On Adaptive Knowledge Distillation with Generalized KL-Divergence Loss for Ranking Model Refinement

Yingrui Yang
Department of Computer Science
University of California
Santa Barbara, California, USA
yingruiyang@cs.ucsb.edu

Shanxiu He
Department of Computer Science
University of California
Santa Barbara, California, USA
shanxiuhe@cs.ucsb.edu

Tao Yang
Department of Computer Science
University of California
Santa Barbara, California, USA
tyang@cs.ucsb.edu

ABSTRACT
Knowledge distillation is useful in training a neural document ranking model by employing a teacher to guide model refinement. As a teacher may not perform well in all cases, over-calibration between the student and teacher models can make training less effective. This paper studies a generalized KL divergence loss in a weighted form for refining ranking models in searching text documents, and examines its formal properties in balancing knowledge distillation in adaption to the relative performance of the teacher and student models. This loss differentiates the role of positive and negative documents for a training query, and allows a student model to take a conservative or deviate approach in imitating the teacher’s behavior when the teacher model is worse than the student model. This paper presents a detailed theoretical analysis with experiments on the behavior and usefulness of this generalized loss.

CCS CONCEPTS
- Information systems → Learning to rank.

KEYWORDS
Neural document ranking, knowledge distillation, KL divergence

ACM Reference Format:

1 INTRODUCTION
Large-scale search systems for text documents typically employ multi-stage ranking in practice. The first retrieval stage extracts top candidate documents matching a query from a large search index with a fast and relatively efficient ranking method. The second stage or a later stage uses a more complex machine learning algorithm to re-rank top results thoroughly. Recent sparse retriever studies exploit learned neural representations Deelhmpact [29], uniCOIL [13, 24] and SPLADE [8, 10]. An alternative method is dense retrieval which uses a dual encoder architecture with single-vector [34, 49], multi-vector document representations (e.g. [18, 35]).

To address the aforementioned weakness, the contribution of this paper is a generalized KL-divergence loss formula called weighted KL divergence (WKL) with a detailed analysis of its theoretical properties. Instead of following the regularization approach, this generalized loss guides knowledge distillation adaptively in ranking model refinement by differentiating the role of positive and negative documents and prioritizing the alignment of a student model and a teacher model for effectively separating positive and negative documents. This paper provides a lower bound analysis and a relative gradient contribution study to characterize the behavior of WKL during model training, compared to KL divergence. Our analysis shows that this generalized loss can dynamically assess the relative performance of the teacher and student model in each training query, and adaptively adjust the imitating behavior of the student model, so that the teacher model is followed when it performs better than the student model, and is conservatively followed or not followed at all when this teacher performs worse than the student model.

Our evaluation with MS MARCO passage and BEIR datasets shows that WKL works well with three student models including SPLADE sparse retrieval, ColBERT ranking with a multi-vector representation [35], and a single-vector SimLM dense retriever [43]. WKL can outperform a few other loss options for refinement after starting from the same warmup checkpoint in the evaluated models.
2 BACKGROUND AND RELATED WORK

Problem definition. We follow the notation used in [46]. Given query \(Q \), document search on a collection of \(N \) text documents (i.e., \(D = \{ d_j \}_{j=1}^N \)) finds top \(k \) results with a ranking mainly based on their query-document similarity. For training a retriever or reranker, contrastive learning is widely used. Let \(D^+ \) be the subset of all positive documents, and \(D^- \) be a subset containing all negative documents for query \(Q \). We assume that in a training dataset, all positive documents are ranked equally. That is true for the MS MARCO passage dataset where there are only binary labels.

The top one probability distribution over these documents is:

\[
P(d_i|Q, D^+, D^-, \Theta) = \frac{\exp(S(Q, d_i, \Theta))}{\sum_{j=1}^N \exp(S(Q, d_j, \Theta))}
\]

where \(\Theta \) is the vector of neural parameters involved. \(S(Q, d_i, \Theta) \) is a scoring function that captures the semantic similarity of a document with a query. For the simplicity of presentation when no confusion is caused, we will not list \(\Theta \) and \(Q \) explicitly in each symbol below and the loss function is specified for each query \(Q \) based on parameters \(\Theta \) under the training documents \(D^+ \) and \(D^- \).

Knowledge distillation is a training methodology that guides the refinement of a neural student model using a teacher model. Let \(p_i \) or \(q_i \) denote \(P(d_i|Q, D^+, D^-, \Theta) \) where \(p_i \) and \(q_i \) refer to the teacher’s and student’s predictions, respectively.

To train a ranking model, the standard loss function includes the negative log-likelihood or its variation: \(-\sum_{d_i \in D^+} \log q_i \). KL-divergence defined below is a popular choice for knowledge distillation as seen in recent ranking studies [34, 35, 39, 43, 50].

\[
L_{KL} = \sum_{d_i \in D^+ \cup D^-} p_i \ln \frac{p_i}{q_i}
\]

where \(p_i \) and \(q_i \) refer to the teacher and student’s top one probability for instance \(d_i \) in \(D^+ \) or \(D^- \), respectively. KL-divergence measures the distance between teacher’s and student’s distributions. It is known that the lower bound of KL-divergence loss is 0 and this is achieved when \(\forall d_i, p_i = q_i \).

Related retrieval methods. Large-scale search systems for text documents typically employ multi-stage ranking in practice. The first stage retriever aims to fetch top \(k \) documents using a fast and relatively simple method. There are two categories of retrieval techniques in deriving a document and query representation. One category of document retrieval is lexical sparse retrieval models, such as BM25, which take advantage of fast inverted index implementations on CPUs. This method gains its popularity recently due to the advancement of learned sparse representations that derive token weights from a BERT-based neural model [7, 10, 13, 24, 29, 38].

Dense retrieval is an alternative approach for first-stage search with a dual encoder architecture (e.g., [11, 45]). Distillation is shown to be effective for dense retrieval training and KL-divergence loss is a popular choice in recent studies, such as RocketQA ver2 [34], SimLM [43] and RetroMAE [44], AR2 [50], and UnifiedR [39].

Re-ranking and multi-vector representations. The second or later stage of search can employ a more complex re-ranker to re-evaluate the top \(k \) documents fetched by an earlier stage. There is a possibility to use a single-vector dense retrieval model for re-ranking. As pointed out in recent studies [23, 36, 41], single-vector dense models can struggle in handling out-of-domain datasets where training data is limited (including zero-shot retrieval), and in answering entity-centric questions. As a remedy, multi-vector representations including ColBERT and its new enhancements [22, 23, 28, 32] have been proposed to improve the model expressiveness by capturing fine-grained token-level information.

Listwise losses. A listwise loss design that considers the impact of relative rank positions of matched documents for a query has been shown to be useful in learning-to-rank and aligning such a loss with a targeted ranking metric approximately such as NDCG is ideal [27, 42]. Since neural information retrieval typically requires a large number of training examples to be effective, and training data such as MS MARCO only contains few labeled positive documents and sampled negative documents on a relatively large scale, it is more important to separate positive and negative documents properly for a query-specific loss. This motivates our design. The previous work has considered the relevance gain by swapping two documents in a listwise loss, e.g., LambdaMART [1], CL-DRD [48] uses a listwise loss based on rank position. Weighting training instances is studied in the focal loss for visual object classification [26], and such a loss is not designed for knowledge distillation. Nevertheless, our work is influenced by the above studies.

Regularization of knowledge distillation with a contrastive loss. A key weakness of knowledge distillation with KL divergence loss for document ranking is that a teacher model may not perform well in all cases and adaptive deprioritization is needed. A common approach to balance knowledge distillation is to combine the KL divergence loss with a contrastive rank loss such as the log-likelihood using a weighted sum as a regularization, defined as:

\[
L_{KLL} = \sum_{d_i \in D^+ \cup D^-} p_i \ln \frac{p_i}{q_i} - \lambda \sum_{d_i \in D^+} \log q_i
\]

where \(\lambda \) is a weight parameter controlling the trade-off between the contrastive loss and the original distillation loss. This loss is designed to push the student model away from the trained teacher model and improve its performance on unseen data.

3 LOSS DESIGN AND ANALYSIS

3.1 Design considerations

Our goal of loss design optimization is to control the imitation of the teacher’s rank scoring when refining a student model based on each training query so that when the student mimics when the teacher is better and it should restrain distillation or deviate when the teacher is worse. This can be analyzed by examining the gradient contribution of each document for parameter update during SGD-based training compared to KL divergence. As illustrated in Figure 1(a), a desired loss should follow the gradient update direction of KL divergence loss when the teacher model performs better than the student model for a training query. When the teacher performs worse, this targeted loss should deviate in an opposite update direction or at least restrain the update size cautiously even in the same update direction.

The weakness of BKL [46] is that its formula over-corrects the behavior of KL divergence and fails to meet the above objective in three significant case regions. As shown in Section 4, when a
teacher’s model performs much better than a student in ranking a negative example, BKL’s regularization formula unintentionally lets the student model deviate from the teacher’s ranking score in a wrong learning direction. It also fails in some cases to follow aggressively even when the teacher model performs worse for a positive document.

For two negative documents d_i and d_j where $q_i \geq q_j$, we require $y_{2,i} \leq y_{2,j}$.

Notice that KL divergence loss is a special form of WKL when setting all control parameters as zero ($y_{1,i} = y_{2,i} = 0$). WKL weights the divergence loss contribution from positive documents and negative documents differently. We explain how the above design matches the design consideration illustrated in Figure 1(b).

• Given two positive documents d_i and d_j, if $q_i \geq q_j$, then $(1 - q_j)p_i^2 \leq (1 - q_j)p_j^2$. Thus a low-scoring positive document is weighted more than a high-scoring positive document. When such a document is ranked close to negative documents, or even below some negative documents, that results in a poor boundary separation of positive and negative documents. Thus the alignment with the teacher’s model for such a positive document should be prioritized.

• Among negative documents, if $q_i \leq q_j$, requiring $y_{2,i} \leq y_{2,j}$ implies that $(q_i)^{y_{2,i}} \geq (q_j)^{y_{2,j}}$. High-scoring negative documents are weighted more and low-scoring negative documents have a reduced priority to follow what the teacher does. When the score of a negative example in a student model is high and is getting closer or exceeds some of the positive examples, the positive and negative document regions would overlap as shown in Figure 1(b) and then that is a high-priority case to address.

3.3 Loss minimization and its bound

The result below shows that the WKL loss has a constant lower bound, and thus training that minimizes such a loss has a boundary to hit. If a loss function has no lower bound, training would not converge. Note that p_i values from the teacher’s model are constant.

Theorem 1. Loss minimization. When $y_{1} \geq 1$ or $y_{1} = 0$,

$$L_{WKL} \geq \sum_{d_i \in D^+} p_j \ln \frac{p_j}{q_j} - \sum_{d_i \in D^+} p_i q_i^{2 y_{1,i}} \ln q_i + \sum_{d_i \in D^-} \frac{y_{1}}{\log e} \sum_{j \in D^+} q_j \ln q_j + \sum_{d_i \in D^-} p_i \ln p_i. \quad (3)$$

When $0 < y_{1} < 1$,

$$L_{WKL} \geq \sum_{d_i \in D^+} p_j \ln \frac{p_j}{q_j} - \sum_{d_i \in D^+} p_i q_i^{y_{1,i}} \ln q_i + \frac{y_{1}}{\log e} \sum_{d_i \in D^-} q_j \ln q_j + (1 - y_{1}) \sum_{d_i \in D^+} p_j \ln p_j + \sum_{d_i \in D^-} p_i \ln p_i. \quad (4)$$

Proof. When $y_{1} \geq 1$, we follow Bernoulli’s inequality $(1 - q_i)^{y_{1}} \geq 1 - r q_i$, given $0 \leq q_i \leq 1$. Since $\ln p_i \leq 0$ and $\ln q_i \leq 0$,

$$L_{WKL} = \sum_{d_i \in D^+} (1 - q_j)^{y_{1,i}} p_j \ln p_j + \sum_{d_i \in D^-} q_i^{y_{1,i}} p_i \ln p_i - \sum_{d_i \in D^+} (1 - q_j)^{y_{1,i}} p_j \ln q_j - \sum_{d_i \in D^-} q_i^{y_{1,i}} p_i \ln q_i \geq \sum_{d_i \in D^+} p_j \ln p_j + \sum_{d_i \in D^-} p_i \ln p_i - \sum_{d_i \in D^+} (1 - q_j) p_j \ln q_j - \sum_{d_i \in D^-} q_i^{y_{1,i}} p_i \ln q_i$$

Figure 1: (a) Loss design goal: Adaptive control of student model learning from teacher compared to the KL divergence loss. (b) Prioritize separation of positives and negatives in student ranking.
\[
L_{WKL} \geq \sum_{d_j \in D^+} p_j \ln \frac{p_j}{q_j} + \sum_{d_j \in D^-} p_j q_j^{2\gamma_j} \ln q_j + \frac{y_1}{\log e} \sum_{d_j \in D^+} q_j \ln q_j + \sum_{d_j \in D^-} p_j \ln p_i.
\]

When \(\gamma_1 = 0\),
\[
L_{WKL} \geq \sum_{d_j \in D^+} p_j \ln \frac{p_j}{q_j} + \sum_{d_j \in D^-} p_j q_j^{2\gamma_j} \ln q_j + \sum_{d_j \in D^-} p_j \ln p_i.
\]

When \(0 < \gamma_1 < 1\), we first show that \((1 - x)^{\gamma_1} \geq \gamma_1(1 - x)\) with \(x \in [0, 1]\). It is true when \(x = 0\) and \(x = 1\). For \(x \in (0, 1)\), let function \(f(x) = (1 - x)^{\gamma_1} \gamma_1 x\). Then \(f'(x) = -\gamma_1(1 - x)^{\gamma_1 - 1} + \gamma_1 < 0\). Then \(f(x)\) is monotonically decreasing and \(f(x) > f(1)\) for \(x \in (0, 1)\), which leads to \((1 - x)^{\gamma_1} > \gamma_1(1 - x)\). We apply this inequality for \(x = q_j\) for a positive document below.

4 RELATIVE GRADIENT CONTRIBUTIONS

Notice that \(p_i\) and \(p_j\) from the teacher’s model in the above bound expressions are constants. The proof for Theorem 2 is based on Theorem 1 and is listed in Appendix A.

Based on the components of the derived lower bound in Theorem 1, minimizing WKL will minimize the original KL-divergence loss for positive documents and maximize the entropy among them. This lower bound minimization implies a balanced trend towards a narrower gap between teacher’s and student’s predictions of positive documents and relatively equal student predictions among them while preferring low scores for negative documents.

4 RELATIVE GRADIENT CONTRIBUTIONS

We analyze the impact of up-weighting and down-weighting individual KL-divergence terms in terms of their corresponding gradient contributions for parameter update during model refinement because gradients of the loss controls the update size to the network weight parameters in the SGD-based training process. Let \(\theta\) be one of parameters \(\Theta\) used in the computational network that maps the input features to score \(S(Q, d_i, \Theta)\) for each document \(d_i\) defined in Section 2. Then given Loss \(L_A\) and \(A\) can be WKL, BKL, or others.

\[
\frac{\partial L_A(i)}{\partial \theta} = \sum_{d_i \in D^+} \frac{\partial L_A(i)}{\partial q_i} \frac{\partial q_i}{\partial \theta} = \sum_{d_i \in D^+} \frac{\partial L_A(i)}{\partial q_i} \frac{\partial S(Q, d_i, \Theta)}{\partial \theta}
\]

where \(L_A(i)\) is the relevant loss term contributed by document \(d_i\).

For KL divergence loss \(L_{KL}\) in Equation (1), \(L_{KL}(i) = p_i \ln \frac{p_i}{q_i}\).

\[
\frac{\partial L_{KL}(i)}{\partial q_i} = -\frac{p_i}{q_i}
\]

To understand if a loss function \(L_A\) follows the KL divergence loss when a teacher model performs better than a student or not, we compare the pairwise ratio of the gradient contribution from document \(d_i\) in above additive formulas for \(\frac{\partial L_A(i)}{\partial q_i}\) compared to \(\frac{\partial L_{KL}(i)}{\partial q_i}\). Namely

\[
\frac{\partial L_A(i)}{\partial q_i} = g_A \frac{\partial L_{KL}(i)}{\partial q_i}
\]

The top portion of Table 1 gives the expected behavior of a knowledge distillation loss compared to KL divergence loss when a teacher model performs better or worse than a student. The bottom portion of Table 1 explains the meaning of different ranges of \(g_A\) value on the gradient contribution of document \(d_i\). Here the relative performance assessment of a teacher model and a student model for a document is defined below based on the relative ratio of teacher prediction and student prediction.

- A teach model performs better than a student model when \(p_i > q_i\) if \(d_i\) is a positive document when \(p_i < q_i\) if \(d_i\) is a negative document.
- A teach model performs worse than a student model when \(p_i < q_i\) if \(d_i\) is a positive document, and when \(p_i > q_i\) if \(d_i\) is a negative document.

For \(L_{WKL}\) the contribution \(L_{WKL}(i)\) from document \(d_i\) is \((1 - q_i)\)\(p_i \ln \frac{p_i}{q_i}\) for a positive document, and \(q_i^{2\gamma_i} p_i \ln \frac{p_i}{q_i}\) for a negative document. It is easy to verify that

\[
\frac{\partial L_{WKL}(i)}{\partial q_i} = g_{WKL} \frac{\partial L_{KL}(i)}{\partial q_i}
\]

\[
\frac{\partial L_{WKL}(i)}{\partial q_i} \geq \frac{2y_1}{\epsilon}
\]
Table 1: Expected gradient contribution behavior from document d_i in loss L_A compared to KL divergence

<table>
<thead>
<tr>
<th>Condition</th>
<th>Behavior interpretation on d_i contribution by L_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_A > 1$</td>
<td>Aggressively follow KL divergence</td>
</tr>
<tr>
<td>$g_A = 1$</td>
<td>Exactly follow KL divergence</td>
</tr>
<tr>
<td>$0 < g_A < 1$</td>
<td>Conservative follow</td>
</tr>
<tr>
<td>$g_A < 0$</td>
<td>Not follow. Deviate from d_i from KL Divergence</td>
</tr>
</tbody>
</table>

Table 2 gives a comparison of the behavior of WKL and BKL for the gradient contribution of an individual document d_i compared to KL divergence based on different g_{WKL} and g_{BKL} values and the relative ratio of teacher’s and student’s predictions p_i / q_i. Notice that when $p_i > q_i$, we consider a teacher model performs better than a student if d_i is D^+, and performs worse if d_i is D^-. When $p_i < q_i$, we consider this teacher model performs better than a student if d_i is D^-, and performs worse if d_i is D^+.

Table 2 lists the conditions representing three significant misbehavior regions, to be illustrated in Figure 2(a), in which BKL fails to meet the expectation discussed in the top portion of Table 1. WKL is well-behaved as shown from this table and its behavior is formally characterized by the following theorem.

Theorem 3. When a teacher model performs better than a student model in ranking a document for a query, $g_{WKL} > 0$. When this teacher model performs worse, $g_{WKL} < 1$, and $g_{WKL} < 0$ when $q_i \geq -\max (e \times p_i, \frac{1}{\gamma_1})$ for d_i is D^+ and when $\frac{p_i}{q_i} \geq e^{\frac{\gamma_1}{\gamma_2}}$ for d_i is D^-. When $g_{BKL} > 1$, $g_{WKL} < 1$, and $g_{WKL} = 0$ when $q_i \geq -\max (e \times p_i, \frac{1}{\gamma_1})$ for d_i is D^+ and when $\frac{p_i}{q_i} \geq e^{\frac{\gamma_1}{\gamma_2}}$ for d_i is D^-. When $p_i > q_i$, $g_{WKL} > 0$. When $p_i < q_i$, $g_{WKL} < 0$. When $p_i = q_i$, $g_{WKL} = 0$.

When $q_i \geq e \times p_i$, $g_{WKL} < 0$ if $q_i \geq -\max (e \times p_i, \frac{1}{\gamma_1})$. Thus $g_{WKL} < 0$ when $q_i \geq \frac{1}{\gamma_1}$. When $\frac{p_i}{q_i} \geq e^{\frac{\gamma_1}{\gamma_2}}$, $g_{WKL} < 0$. When $\frac{p_i}{q_i} < e^{\frac{\gamma_1}{\gamma_2}}$, $g_{WKL} > 0$.

To illustrate the comparison in Table 2 using an example, Figure 2(a) plots the gradient contribution ratio g_{WKL} in a blue dot and g_{BKL} in a purple triangle with $\lambda = 0.1$. The x-axis is $\frac{p_i}{q_i}$ varying from 0.01 to 10 at Figure 2(b) plots g_{WKL} with $\gamma_1 = \gamma_2 = 5, 3, 1$ marked as WKL-5 (a light blue triangle), WKL-3 (a dark blue dot), and WKL-1 (a purple square), respectively.

The rectangle red boxes marked the misbehavior regions show that the areas where the gradient contribution ratio values do not match the expected behavior described in the top portion of Table 1. From Figure 2(b), g_{WKL} values are outside the red misbehavior regions, and thus WKL follows KL divergence loss if the teacher model does better than the student, but it restrains gradient update with a conservative size, or deviates in an opposite direction when the teacher is worse.

From Figure 2(a), there are three significant misbehavior regions in red into which BKL gradient ratios fall, meaning BKL fails to meet the expectations as summarized in Table 2. There are two misbehavior regions into which WKL falls.

For example, Figure 2(b) illustrates that for positive documents, the teacher performs better when $\frac{p_i}{q_i} > 1$, $g_{WKL} > 0$ or exceeds 1 and WKL allows the student to follow the teacher’s parameter update direction. When the teacher under-performs with $\frac{p_i}{q_i} < 1$,
\(g_{WKL}\) become close to 0 or even negative, and the student does not learn much from the teacher or its learning deviates from the teacher’s learning direction. In comparison from the left portion of Figure 2(b), BKL still forces the student to follow the teacher’s direction with \(g_{BKL} > 0\) or even \(1\) in most cases when the teacher is worse. Thus WKL’s design corrects the misbehavior of BKL.

5 Evaluation Results

5.1 Evaluation setup for student models

We apply WKL in refining three student models during training.

- The SPLADE model [8, 10] which computes the weight score \(w_j\) of \(j\)-th token term for a sparse vector of document \(d\) as
 \[
 w_j = \sum_{i \in d} \log(1 + \text{ReLU}(H(i)^T E_j + b_j))
 \]

 where document \(d\) consists of a sequence of BERT last layer’s embeddings \((h_1, h_2, \ldots, h_n)\). \(E_j\) is the BERT input embedding of the \(j\)-th token and \(b_j\) is a token level bias. \(H(.)\) is a linear layer with activation and layer normalization.

- Two-stage search pipeline that combines the results of first-stage SPLADE retrieval and the second-stage ColBERT top-k ranking with a fusion [5, 21]. ColBERT’s scoring formula is:
 \[
 \sum_{h_j \in M(Q, \Theta)} \max_{H(h_i) \in M(d, \Theta)} H(h_i)^T H(h_j)
 \]

 where each document \(d\) and given query \(Q\) use a multi-vector representation \(M(d, \Theta)\) and \(M(Q, \Theta)\) respectively, and \(h_i, h_j\) are BERT last layer’s embeddings and \(H(.)\) is one linear layer with normalization on the output representation.

- Dense single-vector retriever SimLM [43]. It is a state-of-the-art dual-encoder with optimized pretraining [43, 44].

WKL parameters. We have considered the following special version of WKL, called CKL, and a preliminary evaluation with two student models can be found in [47]. This section provides more detailed and additional evaluation results with one extra student model. For negative document \(d_i\), we set \(y_{2,i} = y_1 - \beta_i\). The exponent weight bias \(\beta_i\) is defined as

\[
\beta_i = \alpha \left(\frac{1}{\pi(i)} - \frac{1}{|D|} \sum_{j \in D} \frac{1}{\pi(j)} \right).
\]

Here \(\pi(i), \pi(j)\) are the rank of negative document \(d_i\) and positive document \(d_j\) respectively. Bias \(\beta_i\) represents the importance of correcting the ranking position of negative document \(d_i\), compared against the harmonic average position of positive documents. The above use of a rank position is motivated by the previous work which considers the relevance gain by swapping two documents in a ranked order, e.g., LambdaMART [1] and CL-DRD [48]. The above expression satisfies \(|\beta_i| < 1\). Among negative documents, if \(q_i > q_j\), document \(d_j\) is ranked before \(d_i\) as \(\frac{1}{\pi(i)} > \frac{1}{\pi(j)}\). Thus \(\beta_i > \beta_j\). Then \(y_{2,i} < y_{2,i}\). That meets the requirement specified in Section 3.2.

Exponent bias \(\beta_i\) is updated based on its rank position immediately after each training iteration where \(q_i\) is recomputed, which makes the loss function non-differentiable. Thus during training, we opt to periodically update \(\beta_i\) using the latest student’s model performance, and the priority adjustment of each negative document is stable for a block of training iterations. This design allows \(\beta_i\) to be treated as a constant in the loss function. This is a reasonable tradeoff as model refinement that addresses ranking accuracy for a negative document takes a number of iterations and continuous \(\beta_i\) adjustment for such a document may not yield sufficient benefits.

Since \(y_1\) and \(\alpha\) determine the value of \(y_{2,i}\) for every document \(d_i\), the rest of this section will use two hyperparameters \(y_1\) and \(\alpha\) to adjust the configuration of WKL, and investigate the sensitivity with different choices of \(y_1\) and \(\alpha\) values in model refinement.

Datasets and metrics. We use the MS MARCO datasets for full passage ranking [2, 6]. MS MARCO contains 8.8 million passages and 502,940 training queries with binary judgment labels for each query. The development (Dev) query set contains 6980 test queries while the test sets in TREC deep learning (DL) 2019 and 2020 tracks provide 43 and 54 queries, respectively. Following the common practice, we report mean reciprocal rank (MRR@10) for the Dev set and NDCG@10 score for TREC DL test sets. The recall ratio at 1000 is another metric which is the percentage of relevant-labeled results appeared in the final top-1000 results. We also use BEIR which contains 13 publicly available datasets [41] for evaluating the zero-shot performance of the trained models.

Our evaluation implementation uses C++ and Python. The implementation of SPLADE model follows its official release [40] and sparse retrieval code in PISA [30] with some optimization [19, 33]. We follow the SBERT library [37] to implement ColBERT. Two teachers are used during training. For SimLM, we use the code

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Behavior of WKL</th>
<th>Behavior of BKL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive document (d_i), (p_i) is teacher prediction, (q_i) is student prediction.</td>
<td>(g_{WKL} \geq 0) Conservatively or aggressively follow</td>
<td>(g_{BKL} \geq 0) Conservatively or aggressively follow</td>
</tr>
<tr>
<td>Teacher: better (p_i > q_i) (\frac{\pi(i)}{</td>
<td>D</td>
<td>} \geq 1) to deviate</td>
</tr>
<tr>
<td>Student: better (p_i < q_i) (\frac{\pi(i)}{</td>
<td>D</td>
<td>} \geq 1) to deviate</td>
</tr>
</tbody>
</table>

Table 2: A behavior comparison of relative gradient contributions by document \(d_i\) in \(L_{WKL}\) and \(L_{BKL}\)
and checkpoint released in the SimLM project GitHub. The cross encoder teacher adopted for ColBERTv2 and SPLADE is MiniLM-L-6-v2 [31] with 0.407 MRR@10 on MS MARCO Dev on top of SPLADE retrieval. For SimLM, we use a cross encoder teacher from the released SimLM project [43] with 0.438 MRR@10. More information on training and configurations can be found in Appendix B.

5.2 Model refinement and parameter choices

<table>
<thead>
<tr>
<th>γ, α</th>
<th>Dev MRR@10</th>
<th>DL19 NDCG@10</th>
<th>DL20 NDCG@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0, 0.0</td>
<td>0.404</td>
<td>0.716</td>
<td>0.709</td>
</tr>
<tr>
<td>2.0, 0.5</td>
<td>0.404</td>
<td>0.733</td>
<td>0.725</td>
</tr>
<tr>
<td>2.0, 1.0</td>
<td>0.404</td>
<td>0.740</td>
<td>0.728</td>
</tr>
<tr>
<td>3.0, 0.0</td>
<td>0.405</td>
<td>0.735</td>
<td>0.717</td>
</tr>
<tr>
<td>4.0, 0.0</td>
<td>0.408</td>
<td>0.740</td>
<td>0.734</td>
</tr>
<tr>
<td>4.0, 1.0</td>
<td>0.410</td>
<td>0.735</td>
<td>0.731</td>
</tr>
<tr>
<td>4.0, 1.5</td>
<td>0.404</td>
<td>0.724</td>
<td>0.740</td>
</tr>
<tr>
<td>5.0, 0.0</td>
<td>0.409</td>
<td>0.737</td>
<td>0.722</td>
</tr>
<tr>
<td>5.0, 1.0</td>
<td>0.411</td>
<td>0.744</td>
<td>0.741</td>
</tr>
<tr>
<td>5.0, 1.5</td>
<td>0.407</td>
<td>0.742</td>
<td>0.731</td>
</tr>
<tr>
<td>6.0, 0.0</td>
<td>0.410</td>
<td>0.750</td>
<td>0.724</td>
</tr>
</tbody>
</table>

Table 3: Student performance when varying WKL parameters

Table 3 shows the relevance performance of the three student models refined by WKL for MS MARCO passage Dev set, TREC DL19, and DL20 under different hyperparameter γ and α values. The result shows that the refinement by WKL boosts the performance of each student model with a well-balanced relevance effectiveness across the tested datasets.

For the two-stage SPLADE/ColBERT pipeline, the model starting point after warmup and before WKL refinement is 0.399 MRR for the Dev set, and WKL boosts to 0.411 MRR. When γ = 1 is too small, WKL behaves similarly as KL-divergence and when γ becomes too big, the gradient will reduce quickly towards 0. Such a value is not preferred. Thus setting with γ = 5 and α = 1 is a good choice. For the SPLADE student model, the starting point after warmup allows the SPLADE retriever to reach 0.394 MRR@10. WKL refinement further boosts to 0.401 MRR. The middle portion of Table 3 lists the performance of SPLADE refined with WKL under different hyperparameters γ and α values as one can see, γ = 5 and α = 1 perform decently well and these are our default choice.

For the dense retrieval student model, the released SimLM checkpoint [3] gives 0.344 MRR@10 using the standard MS MARCO. Applying KL divergence further boosts to 0.365 MRR, and after this warmup, WKL delivers 0.395 MRR@10. Without this warmup, WKL delivers 0.381. The bottom portion of Table 3 lists the performance of SimLM refined with WKL after KL divergence warmup under different hyperparameter γ and α values. The result shows that setting with γ = 1 and α = 0 is a good choice for SimLM.

5.3 A comparison with related work

Table 4 compares the student models in the last three rows with the related baselines in terms of MRR@10 or NDCG@10. The result demonstrates that the refined student models are competitive to the state-of-the-art research. This table lists the published performance of SPLADE++ for sparse retrieval. For multi-vector representations, it lists dense retrievers with multi-vector representations using ColBERTv2, CITADEL, and ALIGNER. It also lists SLIM++ [22] which improves multi-vector representations with a sparse scheme. For two-stage search that combines SPLADE and ColBERT, this table lists the model performance with refinement by BKL [46] and WKL is better than BKL on the tested datasets.

Notice that our student model for dense retriever SimLM yields 0.395 MRR, below 0.411 reported in [3] which evaluates the modified MS MARCO dataset with title annotation. Title annotation is considered unfair in [20] since the original dataset released doesn’t utilize title information. All experiments for WKL follow the standard approach of using the original MS MARCO without title annotation.

The column for BEIR in Table 4 lists the average NDCG@10 of SimLM/WKL and SPLADE with title annotation. For SimLM/WKL w/o title, it gives details using the WKL-refined two-stage pipeline. This refined model performs well compared to the zero-shot performance of BM25 retrieval, sparse SPLADE++,
dense SimLM, and ColBERTv2. BM25/MiniLM uses BM25 retrieval and then re-ranks with the MiniLM cross-encoder.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>BM25</th>
<th>SPLADE++</th>
<th>ColBERTv2</th>
<th>BM25/MiniLM</th>
<th>WKL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBPedia</td>
<td>0.313</td>
<td>0.436</td>
<td>0.351</td>
<td>0.446</td>
<td>0.400</td>
</tr>
<tr>
<td>FQA</td>
<td>0.236</td>
<td>0.349</td>
<td>0.298</td>
<td>0.356</td>
<td>0.309</td>
</tr>
<tr>
<td>NQ</td>
<td>0.329</td>
<td>0.533</td>
<td>0.502</td>
<td>0.562</td>
<td>0.453</td>
</tr>
<tr>
<td>HotpotQA</td>
<td>0.603</td>
<td>0.693</td>
<td>0.568</td>
<td>0.667</td>
<td>0.677</td>
</tr>
<tr>
<td>NCpus</td>
<td>0.325</td>
<td>0.345</td>
<td>0.318</td>
<td>0.338</td>
<td>0.364</td>
</tr>
<tr>
<td>T-COVID</td>
<td>0.656</td>
<td>0.725</td>
<td>0.515</td>
<td>0.738</td>
<td>0.766</td>
</tr>
<tr>
<td>Touch-20</td>
<td>0.367</td>
<td>0.242</td>
<td>0.292</td>
<td>0.263</td>
<td>0.314</td>
</tr>
</tbody>
</table>

Table 5: Zero-shot performance (average NDCG@10) on BEIR

Table 6 compares a few other loss options when refining the SPLADE model. The loss options include MarginMSE loss [16] and KLL defined in Eq. 2. “CL-DRD” is a listwise loss in CL-DRD for curriculum learning [48]. For all loss options, the update direction is calculated under the same training setup in terms of negative samples, the starting warm-up checkpoint, and the machine environment. Recall@1000 for these losses is near identical as 0.983 for the Dev set, and thus it is not listed. This table marks the results with † if a baseline result is in statistically significant degradation from WKL. After a warmup, WKL outperforms the tested other loss options with a smaller advantage in the Dev set while having a larger improvement of DL’19 and DL’20 sets. For the SPLADE and ColBERT pipeline, WKL has a larger MRR gain for the Dev set compared to these loss options [47].

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Dev MRR@10</th>
<th>DL19 NDCG@10</th>
<th>DL20 NDCG@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss option</td>
<td>0.399†</td>
<td>0.656</td>
<td>0.689</td>
</tr>
<tr>
<td>MarginMSE</td>
<td>0.397†</td>
<td>0.664</td>
<td>0.678</td>
</tr>
<tr>
<td>KLDiv_logL</td>
<td>0.396†</td>
<td>0.669</td>
<td>0.672</td>
</tr>
<tr>
<td>CL-DRD</td>
<td>0.400</td>
<td>0.674</td>
<td>0.662</td>
</tr>
<tr>
<td>WKL</td>
<td>0.4013</td>
<td>0.7445</td>
<td>0.7206</td>
</tr>
</tbody>
</table>

Table 6: SPLADE refinement under different losses

6 CONCLUDING REMARKS

The contribution of this work is to provide a detailed analysis of a generalized KL divergence loss (WKL) in an easy-to-implement weighted format. Our lower bound analysis gives an insight into the behavior characteristic of WKL during model refinement. The relative gradient contribution study reveals that WKL follows the gradient update direction of KL divergence loss when the teacher model performs better than the student model for a training query. When this teacher performs worse, WKL deviates in an opposite update direction or restrains the update size cautiously in the same update direction.

The evaluation shows that WKL can boost the relevance of three student models for the tested datasets. WKL can outperform a few other loss options after a warmup. This warmup is necessary in the tested cases and thus WKL is useful for model refinement after initial training with another loss.

Our future work is to investigate the use of WKL in more ranking models and experiments. The limitation of this work is that the applicability of WKL is restricted to ranking applications where binary positive and negative labels are assigned per training queries. This considers that it is hard and costly to build a dataset at a large scale for ranker training with multi-level labels in practice. It is interesting to extend WKL in the future for training data with multi-level labels.

Acknowledgments. We thank Yifan Qiao for his help and the anonymous referees for their valuable comments. This work is supported in part by NSF IIS-2225942 and has used the computing resource of the ACCESS program supported by NSF. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

A PROOF OF THEOREM 2

Proof. Let $RHS(i)$ be the i-th component of the right-hand side of Inequality (3) or Inequality (4) in Theorem 1.

We further four cases in order to derive a lower constant bound.

Case 1) We consider the cases of $y_{ij} > 0$.

- We apply a known inequality: $\ln x \leq x - 1$ when x is positive and the equality is reached when $x = 1$.

$$\sum_{j \in D^+} p_j \ln \frac{p_j}{q_j} \geq \sum_{j \in D^+} p_j (1 - \frac{q_j}{p_j}) \geq \sum_{j \in D^+} p_j - \sum_{j \in D^+} q_j.$$

The lower bound is accomplished when $p_j = q_j$ for all positive documents. Since

$$\sum_{j \in D^+} p_j + \sum_{j \in D^+} p_i = 1 \text{ and } \sum_{j \in D^+} q_j + \sum_{j \in D^+} q_i = 1,$$

$$\sum_{j \in D^+} p_j \ln \frac{p_j}{q_j} \geq -\sum_{j \in D^+} p_i + \sum_{j \in D^+} q_i.$$

- Based on the above derivation, when $y_1 \geq 1$ or $y_1 = 0$,

$$RHS(1) + RHS(2) \geq -\sum_{j \in D^+} p_i + \sum_{j \in D^+} q_i - \sum_{j \in D^+} p_i q_j^{y_{ij}} \ln q_i,$$

$$\geq -\sum_{j \in D^+} p_i + \sum_{j \in D^+} p_i (q_i - q_j^{y_{ij}} \ln q_i),$$

$$\geq -\sum_{j \in D^+} p_i.$$

When $0 < y_1 < 1$,

$$RHS(1) + RHS(2) \geq y_1 (-\sum_{j \in D^+} p_i + \sum_{j \in D^+} q_i) - \sum_{j \in D^+} p_i q_j^{y_{ij}} \ln q_i,$$

$$\geq -y_1 \sum_{j \in D^+} p_i + \sum_{j \in D^+} p_i (y_1 q_i - q_j^{y_{ij}} \ln q_i),$$

$$\geq -y_1 \sum_{j \in D^+} p_i.$$
Now we derive a lower bound for $RH(3) = \frac{p}{mq} \sum_{d_i \in D} q_i \log q_i$.
Since function $x \log x$ is convex and following Jensen’s inequality on a convex function,
$$\frac{\sum_{d_i \in D^*} q_i \log q_i}{s} \geq \frac{\sum_{d_i \in D^*} q_i j}{s} \log \left(\frac{\sum_{d_i \in D^*} q_j}{s} \right)$$
where $s = |D^*|$. Let $z = \sum_{d_i \in D} q_i$. Then
$$\sum_{d_i \in D^*} q_i \log q_j \geq (1 - z) \log \left(\frac{1 - z}{s} \right) \geq -\frac{2 \log e}{e} .$$
Expression $(1 - z) \log \left(\frac{1 - z}{s} \right)$ is bounded by $-\frac{2 \log e}{e}$ by computing its minimum value.

Adding the above component lower bounds together. When $\gamma_1 \geq 1$ or $\gamma_1 = 0, L_{WKL} = RHS(1) + RHS(2) + RHS(3) + RHS(4) \geq \sum_{d_i \in D} p_i (-1 + \ln p_i) - \frac{2 \gamma_1}{e}$.

When $0 < \gamma_1 < 1$,
$$L_{WKL} = RHS(1) + RHS(2) + RHS(3) + RHS(4) + RHS(5) \geq (1 - \gamma_1) \sum_{d_i \in D^*} p_i \ln p_i + \sum_{d_i \in D^*} p_i (-\gamma_1 + \ln p_i) - \frac{2 \gamma_1}{e}.$$
REFERENCES