s vectors with dimension 3,000 need 9.77 seconds in
training while ISA’s results with dimension 12,000 need only
5.22 seconds. The pseudo-document vectors mapped using
SVD are dense while the pseudo-document vectors produced
by ISA are sparse. For example, over 92% of elements in
transformed vectors are zero in ISA for 20-newsgroup and
the SVM code has taken this advantage.

Table 5: SVM’s training cost of CPU Time.
LAS2 ISA

dim Cost dim Cost
1000 3.70 3000 1.42
2000 6.28 6000 1.81
3000 9.77 10000 4.43
4000 13.35 12000 5.22
5000 16.69 15000 6.28
6000 20.03 19897 8.30

5. CONCLUSIONS
Three tested benchmarks show that our approach can per-

form extremely fast dimension reduction while have an ac-
curacy competitive to SVD-based LSI in document classifi-
cation. ISA’s complexity is proportional to the number of
non-zero elements in H. Though ISA has a bigger suitable
dimension (≈0.6n in the tested cases), vectors transformed
by ISA are highly sparse and a classification learning al-
gorithm such as SVM can exploit sparse computation to
achieve low training time. Our future work is to study ISA
for other applications.
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