
Privacy-aware Document Ranking with
Neural Signals

Jinjin Shao, Shiyu Ji, Tao Yang
Department of Computer Science
University of California, Santa Barbara

Challenge for Private Search/Ranking

Client uploads encrypted documents and index, with search
functionality delegating to the server, utilizing its massive
storage and computing power.

Server is honest-but-curious, i.e., correctly executes protocols
but observes/infers private information.

Challenges:
• Server can observe search/ranking process, and then infer

private information.
• Feature leakage (e.g., term frequency) can lead to plaintext

leakage.

Client Cloud

Enc(Query)

...Enc(Doc id)

Related Work for Private Ranking

• Searchable Encryption, e.g., [Cash et al. Crypto13,
Curtmola et al. Crypto13] does not support ranking.

• Leakage Abuse Attack on Search Index & Features,
e.g., [Cash et al. CCS15, Wang et al. S&P17] launches
attacks with term frequency/co-occurrence.

• Order Preserving Encryption, e.g., [Boldyvera et al.
Crypto11] does not support arithmetic operations.

• Private Additive Ranking, e.g., [Xia et al. TPDS16]
works for small datasets only, [Agun et al. WWW18] only
supports partial cloud ranking.

• Private Tree-based Ranking, e.g., [Bost et al. NDSS15]
uses computational-heavy techniques such as
Homomorphic Encryption, [Ji et al. SIGIR18] does not
support neural signals.

Two Categories of Neural Ranking

Two categories of neural ranking for keyword search:
• Representation-based versus interaction-based.
• Interaction-based model outperforms in relevance

benchmarks (such as !"#$ for ClueWeb). [Guo et al.
CIKM16, Xiong et al. SIGIR17, Dai et al., WSDM18]

• Not for long/NLP queries.

Interaction-based ranking score = &(()* +⨂-)
• + and - are embeddings for query and document.
• ⨂ is the interaction process, which outputs a similarity

matrix containing vector similarities for all pairs of query
and document term.

• ()* is the kernel computation yielding kernel vectors.
• & is the neural network computation.

Leakage in Interaction-based neural ranking

Document
! keywords

Query
" keywords

⨂ Interact

Query
plaintext

attack, e.g.,
[Islam et al.
NDSS12]

Similarity Matrix
!×" real values

!

Kernel Vector
% real values

Kernel Comp.

Term
Frequency /
Term Co-
occurrence

Proposed Solution for Private Neural Ranking

Document
! keywords

Query
" keywords

⨂ Interact

1. Pre-computed Kernel
Vector

Too much storage cost?
Soft Match Map

Similarity Matrix
!×" real values

Kernel Vector
% real values

Kernel
Comp.

2. Decomposed Kernel
Vector

Partially replace it with
private tree-based model

3. Closed Soft Match Map

Term
frequency /
cooccurrence
Leakage

How Kernel Values Leak Term Frequency

Decompose kernel values into two parts:
• !" #, % , … , !'("(#, %) Soft Match Signals
• !'(#, %) Exact Match Signal

Our analysis: Term frequency of # can be well approximated
by !'(#, %).
Solution for privacy-preserving: Replace the exact match
signal with the private tree-based ranking signal.

+
,∈.

log!" #, % , +
,∈.

log!2 #, % , … ,+
,∈.

log!' #, %

!3(#, %) is the 4-th kernel value on the interaction of query
term # and document %. 5 is the number of kernels.

How to Approximate Exact Match Signal !"($, &)
Proposed privacy-preserving approach
1. Gather traditional word frequency and

proximity features
2. Use a query-length-specific learning-to-

ranking tree ensemble to compute a rank score
3. Use a private tree-based model [Ji et al.,

SIGIR18] to encrpt features and tree
thresholds

Kernel vector

(
)∈+

log!" $, &

Approximated
kernel vector

Closed Soft Match Map in Detail

Motivation: Limit precomputing, such that avoid to compute all
possible pairs of terms and documents.
Otherwise, 1 million documents can cost ~10TB storage.
Basic idea: Precompute kernel values only for term ! and
document ", if ! appears in " ! is soft-relevant to ". Soft match
map: key is (t,d) and value is the kernel vector

Challenge: How to define soft-relevant that is privacy-preserving?
E.g., not leak term occurrence, which can facilitate plaintext
attacks.

Address privacy concern with Closed Soft Match Map:
For two terms !# and !$, if 1) (!#, ") is in Soft Match Map; 2) !#
and !$ are similar, then (!$, ") is also in Soft Match Map.
Next step: Cluster all terms into the similarity closures.

Options to Build Term Closures based on
Fixed or Adaptive Similarity Threshold

Fixed-threshold Clustering: Apply a uniform ! for all closures.

Weakness: Closures can include too many (or too few) terms,
which incurs huge storage cost (or privacy leakage).

Adaptive Clustering: Given a closure size limit ", apply a
series of increasing thresholds: !# < !% … < !', to gradually
expand all term closures that are of size below ".

If terms () and (# in a !-similar term closure, *+,((), (#) ≥ !.

Privacy Property of Closed Soft Match Map

Objective: Given a closed soft match map, a server adversary
cannot learn term frequency/occurrence of the dataset.

Property Sketch: Given a dataset !, with " key-value pairs in
a closed soft match map of !, and closure size ≥ $,
there exist at least 2& − 1) different datasets !* such that
their soft match maps have the same key, and values that are +-
statistically indistinguishable

Takeaway: These 2& − 1) different datasets have different
term frequencies and co-occurrences, while their soft match
maps are very similar.

Thus, the cloud server is unlikely to recover the correct dataset.

More on Indistinguishable Kernel Values

!-statistically indistinguishable kernel values:

" ≥ $%&%'(%')&* +'(%. .⃗/,1, .⃗/,12 =
1
2
6
789

:;9

&7 − &′7

i.e., an adversary can successfully differentiate > and >′ with
probability at most 9

?
+ ".

Takeaway:

↓ "
B7CD1E

↓ FGHI(successfully differentiate between > and >Z)

Kernel values of a term \ in documents] and]′ are:
.⃗/,1 = (&9, &?, &^, … , &:;9), .⃗/,12 = &Z9, &Z?, &Z^, … , &Z:;9 .

Minimize Statistical Distance of Kernel Values

A method to minimize !"#"$%"$&#' ($%". *",,, *",,- :

For the .-th soft kernel value in the kernel value vector, it is
obfuscated as:

/0 = 2 log6 70 8, 9 , :; 70(8, 9) > 1,
1, @8ℎBCD:EB,

where C is a privacy parameter, 8 is a term, 9 is a document,
and 70 8, 9 is the output from the .-th kernel function.

Trade-off between Privacy and Ranking Accuracy:

↑ C
yields

↓ M8/8:E8:N/O P:E8.
yields

↑ Privacy Guarantee
yields

↓ Effectiveness of Soft Match Signals

Evaluation Setup

ü Leverage: 1) Privacy-aware search/feature access[Agun et
al. WWW18] 2) Private tree ensemble model [Shiyu et al.
SIGIR18] with CPM encrypted features & Query length
specific training.

ü Datasets: [Robust04] contains ~0.5 million documents
with 250 queries. [ClueWeb09-Cat-B] contains ~50 million
documents with 150 queries from Web 09-11.

• Evaluation Objectives:
1. Can approximated kernel vectors with private tree

ensemble signals rank well?
2. Can kernel value obfuscation preserve the ranking

accuracy?
3. How effective are two different methods of clustering

term closures?

Evaluation on Approx. Exact Match Signal

ClueWeb09-Cat-B Robuts04

Model NDCG@1 NDCG@3 NDCG@10 NDCG@1 NDCG@3 NDCG@10

LambdaMART 0.2893 0.2828 0.2827 0.5181 0.4610 0.4044

DRMM 0.2586 0.2659 0.2634 0.5049 0.4872 0.4528

KNRM 0.2663 0.2739 0.2681 0.4983 0.4812 04527

C-KNRM 0.3155 0.3124 0.3085 0.5373 0.4875 0.4586

C-KNRM* 0.2884 0.2927 0.2870 0.5007 0.4702 0.4510

C-KNRM*/T 0.3175 0.3122 0.3218 0.5404 0.5006 0.4657

C-KNRM is CONV-KNRM [Dai et al. WSDM18]
C-KNRM* is a version of CONV-KNRM without bigram-bigram interaction
C-KNRM*/T is C-KNRM* while using a LambdaMART tree ensemble to
replace the exact match signal of kernel vectors.
Takeaway: Tree signal intergration for neural kernel vectors
perform well and even boost ranking performance.

Choices on Tree-based Ranking Feature

ClueWeb09-Cat-B Robuts04

Model NDCG@1 NDCG@3 NDCG@10 NDCG@1 NDCG@3 NDCG@10

C-KNRM 0.3155 0.3124 0.3085 0.5373 0.4875 0.4586

C-KNRM* 0.2884 0.2927 0.2870 0.5007 0.4702 0.4510

C-KNRM*/T1 0.3175 0.3122 0.3218 0.5404 0.5006 0.4657

C-KNRM*/T2 0.3038 0.2998 0.2933 0.5149 0.4827 0.4535

Takeaway: Different features for tree-based
models can have significant impact on ranking
performance when approx. exact match signal.

T2 only includes term frequency features. T1 includes T2
plus proximity and page quality features.

Effectiveness of Kernel Value Obfuscation
ClueWeb09-Cat-B Robuts04

Model NDCG@1 NDCG@3 NDCG@10 NDCG@1 NDCG@3 NDCG@10

C-KNRM 0.3155 0.3124 0.3085 0.5373 0.4875 0.4586

C-KNRM* 0.2884 0.2927 0.2870 0.5007 0.4702 0.4510

C-KNRM*/TO
No Obfuscation

0.3175 0.3122 0.3218 0.5404 0.5006 0.4657

C-KNRM*/TO
r = 5

0.3178 0.3067 0.3100 0.5306 0.4987 0.4613

C-KNRM*/TO
r = 10

0.3121 0.3097 0.3100 0.5221 0.4980 0.4623

Takeaway: Kernel value obfuscation results in small
degradation (~1.6%) on ranking performance, when r = 10.

C-KNRM*/TO is C-KNRM* while using the tree-
approximated kernel vectors and kernel value obfuscation

Evaluation on Term Clustering Methods

ClueWeb09-Cat-B Robuts04

Clustering
Method

NDCG@1 NDCG@3 NDCG@10 NDCG@1 NDCG@3 NDCG@10

C-KNRM 0.3155 0.3124 0.3085 0.5373 0.4875 0.4586

Fixed Threshold
! = 0.3

0.3136 0.3078 0.3091 0.5225 0.4974 0.4621

Fixed Threshold
! = 0.7

0.3064 0.3048 0.3104 0.4886 0.4644 0.4169

Adaptive
! = 0.3

0.3052 0.3069 0.3120 0.5127 0.4892 0.4582

Adaptive
! = 0.7

0.3067 0.3012 0.3060 0.4899 0.4608 0.4090

Takeaway: 1) Clustering threshold choices have an impact on
relevance. 2) Adaptive thereshold is competitive to fixed threshold
while saving up to ~40 storage cost. (Details in Table.3 of this paper.)

C-KNRM*/TOC is C-KNRM* while using the tree-approximated
kernel vectors, kernel value obfuscation, and closed soft map

Concluding Remarks
• Contribution: a privacy-aware neural ranking
• Evaluation results with two datasets
1. NDCG can be improved by replacing the exact

match kernel of neural ranking with a tree
ensemble.

2. The obfuscation of kernel values does carry a
modest relevance trade-off for privacy.

3. The adaptive clustering for term closures
significantly reduces the storage demand with
some trade-off in relevance.

