
Privacy-aware Document Ranking with Neural Signals
Jinjin Shao, Shiyu Ji, Tao Yang

Department of Computer Science, University of California

Santa Barbara, California

ABSTRACT
The recent work on neural ranking has achieved solid relevance

improvement, by exploring similarities between documents and

queries using word embeddings. It is an open problem how to

leverage such an advancement for privacy-aware ranking, which

is important for top K document search on the cloud. Since neural

ranking adds more complexity in score computation, it is difficult

to prevent the server from discovering embedding-based semantic

features and inferring privacy-sensitive information. This paper

analyzes the critical leakages in interaction-based neural ranking

and studies countermeasures to mitigate such a leakage. It proposes

a privacy-aware neural ranking scheme that integrates tree ensem-

bles with kernel value obfuscation and a soft match map based on

adaptively-clustered term closures. The paper also presents an eval-

uation with two TREC datasets on the relevance of the proposed

techniques and the tradeoffs for privacy and storage efficiency.

ACM Reference Format:
Jinjin Shao, Shiyu Ji, Tao Yang. 2019. Privacy-aware Document Ranking

with Neural Signals. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
’19), July 21–25, 2019, Paris, France. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3331184.3331189

1 INTRODUCTION AND RELATEDWORK
There is a growing demand for privacy protection in Internet or

cloud-based information services [14, 26]. While searchable encryp-

tion (e.g. [10, 11, 15, 34, 35]) has studied secure document matching

without ranking consideration, privacy for document ranking is

addressed in [1, 8, 49, 53] for linear additive scoring and in [30]

for tree ensembles. On the other hand, there is a significant ad-

vancement in neural ranking methods and it is an open problem to

develop privacy-aware ranking leveraging neural models.

The previous research on neural ranking falls into the following

two categories: interaction-based or representation-based mod-

els [42]. The earlier work has focused on the representation-based

models [24, 47] where each document and a query are separately

represented as vectors through neural computation and the final

ranking is based on the similarity of the two representative vec-

tors. The recent studies have focused on interaction-based neural

ranking models [16, 22, 54] where the word or term-level similarity

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00

https://doi.org/10.1145/3331184.3331189

of a query and a document is explored first based on their embed-

ding vectors before applying additional neural computation. These

studies have shown their interaction based models outperform the

earlier representation-based models and thus our paper addresses

privacy issues for three interaction-based models, more specifically

DRMM [22], KNRM [54], and CONV-KNRM [16].

Ranking requires arithmetic calculations based on feature vec-

tors and homomorphic encryption [20, 41] is one idea offered to

secure data while letting the server perform arithmetic calculations

without decrypting the underlying data. But such a scheme is still

not computationally feasible when many numbers are involved, be-

cause each addition or multiplication is extremely slow, meanwhile

homomorphic encryption does not support the ability of compar-

ing two results required by ranking. Neural ranking involves more

computational complexity than a linear method or tree ensembles,

and hiding feature computation becomes even harder.

Recent secure neural net research [33] addresses image classifi-

cation using homomorphic encryption and two-party communica-

tion with garbled circuits, to meet a different privacy requirement

(clients obtain predicted results without knowing the server deci-

sion model). The online processing time can cost 3.56 seconds for

classifying each image and in addition, 296MB of data needs to be

communicated between a client and a server for each image. While

computed scores are still un-comparable at the server side, the cost

is too expensive for ranking many documents, considering each

document vector as an image vector. Order-preserving encryption

techniques (e.g. [3, 45]) let a server compare the encrypted results

but do not support arithmetic computation on encrypted numbers.

There is a line of work perturbing feature values (e.g. [28]) for clas-

sification to achieve differential privacy. Our method is aimed at

document search with a goal of preserving the exact ranking model

and our design uses one round of client-server communication for

faster response time.

Problem Statement. This paper investigates how privacy consid-

eration can be incorporated efficiently in neural ranking for top K
cloud data search. To our best knowledge, this paper is the first

effort to address privacy-aware interaction-based neural ranking. In

specific, we identify statistical document information such as word

frequency and occurrence that can be leaked during neural compu-

tation. Such information is required for a number of privacy attacks

studied in the previous work [9, 27, 52]. To mitigate such a leakage,

our techniques replace the exact kernel value with a privacy-aware

tree ensemble model [7, 25, 30, 37]. We further propose a soft match

map that captures non-exact similarity signals above a threshold

while providing a privacy protection using term closures and kernel

value obfuscation. Our evaluation using two TREC datasets shows

the relevance of the proposed tree integration can even exceed the

original baselines for NDCG scores when soft match maps are not

used. There is a relevance tradeoff when incorporating soft match

maps.

https://doi.org/10.1145/3331184.3331189
https://doi.org/10.1145/3331184.3331189

SIGIR ’19, July 21–25, 2019, Paris, France Jinjin Shao, Shiyu Ji, Tao Yang

2 BACKGROUNDS AND PROBLEM SETTINGS
Problem definition and feature vectors. The problem of top

K document ranking is defined as follows: given a query q with

multiple terms and candidate documents, the server forms a feature

vector for each document and ranks these documents. A ranking

feature is called raw if it is explicitly stored (in the posting list)

associated with each document, and it is called composite if it is
computed dynamically based on raw features. Examples of raw

features directly used for ranking include frequency of text words

appearing in a document, and the quality score of a document.

Document ranking uses both raw and composite features, which

can be query-dependent and may not be precomputed in advance

before query time. An example of composite features is BM25 [32]

which is the summation of term frequency based raw features.

Learning-to-rank algorithms. Given a matched document rep-

resented by a set of raw and/or composite features, a linear ranking

model uses a linear combination of document features while a tree-

based ensemble produces a set of decision trees using a boosting or

bagging strategy [7, 25, 37].

An interaction-based neural ranking [16, 22, 54] can be formal-

ized as performing the following computation flow:

RankingScore = NN (Ker (®q ⊗ ®d)),

where ®q and
®d are two sequences of embedding vectors which can

be representations for a unigram or a n-gram in a query and a

document [16, 22, 54], or can be entity embeddings for existing

entities in a query and a document [55]. Those embedding vectors

can be learned from one of many existing neural network models

such as Word2Vec [39], GloVe [44] and relevance based word em-

bedding [56]. Embedding vectors for n-grams can be generated by

a convolution operation described in [16]. NN is a forward neural

network to compute the final ranking score.

Operator ⊗ is the interaction between query q and document d
and its output is the similarity of a query term and a document term

for all possible pairs from q and d . In [16, 22, 54], cosine similarity

is used for measuring term similarity with a score varying from

−1 to 1. Let ⟨t ,w⟩ denote the cosine similarity between the term

vector of t and that of another termw .

Operator Ker represents the kernel value calculation, extracts
term-level matching signals based on the similarity of all term

pairs from a query and a document, and generates a vector of real

values being taken as input for the forward neural computation.

There are two methods for kernel computation. In the Histogram
Pooling [22] method, there are R kernels and each kernel associates

with an interval within [−1, 1], e.g., [0.5, 0.6). The kernel value

of the j-th kernel is the number of similarity values that fall into

the j-th interval [bj ,bj+1]: Kj (t ,d) =
∑
w ∈d 1bj ≤⟨t,w ⟩<bj+1

. For

kernel pooling, we follow a definition in [16, 54] that each kernel

associates with a Radial Basis Function (RBF). The RBF kernel for

the j-th kernel is defined by µ j and σj . Symbols µ j and σj denote the
mean and standard deviation respectively. Let exp be the natural

exponential function and log be the natural logarithm function. The

kernel value of the j-th kernel for a query term t is:

Kj (t ,d) =
∑
w ∈d

exp(−
(⟨t ,w⟩ − µ j)

2

2σ 2

j
).

The output of kernel computation is a kernel vector of size R:

(
∑
t ∈q

logK1(t ,d), · · · ,
∑
t ∈q

logKR (t ,d))
T .

Privacy requirement and threat model. A client owns all data

and wants to outsource the search service to a cloud server which is

honest-but-curious, i.e., the server will honestly follow the client’s

protocol, but will also try to learn any private information from

the client data. The client builds an encrypted but searchable index

and lets a server host such index. This paper does not consider the

dynamic addition of new documents to the existing index, assuming

the client can periodically overwrite the index in a cloud host server

to include new content. To conduct a search query, the client sends

several encrypted keywords and related information to the server.

Our design only uses one round of client-server communication

since multi-round active communication between the server and

client (e.g. [23, 40]) incurs a much higher communication cost and

response latency.

The biggest threat is the leakage of query and document plaintext.

A server can also be interested in query access pattern and statistical

information even if the query terms are encrypted. Finally the

result patterns such as the overlapping of document IDs in multiple

queries may also be interesting. This paper is focused on providing

a privacy protection to avoid the leakage of document plaintext

and also important feature values during ranking process.

The previous works on plaintext or query attacks in [9, 27, 52]

assume the adversary knows partial information on term occur-

rence in addition to a subset of plaintext documents. By preventing

the leakage of the term occurrence information of documents in a

hosted dataset, threats from these attacks can be removed or greatly

alleviated. Islam et al. [27] proposed the query recovery attack called

IKK which can be revised to launch a plaintext attack to identify

some words in an encrypted document collection. This assumes

that the adversary is the server who has some prior knowledge as

follows. 1) The server knows plaintext of na words that appear in

this document collection, but does not know the encrypted word

IDs. 2) The server knows co-occurrence probabilities of these na
words in this document collection. This can be approximated by

using a public dataset. 3) The server has obtained encrypted IDs

of documents that contain a subset of known na words. With the

above three pieces of information, the server is able to recover the

encrypted word IDs for a good percentage of these na words, and

detect the set of document IDs containing these encrypted word

IDs. Cash et al. [9] has improved the plain text recoverability of

the IKK attack with extra information such as term frequency, and

pointed out that the inverted index or occurrence probabilities for

a set of words can be inferred when knowing the term frequency of

English words in each document. There are also attacks exploiting

leaked document similarities [52]. Their attacks only work if the ad-

versary knows occurrence frequency and co-occurrence frequency

of selected terms in the entire document set.

Since all of the above attacks require term occurrence and use

term frequency if possible, this paper will analyze the information

leakage of interaction-based neural ranking methods on term fre-

quency and occurrence in documents, and extend or redesign some

of their components with a goal of hiding such statistical text in-

formation. It is worthy to note that some advanced techniques, e.g.

Privacy-aware Document Ranking with Neural Signals SIGIR ’19, July 21–25, 2019, Paris, France

ranking based on Convolutional Neural Network [43], require term

positions and such information can be leaked during computation.

Then term occurrences in a document can be easily inferred by a

server. Thus this paper does not investigate such ranking models.

3 LEAKAGE ANALYSIS AND DESIGN
CONSIDERATIONS

We first examine the possible leakage of information in interaction-

based neural ranking in terms of term occurrence and frequency.

Hiding term vectors. As mentioned above, there are three steps

in the interaction-based model: interaction between query and doc-

ument terms, kernel value calculation, and forward neural network

computation. Our first thought is to hide term vectors using a hash-

ing function while preserving cosine similarities (or other similarity

metrics) between vectors. Such a protection can mask identities of

term vectors; however, if a server is allowed to observe the result of

interaction between a query term t and each termw of document

d , it can easily infer frequencies and occurrences of all query terms

as follows: TF (t ,d) =
∑
w ∈d 1⟨t,w ⟩=1

, where 1⟨t,w ⟩=1
equals to 1

if ⟨t ,w⟩ = 1 and 0 otherwise.

Given the fact that we cannot store masked term vectors or

explicitly store the interaction matrix elements, we resort the fol-

lowing strategy where the result of interaction between query and

document terms is not computed by the server.

Kernel-level protection. Our next design idea is to provide a

kernel-level protection of privacy by precomputing kernel values

in advance. Thus only the output of Ker is exposed to the server,

which hides the vector computation process and the result of in-

teraction. Namely the owner of the dataset (as the client in our

case) precomputes this kernel vector first for each term t that may

interact with a document d , ®ft,d = (a1, , · · · ,aj , · · · ,aR)
T
where

aj = logKj (t ,d). These vectors, after precomputed by a client,

are uploaded and stored in a server. During the run time with a

query q, then the kernel vector for this query can be constructed

as

∑
t ∈q ®ft,d . Then such a kernel vector is injected as an input to

the forward neural computation step.

Leakage from kernel vectors. Unfortunately as we analyze be-

low, the above kernel-level protection can still leak term frequency,

which yields the leakage of term occurrence.

Notice for both histogram pooling and kernel pooling, the last

kernel KR (t ,d) is a special kernel representing the exact match of

a query term with document terms. Without loss of generality, let

this special one be the R-th kernel in this paper. For histogram

pooling, an interval defined as [1, 1] is associated with this special

kernel. This means that last element aR in
®ft,d gets updated by one

whenever a query term t exactly matches a document term in d . As
a result, the server can infer the term frequency of a query term in

any document by observing the result of aR .

Proposition 3.1. Given query term t and document d , in his-
togram pooling for the R-th kernel whose interval is [1, 1], term fre-
quency TF(t ,d) =

∑
w ∈d 1⟨t,w ⟩=1

= exp(aR).

For the R-th kernel derived with kernel pooling [16, 54], µR is 1.0,

and σR is chosen to be a small positive real number, e.g., 0.001. We

define the maximum cosine similarity between any two different

terms in a vocabulary V where V is the collection of all terms in

the given dataset:

S̄ = max

t,w ∈V ,t,w
⟨t ,w⟩ .

The following theorem shows a server can still approximate term

frequency TF (t ,d) using the value of last kernel aR .

Theorem 3.2. Given a query term t and a document d , in kernel

pooling for the R-th kernel, if S̄ < 1.0 −

√
2σ 2

R ln
n
ϵ , then |TF(t ,d) −

exp(aR)| < ϵ , where ϵ is a small real value.

In our tested datasets in Section 6, S̄ is below 0.9. Using the

above theorem, condition S̄ ≤ 0.947 < 1.0 −

√
2σ 2

R ln
n
ϵ is true

when σR ≤ 0.01, ϵ = 0.01, and n ≤ 10, 000, and a server can easily

infer the frequency of a term in a document. Thus we are unable to

use aR and the next section will present a solution to address this.

It should be noted that the above analysis is true for computing

the interaction between a unigram query term with all unigrams of

a document in DRMM [22] and KNRM [54]. When computing the

interaction of ah-gram from a query and aд-gram from a document

where h , д in CONV-KNRM [16], the cosine similarity of such a

pair cannot be 1. Thus for CONV-KNRM, we only need to worry

about the interaction of two terms with the same gram length.

4 PRIVACY-AWARE NEURAL RANKING
In this section, we propose three techniques for privacy-aware

neural ranking: 1) replace the exact match kernel value with a tradi-

tional ranking method that uses exact word matching; 2) provide a

soft match index (we call it soft match map) to include a set of ker-

nel values with similar terms while enhancing privacy; 3) obfuscate

kernel values in the soft match map.

4.1 Replacement of the Exact Match Kernel
Neural signals can be considered to be composed of two parts: exact

match component represented by last kernel value KR (t ,d) and the
soft match component represented by K1(t ,d), · · · ,KR−1(t ,d) as
shown in Fig. 1(a). Since Theorem 3.2 indicates that the root cause

of term frequency leakage is the inclusion of kernel value KR , we
propose to drop this kernel value and compensate it by the including

of a traditional ranking method that has better privacy protection,

as illustrated in Figure 1(b).

We adopt a privacy-aware learning-to-rank tree ensemble model

in [30] that encodes raw features with comparison preserving map-

ping (CPM) and derives a tree ensemble using encoded raw features.

Raw ranking features mainly based on exact term matching are

not leaked to the server. During our evaluation, these exact text

matching features include BM25 for query words that appear in

the title, BM25 for query words that appear in the body, and the

proximity features [2, 19, 51, 57] with the minimum, maximum,

and average of the squared min distance reciprocal of query word

pairs in the title or in the body. We use word-pair or n-gram based

features as a substitute to avoid composite proximity features based

on word positions through arithmetic calculation. For ClueWeb09,

extra raw features include PageRank and a binary flag indicating

whether a document is from Wikipedia.

The above replacement is applied for computing the unigram-

to-unigram interaction in DRMM and KNRM. It is also applicable

SIGIR ’19, July 21–25, 2019, Paris, France Jinjin Shao, Shiyu Ji, Tao Yang

......

Soft match
kernels

Exact match
kernel

Neural network computation

Relevance score

(a)

Encrypted
raw features

Private tree
ensemble

......

 Obfuscated
soft match kernels

Neural network computation

Relevance score

(b)

Figure 1: Replacement of the exact match kernel

to the interaction of a h-gram query term with a h-gram docu-

ment term for CONV-KNRM. We discuss more on this in Section 6.

This replacement comes with two advantages. First, it removes the

source of term frequency leakage in aR since an adversary is not

able to recover feature values encoded with CPM [30]. Second, it

can potentially boost ranking performance. Currently there is no

knownmethod to combine a traditional ranking method with a neu-

ral ranking model for a better relevance. A tree ensemble method

has been proven to be effective before neural models gain more at-

tention. For example, in the Yahoo! learning-to-rank challenge [13]

in 2010, all winners have used some forms of tree ensembles. This

replacement can provide a natural way to effectively combine a

tree ensemble with a representation based neural model and we

will evaluate the relevance impact in Section 6.

4.2 Obfuscation of Kernel Values
Even though we have precomputed the kernel value computation

to avoid the leakage of term frequency to the server, there still

exists a term frequency attack described in Appendix A when the

histogram pooling is used. In that attack, the frequency of a term

queried can be uncovered by a server if it is able to find all or many

of encrypted keys (t ,d) where t is a soft or exact term of document

d in a soft match map. While we have not found a term frequency

attack for the kernel pooling, we still want to be cautious.

To minimize the chance of leaking exact kernel values, we pro-

pose a many-to-one mapping to obfuscate kernel vector values.

Intuitively, if kernel vector values from multiple different term doc-

ument interactions are indistinguishable, the adversary has to make

random guesses on real kernel vector values. In specific, we add the

ceiling function to convert the floating point number to an integer

in forming the kernel vector, and this change allows the revised

soft match kernel values to accomplish k-anonymization [18, 50].

For the j-th element of a kernel vector based on R kernels,

aj =

{
⌈logr (Kj (t ,d))⌉, if Kj (t ,d) ≥ 1,

1, otherwise,

where the logarithmic base r is a privacy parameter that can be

adjusted. As we show later in Section 5.2, the anonymous factor k
is rR−1 − 1, since all zero kernel values are converted to 1. A large

r value will add more anonymity for privacy while it may degrade

the relevance performance due to the lack of value differentiation

in kernel vectors.

In DRMM, at the forward neural computation stage, the kernel

values are re-scaled by document frequency weights of query terms.

We use the samemany-to-one function discussed above to obfuscate

these weights. Our evaluation shows there is no visible relevance

difference when r = 10.

4.3 Soft Match Maps
Kernel vector values are precomputed before query processing and

such offline processing can be done efficiently on a parallel platform

and/or with LSH approximation [31]. However, it is too expensive

to store kernel vectors for all possible (t ,d) pairs. For example,

suppose there are R = 20 kernel values per term-document pair,

for a dataset with 2M documents and a vocabulary of 250K terms,

all these kernel vectors require 20 terabytes of space if each kernel

value is stored using a reduced precision with 2 bytes. Although

data compression may optimize this cost, the optimized storage

cost is still excessively high.

Inspired by the inverted index, we propose a soft match index

structure that contains kernel vectors of term-document pair (t ,d)
only if term t is reasonably related to documentd , above a similarity

threshold. This index data structure, called soft match map, has a
key-value representation. The key of each entry is a hashed term-

document pair (t ,d), and the value is kernel vector
®ft,d generated

from Ker for a term-document pair. Notice aR for R-th kernel is

removed as discussed in Section 4.1 for interaction between a query

term and a document term under the same gram length. We call a

term for a document this map as exact term if this term appears in

this document. If this term is not in this document but it is included

in the map due to its similarity to another term in this document,

we call this term as soft term of this document. We will access how

a soft match map is accessed during search in Section 5.

Even though terms and documents in a soft match are encrypted

and identified through numeral IDs, an adversary may infer the

the occurrence of terms in a document which is a critical piece of

information for privacy attack discussed in Section 2. In order to

minimize the chance of leaking term occurrence in a document, we

introduce the notion of τ -similar term closure.

Definition 1. A set of terms C under vocabulary V is called a
τ -similar term closure if for any term t ∈ C and there exists another
termw ∈ V such that ⟨t ,w⟩ ≥ τ , thenw ∈ C .

Here V is the collection of terms in a given dataset and we will

discuss a clustering algorithm shortly that groups a set of terms as

a term closure.

Definition 2. A soft match map SMM is closed under term clo-
sures if for any (t ,d) ∈ SMM , for anyw in the same term closure of
t , (w,d) ∈ SMM .

There are two advantages of a closed soft match map. 1) From

the relevance point view, a document that contains a word which

is similar to a query word that can get some rank credit as the

privacy-aware ranking only uses this soft match map to identify

semantically related documents. 2) As shown in the next section,

an adversary would have a hard time to detect if a word ID that

appears in the document or not because other similar words in

its term closure have all appeared in the soft match map. We will

analyze its privacy implication based on the notion of statistical

indistinguishability in the next section.

Privacy-aware Document Ranking with Neural Signals SIGIR ’19, July 21–25, 2019, Paris, France

Car

Truck

Vehicle

Flatbed
0.524

0.279

0.305

0.734
0.726

0.715
Adaptive clustering:

Clustering with fixed threshold:

C1: {Car, Truck, Vehicle, Flatbed, ...}

C1: {Car, Truck, Vehicle},
C2: {FlatBed, ...}

Figure 2: Two clustering methods for term closure

In the rest of the paper, we will assume a soft match map is

closed. We now describe how to partition a term vocabulary of

a dataset into a disjoint set of term closures. There are tradeoff

factors to consider in controlling the size of term closures. With

a larger size, the soft match map will accommodate more similar

terms that can improve relevance, while creating more challenges

for an adversary to distinguish and detect which term IDs in a soft

match map appear in a document. On the other hand, a larger size

demands more storage to host a soft match map. In the following,

we discuss two algorithms that derive a disjoint set of term closures.

Clustering with a fixed similarity threshold. Given a cluster-

ing threshold τ , we cluster all terms in a closureC using a transitive

closure computation as follows: if t ∈ C , and ⟨t ,w⟩ ≥ τ , thenw ∈ C .
This approach uses a uniform threshold for all clusters. With a

small clustering threshold value, some clusters can have a very big

size, which can result in a very large storage demand. With a large

threshold value, some of term closures have a very small size, not

big enough for the privacy purpose.

Adaptive clusteringwithmultiple thresholds and closure size
control. Given p as a targeted closure size, andm sorted clustering

thresholds τ1 > τ2 > · · · > τm . We first apply a similarity clus-

tering with a fixed threshold τ1. We remove all clusters with the

size no less than p. For the remaining terms, we apply a similarity

clustering with a fixed threshold τ2. Repeat this process until all

cluster sizes are no less than p or we have applied clustering with all
thresholds. This adaptive clustering provides a flexibility to group

a sufficient number of similar terms in each closure while yielding

a reduced storage demand. In our evaluation, p = 5 is used.

Figure 2 shows the difference of the above two clustering for a

partial similarity graph of 4 terms from one of our testing datasets.

The edges represent pairwise similarity scores. With fixed similarity

threshold at 0.5, all four terms "Car", "Truck", "Vehicle", and "Flatbed"

are clustered transitively into the same term closure. With adaptive

clustering using a threshold set {0.9, 0.8, 0.7, 0.6, 0.5}, and closure

target size 3, term "Flatbed" is not grouped with "Car", "Truck", and

"Vehicle". This is because that when threshold 0.7 is used, terms

"Car", "Truck", and "Vehicle" are grouped, reaching closure size 3

and they are removed to form a separate closure. "Flatbed" will then

be grouped with other terms in the rest of the graph (which is not

shown in this figure).

5 LEAKAGE AND PRIVACY OF SOFT MATCH
MAPS

5.1 Search Process and Leakage Profile
The top K search process is described as follows. A client first sends

randomized tokens for query terms and related information (called

trapdoor information [1]) to a server, and these terms include query

unigrams and/or multi-grams when needed. The server cannot

map tokens into query terms since tokens are randomized. After

the server receives tokens for all the query terms, a privacy-aware

document retrieval model based on [1, 5, 6, 10, 11] produces a

set of document candidates for further ranking. The server first

computes the keys to access the CPM-encoded features and run a

tree ensemble, where the leakage profile is studied in [1]. Then the

server computes the keys to access the soft match map, and fetches

associated kernel vectors to drive the forward neural computation.

Depending on the query processing semantics and privacy re-

quirement, there are two methods to pass the query term list and

document list to neural ranking, and each of which has a different

leakage profile. The first method is based on the private search work

of [1, 11]. Based on trapdoor information sent from a client, the

server can compute and obtain a key (t ,d) to access the soft match

map. Essentially the server obtains a list of keys representing (t ,d)
pairs where t is a query term ID and d is a candidate document ID,

but the server cannot decompose each key into two parts to obtain

its term ID. Finally the server returns a ranked list of encrypted

document IDs and these IDs are available in the map values of keys.

For this case, we list the leakage profile as follows.

• Initially the server does not know any key (t ,d) for the map.

After processing queries, the server gradually learns more keys

of the soft match map.

• Once the server knows a key (t ,d), it can retrieve the soft kernel

vector of this key and an encrypted document ID.

The second method is based on the work in [5, 6, 10], the server

receives a list of query term IDs and a list of candidate documents

ID. It then computes each key (t ,d) and learns about term ID t and
document ID d . For this case, there is additional leakage.

• Gradually after processing more queries, the server learns keys

and kernel vectors, and also is able to build a partial soft inverted

index for all queried terms. Based on the soft inverted index, the

server is able to estimate partial document similarities based on

the overlapping degree of soft terms between two documents.

• Once all terms and documents are queried or processed, the

server is able to build a complete soft forward index and soft

inverted index. Namely give a list of documents that contain a

soft term, and give a list of soft terms included in a document. By

using the soft term postings, the server learns the membership

information of each soft term closure.

Since the information listed above is slowly leaked as more queries

are processed, we propose to re-index the dataset periodically and

replace the index in the cloud with different term IDs during each

update to mitigate the chance of letting the server exploit the entire

soft inverted index. The next two subsections study the privacy

properties with respect to exact term occurrence even if the entire

soft index is leaked to a server adversary, since such information

is required for the plaintext attacks discussed in the last part of

Section 2. We will also discuss k-anonymity for kernel vector values.

5.2 k-anonymization of Kernel Value Vectors
We show our obfuscation mapping achieves k-anonymization (a

standard notion from privacy literature [18, 50]) with respect to

the kernel value Kj (t ,d).

Definition 3. [50] Let V be a vector of real values representing
R − 1 kernel values namely, V = [K1(t ,d),K2(t ,d), · · · ,KR−1(t ,d)].

SIGIR ’19, July 21–25, 2019, Paris, France Jinjin Shao, Shiyu Ji, Tao Yang

Let V ′ = F (V) where F is a transform function. V ′ is k-anonymous
if and only if, for any V ′, there are at least k different V such that
V ′ = F (V). An algorithm F is called k-anonymization algorithm,
if it outputs a k-anonymous vector V ′ for any soft matching signals
vector V .

It is easy to show that the application of the above ceiling func-

tion to the above logarithmic mapping is k-anonymous. In the first

group, there are r values 0, 1, 2, ..., (r − 1) mapped to 1, and in the

k-th group, there are rk − rk−1
values rk−1, ..., rk − 1 mapped to

k for k > 1. Since r ≥ 2, k-th group has rk − rk−1 > r (r − 1) ≥ r
values mapped to k , there are at least r values being mapped into

the same value for each group. As there are (R − 1) kernels, given a

sequence of ⌈logr (Kj (t ,d))⌉, there are r
R−1

different sequences of

Kj (t ,d). Thus here we can confirm that there are rR−1−1 sequences

of kernel values that the adversary cannot distinguish from the

real one. In our evaluation, we choose r = 10 and R = 20. Thus

rR−1 = 10
19
, which is a very large number.

Proposition 5.1. The logarithmic mapping with ceiling obfus-
cation is k-anonymous without respect to soft match kernel values,
where k = rR−1.

5.3 Obfuscation of Exact Term Occurrence
How strong a closed soft match map can be in avoiding the leakage

of term occurrence? If an adversary including a server tries to

detect an exact term of a document from a soft match map which

contains both soft and exact terms with encrypted term IDs, we

argue that other similar soft terms from the same closure behavior

closely by looking at the structure and the kernel values in this

soft match map for this document and the adversary should have a

hard time to differentiate. We justify this argument based on the

notion of statistical indistinguishability used in the cryptographic

literature [4, 21].

Definition 4. ε-statistical indistinguishability. Any two dis-
tributions P and Q over a finite set U are ε-statistically indistin-
guishable if their statistical distance SD(P ,Q) ≤ ε , where statistical
distance is defined as [4, 21] SD(P ,Q) = 1

2

∑
x ∈U |P(x) −Q(x)|.

If two distributions P and Q are ε-statistically indistinguishable,

then no adversary can successfully distinguish the samples from P
and Q with probability more than

1

2
+ ε (Theorem 3.11 in [4]). For

our context, we define the distribution of a soft kernel value vector

as a discrete distribution over the soft kernels with respect to a given

term paired with a different document. In particular, given the ker-

nel vectors for documents d and d ′: ®ft,d = (a1, , · · · ,aj , · · · ,aR)
T ,

®ft,d ′ = (a′
1
, , · · · ,a′j , · · · ,a

′
R)

T , where each ai and a
′
i may be obfus-

cated, the statistical distance between
®ft,d and

®ft,d ′ is defined as

SD(®ft,d , ®ft,d ′) = 1

2

∑R−1

i=1
|ai − a′i |.

Definition 5. ε-statistically indistinguishable soft match
map. A soft match map is ε-statistically indistinguishable if for any
document d and for any termw in d , for any document d ′ constructed
by replacing each termw in d with a subset of the closureC such that
w ∈ C , the soft kernel values of (w,d) and (w,d ′) are ε-statistically
indistinguishable.

In ClueWeb09 Dataset, using our algorithm where logarithmic

base for kernel value obfuscation is r = 10, the derived soft match

map is a ε-statistically indistinguishable with ε being 0.004.

Theorem 5.2. Given a ε-statistically indistinguishable soft match
map for document set D in which each term closure has at least p
terms, if a server can derive the document occurrence of exact terms
with N term-document pairs, there exist (2p −1)N different document
sets D̃ such that the keys (term-document pairs) of its soft match map
for D and D̃ are identical, while soft kernel values of these two maps
for corresponding terms are ε-statistically indistinguishable.

Theorem 5.2 shows that for any soft match map generated by

a document set D, there are at least (2p − 1)N document sets D̃
with different term occurrences and co-occurrences, while having

very similar soft match maps. In [9], the adversary queries 150

single-word queries to launch an IKK attack. Assuming the average

posting length is 100, the number of term-document pairs guessed

for a document set D is N=15,000. If p = 2, then there are at least

3
15000 ≈ 10

7157
document sets D̃ to correspond to the guessed

inverted index. The adversary has to choose the correct one from

these 10
7157

options. Note that any two such options disagree on

term occurrence for at least one document. Hence there are 10
7157

term occurrence profiles for the adversary to choose from, which

is very unlikely to succeed.

6 EVALUATION
Here we evaluate relevance scores of the proposed privacy-aware

neural ranking techniques using two TREC datasets and assess

tradeoffs of privacy and relevance, and storage and time cost.

Datasets, features, and training. We use the following TREC

test collections to do evaluations. 1) Robust04 uses TREC Disks

4 & 5 (excluding Congressional Records), which has about 0.5M

news articles. 250 topic queries are collected from TREC Robust

track 2004. 2) ClueWeb09-Cat-B uses ClueWeb09 Category B with

50M web pages. There are 150 topic queries from the TREC Web

Tracks 2009, 2010 and 2011. Spam filtering is applied on ClueWeb09

Category B using Waterloo spam score with threshold 60. During

indexing and retrieval, Krovetz Stemming [36] is used for both

queries and documents.

Candidate documents with their encrypted feature vectors are

retrieved from the inverted index built for the above datasets, fol-

lowing the work in [1, 12, 34]. For a privacy-aware tree ensemble,

we use CPM [30] with LambdaMART based on RankLib 2.5 [17]. In

each fold of training ranking model, 5-fold cross validation is used

to select the best model based on NDCG@20, varying the number

of leaves from 2 to 30 and the number of trees from 100 to 500.

To evaluate the impact of feature choices with the integration

of the tree ensemble on the final ranking relevance, we have three

options of features listed as follows.

1) G0 with term frequency features: BM25 scores for query

terms in the title field, and BM25 scores for query terms in the body

field of each document. TF-IDF scores for query terms in the title

field, and TF-IDF scores for query terms in the body field of each

document. 2)G1with term frequency and proximity features:
All features from G0, the squared minimum distance reciprocal

of query term pairs in the title field, and the squared minimum

distance reciprocal [2, 19, 51, 57] of query term pairs in the body

Privacy-aware Document Ranking with Neural Signals SIGIR ’19, July 21–25, 2019, Paris, France

field of each document. 3) G2 with term frequency, proximity,
and page quality features: All features from G1, PageRank, and

a binary flag indicating whether a document is from Wikipedia.

This group is only for ClueWeb09 Category B.

The baseline models are DRMM, KNRM, and CONV-KNRM

trained with 5-fold cross validation. We also choose a variant of

CONV-KNRM, denoted by CONV-KNRM
∗
. For CONV-KNRM

∗
, we

only use the interactions between query unigrams and document

unigrams, between query unigrams and document bigrams, and

between query bigrams and document unigrams. The interaction

between query bigrams and document bigrams are not included to

reduce storage space need. For both histogram pooling and kernel

pooling, R=30 kernels are used. All soft match kernels are equally

distributed in the cosine range. In kernel pooling, σ is 0.10 for all

soft match kernels. In CONV-KNRM, n-gram length is 2, and the

number of CNN filters is 128 as used in the original work. All word

embedding vectors are pre-trained, and are fixed in KNRM, CONV-

KNRM and CONV-KNRM
∗
. We use 300 dimension word embedding

vectors trained on TREC Disks 4 & 5 or ClueWeb09 Category-Cat-B

with Skip-gram + Negative sampling model [39]. All terms that

appear less than 5 times are removed from embedding training.

We assess the use of the following 3 techniques denotedwith T, O,

and C where T stands for the replacement of the exact match kernel

with LambdaMART/CPM, O stands for kernel value obfuscation,

and C stands for using a closed soft match map. Notation A/T
means ranking A with technique T while A/TOC means ranking A
with all 3 techniques. All NDCG [29] values are within confidence

interval ±0.01 with p-value < 0.05.

Impact of replacing the exact match kernel with a Lamb-
daMART/CPM tree ensemble. Table 1 shows the NDCG rele-

vance of the three neural ranking models as the baseline and rele-

vance after the replacement of the exact match kernel with Lamb-

daMART/CPM based on the three groups of features G0, G1, and G2.

Soft match maps and kernel value obfuscation are not incorporated.

The boldfaced numbers are the highest NDCG scores within each

ranking model. From this table we observe that neural ranking

with the use of LambdaMART/CPM trees outperforms the origi-

nal baseline in NDCG at all Positions 1, 3, 5, and 10 for ClueWeb.

For example, compared with CONV-KNRM, CONV-KNRM/T with

G2 can improve NDCG@1, NDCG@3, NDCG@5 and NDCG@10

by 2.23%, 2.45%, 2.67% and 4.23% on ClueWeb. For Robust04, tree

ensemble integration delivers up to 3.91% improvement for CONV-

KNRM and up to 8.02% for KNRM, but degrades by up to -8.18% for

DRMM. Comparing the use of G0, G1, andG2 for neural ranking

integration, G2 is still most effective for ClueWeb and G1 is most

effective for Robust04, which shows traditional signals still make a

good contribution.

We examine NDCG scores reported in the previous work. For

ClueWeb09-Cat-B, NDCG scores at Positions 1, 10 and 20 are 0.294,

0.289, 0.287 with CONV-KNRM in [16]. Our numbers are slightly

higher, which can be caused by different data processing. Notice

NDCG@20 in our run is 0.2950.

By comparing CONV-KNRM and CONV-KNRM
∗
, the absence

of bigram-bigram interaction does yield a loss of NDCG score. For

example, the loss is 8.56%, 6.29%, 7.04% and 6.96% for ClueWeb at

Positions 1, 3, 5, and 10, respectively. That represents a tradeoff of

privacy and relevancy. Adding the tree ensemble integration, most

NDCG scores for CONV-KNRM
∗
/T can be on par with those of

CONV-KNRM and are 4.31% better for ClueWeb09 at Position 10.

Impact of kernel value obfuscation. Table 2 shows the impact

of kernel value obfuscation on NDCG scores incorporating Lamb-

daMART/CPM with G2 for ClueWeb and G1 for Robust04. We

choose two different logarithmic base r here: 5 and 10. Overall, the

relevance with r = 5 is slightly better than r = 10, while both of

them result in degradation in ranking accuracy compared with no

obfuscation. For NDCG@1, the degradation with r = 10 is 1.7% for

CONV-KNRM, 6.36% for KNRM, and 6.3% for DRMM. For CONV-

KNRM
∗
, its degradation is relatively smaller.

Trade-offs between relevancy and storage efficiency. Table 3
studies the impact of using a closed soft match map with two clus-

tering methods for term closures under different thresholds. This

table is for CONV-KNRM
∗
/TOC only as this model delivers the

highest NDCG scores with all privacy preserving techniques. For

example, with the obfuscation base being 10, and the clustering

threshold being 0.7, for DRMM/TOC in ClueWeb, NDCG@5 and

NDCG@10 are 0.2704 and 0.2720, respectively. For KNRM/TOC in

ClueWeb, NDCG@5 and NDCG@10 are 0.2972 and 0.2912, respec-

tively. In Table 3, Column 6 in the middle shows the storage need in

gigabytes to store a soft match map and related data after clustering

with fixed thresholds while last column on the right is the storage

demand with adaptive clustering. Each entry has two numbers

X(Y). Y is the total storage for unigram-unigram interaction while

X is the total storage for unigram-unigram, unigram-bigram, and

bigram-unigram interaction. Number Y also represents the amount

of storage space needed for KNRM and DRMM.

While clustering with a fixed threshold yields some relevance

improvement over adaptive clustering, it requires an excessive

amount of storage space. The adaptive clustering threshold 0.7 is

a good trade-off with an acceptable storage space for hosting the

ClueWeb dataset. In this setting, the relevance of CONV-KNRM
∗
is

on par with the original CONV-KNRM baseline, lower than CONV-

KNRM/T. That represents a tradeoff of relevancy, privacy and stor-

age cost. It still requires 7.627TB space and we can use a number

of high-end SSDs with parallel I/O. The latest high-end SSD prod-

ucts from Intel [48] and Samsung [38, 46] have achieved 10-15µs
IO latency with up-to 750K I/O operations per second. Thus for a

soft match map hosted at a high-end SSD, the I/O access time of

processing one query can still be reasonable.

Estimation of online query processing time. The online query
processing time cost consists of 3 phases: 1) private result retrieval

and preliminary ranking, 2) private tree ensemble scoring , 3) neural

ranking. Based on [1], Phase I costs 460 ms on average for ClueWeb.

For re-ranking top 1,000 candidate documents, there are about up-

to 10K IO operations needed to fetch kernel vectors and features,

and the total I/O time for accessing SSDs can take around 100

to 150ms with the above fast SSD performance parameters. Our

experiments show that private tree ensemble scoring takes less than

2ms and all three neural models with TOC take about 10 ms or less.

Thus overall the online query processing time is about 572ms to

622ms on average for ClueWeb. Notice that CONV-KNRM requires

computation of term vectors and interaction matrices which could

take 4-5 seconds. Thus even though our design pays extra cost

in space, it does remove the expensive time spent for interaction

computation.

SIGIR ’19, July 21–25, 2019, Paris, France Jinjin Shao, Shiyu Ji, Tao Yang

Table 1: Relevance impact of replacing exact match kernel with a tree ensemble

Model Feature group ClueWeb09-Cat-B Robust04

for ensemble NDCG@1 NDCG@3 NDCG@5 NDCG@10 NDCG@1 NDCG@3 NDCG@5 NDCG@10

LambdaMART/CPM

G0 0.2498 0.2702 0.2571 0.2415 0.4819 0.4465 0.4257 0.3982

G1 0.2818 0.2725 0.2688 0.2653 0.5181 0.4610 0.4346 0.4044
G2 0.2893 0.2828 0.2873 0.2827 - - - -

DRMM Baseline 0.2586 0.2659 0.2659 0.2634 0.5049 0.4872 0.4747 0.4528

DRMM/T

G0 0.2635 0.2721 0.2623 0.2503 0.4993 0.4594 0.4425 0.4134

G1 0.2838 0.2778 0.2772 0.2645 0.5114 0.4658 0.4501 0.4158

G2 0.2887 0.2857 0.2822 0.2793 - - - -

KNRM Baseline 0.2663 0.2739 0.2693 0.2681 0.4983 0.4812 0.4647 0.4527

KNRM/T

G0 0.2736 0.2804 0.2798 0.2725 0.5158 0.4908 0.4768 0.4592

G1 0.3036 0.2974 0.2951 0.2903 0.5382 0.5063 0.4906 0.4673
G2 0.2999 0.3097 0.3154 0.3147 - - - -

CONV-KNRM Baseline 0.3155 0.3124 0.3126 0.3085 0.5373 0.4875 0.4742 0.4586

CONV-KNRM/T

G0 0.3031 0.3088 0.3154 0.3052 0.5402 0.5057 0.4894 0.4643

G1 0.3254 0.3187 0.3177 0.3099 0.5556 0.5042 0.4927 0.4693
G2 0.3225 0.3200 0.3210 0.3216 - - - -

CONV-KNRM
∗

- 0.2884 0.2927 0.2906 0.2870 0.5007 0.4702 0.4601 0.4510

CONV-KNRM
∗
/T

G0 0.3038 0.2998 0.2962 0.2933 0.5149 0.4827 0.4768 0.4535

G1 0.3276 0.3099 0.3099 0.3117 0.5404 0.5006 0.4892 0.4657
G2 0.3175 0.3122 0.3239 0.3218 - - - -

Table 2: Impact of kernel value obfuscation with different logarithmic bases

Model Obfuscation ClueWeb09-Cat-B Robust04

base (r) NDCG@1 NDCG@3 NDCG@5 NDCG@10 NDCG@1 NDCG@3 NDCG@5 NDCG@10

DRMM/TO

Yes(10) 0.2703 0.2731 0.2740 0.2732 0.5078 0.4681 0.4449 0.4157

Yes(5) 0.2769 0.2757 0.2753 0.2722 0.5110 0.4669 0.4446 0.4221

No 0.2887 0.2857 0.2822 0.2793 0.5114 0.4658 0.4501 0.4158

KNRM/TO

Yes(10) 0.2808 0.2929 0.2947 0.2906 0.5117 0.4639 0.4393 0.4130

Yes(5) 0.2875 0.2968 0.2988 0.2971 0.5100 0.4686 0.4451 0.4164

No 0.2999 0.3097 0.3154 0.3147 0.5382 0.5063 0.4906 0.4673

CONV-KNRM
∗
/TO

Yes(10) 0.3121 0.3097 0.3165 0.3100 0.5221 0.4980 0.4906 0.4623

Yes(5) 0.3178 0.3067 0.3161 0.3100 0.5306 0.4987 0.4893 0.4613

No 0.3175 0.3122 0.3239 0.3218 0.5404 0.5006 0.4892 0.4657

Table 3: NDCG score and storage demand for CONV-KNRM∗/TOC

Similarity Clustering with fixed threshold Adaptive clustering

threshold NDCG@1 NDCG@3 NDCG@5 NDCG@10 Storage (GB) NDCG@1 NDCG@3 NDCG@5 NDCG@10 Storage (GB)

Robust04

0.3 0.5225 0.4974 0.4915 0.4621 45,021 (2,144) 0.5127 0.4892 0.4845 0.4582 1,512 (72)

0.5 0.5154 0.4883 0.4780 0.4543 24,793 (1,181) 0.5078 0.4845 0.4756 0.4498 1,133 (54)

0.7 0.4886 0.4644 0.4486 0.4169 287 (13) 0.4899 0.4608 0.4414 0.4110 278 (13)

0.9 0.4953 0.4594 0.4415 0.4091 261 (12) 0.4913 0.4558 0.4397 0.4090 261 (12)

ClueWeb09-Cat-B

0.3 0.3136 0.3078 0.3149 0.3091 1.7 · 10
6
(82,308) 0.3052 0.3069 0.3142 0.3120 46,811 (2,231)

0.5 0.3073 0.3069 0.3114 0.3069 1.3 · 10
6
(61,877) 0.3056 0.3037 0.3113 0.3103 35,742 (1,705)

0.7 0.3064 0.3048 0.3122 0.3104 16,568 (792) 0.3067 0.3012 0.3088 0.3060 7,627 (366)

0.9 0.3069 0.3041 0.3105 0.3074 7,369 (354) 0.2963 0.3025 0.3117 0.3083 7,369 (354)

Privacy-aware Document Ranking with Neural Signals SIGIR ’19, July 21–25, 2019, Paris, France

7 CONCLUSION
The main contribution of this paper is a privacy-aware neural rank-

ing scheme integrated with a tree ensemble for server-side top K
document search. The key techniques include the replacement of

the exact kernel with a tree ensemble, a soft match map using obfus-

cated kernel values and term closures, and adaptive clustering for

term occurrence obfuscation and storage optimization. Our design

for privacy enhancement is to prevent the leakage of two critical

text signals in terms of term frequency and occurrence needed for

the attacks shown in the previous work and this paper.

The evaluation with two TREC datasets shows that the NDCG

can be improved noticeably by replacing the exact match kernel

of neural ranking with a LambdaMART tree ensemble. The ob-

fuscation of kernel values does carry a modest relevance tradeoff

for privacy. The adaptive clustering for term closures significantly

reduces the storage demand with some tradeoff in relevance.

ACKNOWLEDGMENTS
This work is supported in part by NSF IIS-1528041 and a Google

faculty research award. It has used the NSF-supported resource

in the Extreme Science and Engineering Discovery Environment

(XSEDE) under allocation IRI190005. Any opinions, findings, con-

clusions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of the NSF.

REFERENCES
[1] Daniel Agun, Jinjin Shao, Shiyu Ji, Stefano Tessaro, and Tao Yang. 2018. Privacy

and efficiency tradeoffs for multiword top k search with linear additive rank

scoring. In Proceedings of the 2018 World Wide Web Conference. International
World Wide Web Conferences Steering Committee, 1725–1734.

[2] Jing Bai, Yi Chang, Hang Cui, Zhaohui Zheng, Gordon Sun, and Xin Li. 2008.

Investigation of partial query proximity in web search. In Proceedings of the 17th
international conference on World Wide Web. ACM, 1183–1184.

[3] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-

preserving encryption revisited: Improved security analysis and alternative solu-

tions. In Annual Cryptology Conference. Springer, 578–595.
[4] Dan Boneh and Victor Shoup. 2015. A graduate course in applied cryptography.

Draft 0.2 (2015).
[5] Raphael Bost. 2016.

∑
oφoς : Forward Secure Searchable Encryption. In Pro-

ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1143–1154.

[6] Raphael Bost and Pierre-Alain Fouque. 2017. Thwarting Leakage Abuse At-

tacks against Searchable Encryption – A Formal Approach and Applications

to Database Padding. Cryptology ePrint Archive, Report 2017/1060. (2017).

https://eprint.iacr.org/2017/1060.

[7] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An

overview. Learning 11, 23-581 (2010), 81.

[8] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. 2014. Privacy-

Preserving Multi-Keyword Ranked Search over Encrypted Cloud Data. IEEE
Trans. Parallel Distrib. Syst. 25, 1 (2014), 222–233.

[9] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

abuse attacks against searchable encryption. In CCS’15. ACM, 668–679.

[10] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable Encryption

in Very-Large Databases: Data Structures and Implementation.. In NDSS, Vol. 14.
Citeseer, 23–26.

[11] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin

Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-

tion with Support for Boolean Queries. In CRYPTO 2013. 353–373.
[12] David Cash and Stefano Tessaro. 2014. The Locality of Searchable Symmetric

Encryption. In EUROCRYPT 2014. 351–368.
[13] Olivier Chapelle and Yi Chang. 2011. Yahoo! Learning to Rank Challenge

Overview. J. of Machine Learning Research (2011), 1–24.

[14] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

Information Retrieval. J. ACM 45, 6 (Nov. 1998), 965–981.

[15] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2011. Searchable

symmetric encryption: improved definitions and efficient constructions. Journal

of Computer Security 19, 5 (2011), 895–934.

[16] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. 2018. Convolutional

neural networks for soft-matching n-grams in ad-hoc search. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining. ACM,

126–134.

[17] Van Dang. 2012. RankLib. https://sourceforge.net/p/lemur/wiki/RankLib/. (2012).

Accessed: 2018-05-20.

[18] Dotan Di Castro, Liane Lewin-Eytan, Yoelle Maarek, Ran Wolff, and Eyal Zohar.

2016. Enforcing k-anonymity in web mail auditing. In Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining. ACM, 327–336.

[19] Tamer Elsayed, Nima Asadi, Lidan Wang, Jimmy J. Lin, and Donald Metzler. 2010.

UMD and USC/ISI: TREC 2010 Web Track Experiments with Ivory. In Proceedings
of the 19th Text REtrieval Conference, TREC 2010, Gaithersburg, Maryland, USA.

[20] Craig Gentry. 2009. Fully Homomorphic Encryption Using Ideal Lattices. In

STOC ’09. ACM, 169–178.

[21] Oded Goldreich. 2000. Foundations of Cryptography: Basic Tools. Cambridge

University Press, New York, NY, USA.

[22] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance

matching model for ad-hoc retrieval. In Proceedings of CIKM’16. ACM, 55–64.

[23] Haibo Hu, Jianliang Xu, Chushi Ren, and Byron Choi. 2011. Processing private

queries over untrusted data cloud through privacy homomorphism. In ICDE.
601–612.

[24] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry

Heck. 2013. Learning deep structured semantic models for web search using

clickthrough data. In Proceedings of CIKM’13. ACM, 2333–2338.

[25] Muhammad Ibrahim and Mark Carman. 2016. Comparing Pointwise and List-

wise Objective Functions for Random-Forest-Based Learning-to-Rank. ACM
Transactions on Information Systems (TOIS) 34, 4 (2016), 20.

[26] The Ponemon Institute. 2018. The 2018 global cloud data security study.

https://www2.gemalto.com/cloud-security-research. (2018). Accessed: 2018-

05-01.

[27] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.

In NDSS 2012.
[28] Geetha Jagannathan, Krishnan Pillaipakkamnatt, and Rebecca N Wright. 2009.

A practical differentially private random decision tree classifier. In 2009 IEEE
International Conference on Data Mining Workshops. IEEE, 114–121.

[29] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation

of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[30] Shiyu Ji, Jinjin Shao, Daniel Agun, and Tao Yang. 2018. Privacy-aware Ranking

with Tree Ensembles on the Cloud. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval. ACM, 315–324.

[31] Shiyu Ji, Jinjin Shao, and Tao Yang. 2019. Efficient Interaction-based Neural

Ranking with Locality Sensitive Hashing. In The World Wide Web Conference
(WWW ’19). ACM, New York, NY, USA, 2858–2864.

[32] K Sparck Jones, Steve Walker, Stephen E. Robertson, et al. 2000. A probabilistic

model of information retrieval: development and comparative experiments. Part

1. Information processing & management 36, 6 (2000), 779–808.
[33] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In

27th USENIX Security Symposium (USENIX Security 18). 1651–1669.
[34] Seny Kamara and Tarik Moataz. 2017. Boolean Searchable Symmetric Encryption

with Worst-Case Sub-Linear Complexity. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 94–124.

[35] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

searchable symmetric encryption. In Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 965–976.

[36] Robert Krovetz. 2000. Viewing morphology as an inference process. Artificial
intelligence 118, 1-2 (2000), 277–294.

[37] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[38] Chris Mellor. 2018. Samsung preps for Z-SSD smackdown on Intel Optane

drives. https://www.theregister.co.uk/2018/01/30/samsung_launching_zssd_

attack_on_intel_optane_drives. (2018). Accessed: 2019-01-28.

[39] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In

Advances in neural information processing systems. 3111–3119.
[40] Muhammad Naveed, Manoj Prabhakaran, and Carl A Gunter. 2014. Dynamic

searchable encryption via blind storage. In 2014 IEEE Symposium on Security and
Privacy. IEEE, 639–654.

[41] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT ’99. 223–238.
[42] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. 2017. A deep

investigation of deep IR models. In SIGIR 2017 Workshop on Neural Information
Retrieval (Neu-IR’17).

[43] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi Cheng.

2017. Deeprank: A new deep architecture for relevance ranking in information

https://eprint.iacr.org/2017/1060
https://www.theregister.co.uk/2018/01/30/samsung_launching_zssd_attack_on_intel_optane_drives
https://www.theregister.co.uk/2018/01/30/samsung_launching_zssd_attack_on_intel_optane_drives

SIGIR ’19, July 21–25, 2019, Paris, France Jinjin Shao, Shiyu Ji, Tao Yang

retrieval. In Proceedings of CIKM’17. ACM, 257–266.

[44] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:

Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[45] Raluca Ada Popa, Frank H. Li, and Nickolai Zeldovich. 2013. An Ideal-Security

Protocol for Order-Preserving Encoding. In SP ’13. IEEE Computer Society, 463–

477.

[46] Samsung. 2018. Samsung Electronics Begins Mass Production of Industry’s

Largest Capacity SSD - 30.72TB - for Next-Generation Enterprise Systems. https:

//bit.ly/2EFKp5N. (2018). Accessed: 2019-01-28.

[47] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.

Learning semantic representations using convolutional neural networks for web

search. In Proceedings of the 23rd International Conference on World Wide Web.
ACM, 373–374.

[48] Lyle Smith. 2018. Intel Optane 800P NVMe SSD Review. https://www.

storagereview.com/intel_optane_800p_nvme_ssd_review. (2018). Accessed: 2019-

01-28.

[49] Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Y. Thomas Hou, and

Hui Li. 2014. Verifiable Privacy-Preserving Multi-Keyword Text Search in the

Cloud Supporting Similarity-Based Ranking. IEEE Trans. Parallel Distrib. Syst. 25,
11 (2014), 3025–3035.

[50] Latanya Sweeney. 2002. k-anonymity: A model for protecting privacy. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05
(2002), 557–570.

[51] Tao Tao and ChengXiang Zhai. 2007. An exploration of proximity measures in

information retrieval. In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 295–302.

[52] Guofeng Wang, Chuanyi Liu, Yingfei Dong, Kim-Kwang Raymond Choo, Peiyi

Han, Hezhong Pan, and Binxing Fang. 2018. Leakage Models and Inference

Attacks on Searchable Encryption for Cyber-Physical Social Systems. IEEE Access
6 (2018), 21828–21839.

[53] Zhihua Xia, Xinhui Wang, Xingming Sun, and Qian Wang. 2016. A secure and

dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE
Transactions on Parallel and Distributed Systems 27, 2 (2016), 340–352.

[54] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.

End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 55–64.

[55] Chenyan Xiong, Zhengzhong Liu, Jamie Callan, and Tie-Yan Liu. 2018. Towards

Better Text Understanding and Retrieval through Kernel Entity SalienceModeling.

In The 41st International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’18). ACM, 575–584.

[56] Hamed Zamani and W Bruce Croft. 2017. Relevance-based word embedding.

In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 505–514.

[57] Jiashu Zhao and Jimmy Xiangji Huang. 2014. An Enhanced Context-sensitive

Proximity Model for Probabilistic Information Retrieval. In SIGIR. 1131–1134.

A KERNEL VALUE RECOVERY ATTACK
In this section, we describe an attack to recover the term frequency

from closed soft match maps based on histogram pooling even

though the exact match signals are removed. We assume that the in-

terval [−1, 1) for similarity value is divided as [−1,b2, · · · ,bR−1, 1)

where −1 = b1 ≤ b2 < b3 < · · · < bR−1 < bR = 1. Each kernelKj is

associated with an interval [bj ,bj+1)where 1 ≤ j ≤ R−1. Note that

all intervals of these kernels are disjoint and their unions are inter-

val [−1, 1). Given a term t , a document d , and a kernel vector ®ft,d in

a soft match map is (a1, , · · · ,aj , · · · ,aR−1)
T
and aR is not included.

Each kernel value aj = logKj (t ,d) = log(
∑
w ∈d 1bj ≤⟨t,w ⟩<bj+1

).

Thus

R−1∑
j=1

exp(aj) =
R−1∑
j=1

(
∑
w ∈d

1bj ≤⟨t,w ⟩<bj+1
).

Since the union of all the disjoint intervals is [−1, 1), we can have

R−1∑
j=1

exp(aj) =
∑
w ∈d

1−1≤⟨t,w ⟩<1
.

Let the length of d be n, and term frequency of t contained in d is

TF(t ,d), we have
∑R
j=1

exp(aj) = n and exp(aR) = TF(t ,d). Then

TF(t ,d) = n −
∑R−1

j=1
exp(aj).

Wealso notice for any term t ′ that is not in documentd , TF(t ′,d) =

0. But
®ft ′,d is included in a soft match map because of term closure.

Thus n =
∑R−1

j=1
exp(a′j).

To launch this attack, we assume an adversary can scan the

soft match map SMM to obtain all keys (t ,d) such that (t ,d) ∈

SMM , and then take the following actions: 1) For each key (t ,d),

obtain the kernel vector
®ft,d = (a1, · · · ,aR−1) in a soft match map.

Compute the sum of elements in this vector. St =
∑R−1

j=1
exp(aj),

where aj = logKj (t ,d). 2) Figure out the length of this document

as n =maxt :(t,d)∈SMM {St }. 3) Compute term frequency of any t
in d as TF(t ,d) = n − St .

B PROOFS
Proof of Theorem 3.2

Let t f denote TF(t ,d) for simplicity here.

|tf − exp(aR)| = |tf − exp(logKR (t ,d))| = |tf − KR (t ,d)|

=

�����tf − ∑
w ∈d

exp(−
(⟨t ,w⟩ − µR)

2

2σ 2

R
)

�����
=

������tf − ∑
w ∈d,w=t

exp(−
(⟨t ,w⟩ − 1.0)2

2σ 2

R
) −

∑
w ∈d,w,t

exp(−
(⟨t ,w⟩ − 1.0)2

2σ 2

R
)

������ .
Since if w = t , then ⟨t ,w⟩ = 1.0, exp(−

(⟨t,w ⟩−1.0)2

2σ 2

R
) = exp(0) = 1.

Thus if the length of d is n, we have������tf − ∑
w ∈d,w=t

1 −
∑

w ∈d,w,t

exp(−
(⟨t ,w⟩ − 1.0)2

2σ 2

R
)

������
=

������ ∑
w ∈d,w,t

exp(−
(⟨t ,w⟩ − 1.0)2

2σ 2

R
)

������ ≤ (n − tf) exp(−
(S̄ − 1.0)2

2σ 2

R
)

≤ n exp(−
(S̄ − 1.0)2

2σ 2

R
) < ϵ .

Proof of Theorem 5.2
For each term closure, if at least one term in that closure appears

in document d , all terms in that closure would have precomputed

kernel values with d . For each closure C , there is a total of 2
|C | − 1

non-empty subsets and thus there are totally 2
|C | − 2 ways to

replace the exact terms in closure C appeared in d with another

subset of C containing soft terms. When a server tries to guess the

existence of exact term occurrence (t ,d), it has to locate the correct
one from all 2

|C | − 1 ways of forming d using exact or soft terms

fromC , which is at least 2
p − 1. When a server tries to figure out N

term occurrence (t ,d) pairs, there are (2p − 1)N different document

sets that produce the soft match maps with the same keys. The

soft match maps of these (2p − 1)N different document sets are

ε-statistically indistinguishable because we use a subset of a term

closure for replacement and the original soft match map is closed

and ε-statistically indistinguishable.

https://bit.ly/2EFKp5N
https://bit.ly/2EFKp5N
https://www.storagereview.com/intel_optane_800p_nvme_ssd_review
https://www.storagereview.com/intel_optane_800p_nvme_ssd_review

	Abstract
	1 Introduction and Related Work
	2 Backgrounds and Problem Settings
	3 Leakage Analysis and Design Considerations
	4 Privacy-Aware Neural Ranking
	4.1 Replacement of the Exact Match Kernel
	4.2 Obfuscation of Kernel Values
	4.3 Soft Match Maps

	5 Leakage and Privacy of Soft Match Maps
	5.1 Search Process and Leakage Profile
	5.2
	5.3 Obfuscation of Exact Term Occurrence

	6 Evaluation
	7 Conclusion
	Acknowledgments
	References
	A Kernel value recovery attack
	B Proofs

