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ABSTRACT
Interaction-based neural ranking has been shown to be effective
for document search using distributed word representations. How-
ever the time or space required is very expensive for online query
processing with neural ranking. This paper investigates fast approx-
imation of three interaction-based neural ranking algorithms using
Locality Sensitive Hashing (LSH). It accelerates query-document in-
teraction computation by using a runtime cache with precomputed
term vectors, and speeds up kernel calculation by taking advan-
tages of limited integer similarity values. This paper presents the
design choices with cost analysis, and an evaluation that assesses
efficiency benefits and relevance tradeoffs for the tested datasets.
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1 INTRODUCTION AND RELATEDWORK
Neural networks have been applied in information retrieval and
text mining tasks (e.g. [5, 9, 20, 23, 24, 33–36]). In general, exploiting
neural representation of words adds significant rank scoring com-
putation cost during query processing. While parallel computing
with a large number of CPUs or GPUs can accelerate, this paper
studies how to speed up neural rank scoring with an algorithmic
approximation to reach a reasonable query response time without
resorting to expensive hardware. This is important for a large online
query processing website which needs to dedicate more hardware
resource for handling high query traffic. Fast scoring also opens
opportunities to integrate a more complex neural scheme.

The previous research on neural ranking falls into the following
two categories: interaction-based or representation-based mod-
els [23]. The earlier work has focused on the representation based
models [11, 27] where each document and a query are separately
represented as vectors through a sequence of neural computations
and the final ranking is based on the similarity of the two representa-
tive vectors. The recent studies have focused on interaction-based
neural ranking models [5, 9, 34] where the word or term-level
similarity of a query and a document is explored first based on
their embedding vectors before applying an additional sequence
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of neural computation. These studies have shown their interaction
based models outperform the earlier representation-based mod-
els and thus our paper is focused on the acceleration of the three
interaction-based models, more specifically DRMM [9], KNRM [34],
and CONV-KNRM [5]. We find that the query processing time
cost in the above interaction-based models for computing query-
document interaction and deriving kernel values is dominating. For
CONV-KNRM, the time to prepare term vectors is very expensive.

The contribution of this paper is an LSH approximation of these
three neural methods with fast histogram-based kernel calcula-
tion and term vector precomputing for a runtime cache. Another
contribution is an analysis and experimental evaluation of design
choices and a demonstration using more complex dual embeddings
leveraging fast neural scoring. While our study is focused on the
above three models, LSH approximation may be used for other
interaction-based methods that employ cosine similarity (e.g. graph
embedding [35, 36]) and this is a future work.

Our work is motivated by the rich history of research on ap-
proximation with hashing such as LSH [1–4, 7, 8, 13, 15, 37] and in
various data-intensive applications [6, 10, 17, 18, 30]. The reason
to choose the Random Hyperplane LSH [4] is that the computa-
tion with hashed embeddings can not only preserve the semantic
similarity within a small error bound, but also allow us to take
advantage of the binary nature of sketch vectors for designing a
fast kernel calculation.

The acceleration of neural network computation has been stud-
ied for image classification with complex neural network structure
(e.g. [12, 26, 28] for binarization). Their work is less applicable to our
context where neural network involved is relatively simple and cost
of forward neural computation in query processing is one or two
orders of magnitudes smaller than interaction and kernel computa-
tion. To our knowledge, there is no research work on accelerating
neural ranking models for fast online query processing.

2 INTERACTION-BASED NEURAL RANKING
Interaction-based neural ranking can be formalized as perform-
ing computation: RankingScore = f (Ker (q⃗ ⊗ d⃗ )), where q⃗ and d⃗
are two sequences of embedding vectors for the query and the
document respectively, ⊗ is the interaction operation, Ker is the
operation for kernel computation, and f is the operation involving
neural network computation. Embedding vectors in q⃗ and d⃗ can be
term vectors for unigram/n-gram in query/document [5, 9, 34], or
can be entity vectors for existing entities in query/document [35].
Those embedding vectors can be learned from one of many existing
neural embedding models [19, 25] or generated by additional neural
operations [5].
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Table 1: Frequently used notations.

Notation Definition

q⃗ Embedding vectors for query terms.
d⃗ Embedding vectors for document terms.
m Number of words in the query.
n Number of words in the document.
l Dimension of pre-trained unigram word embedding vectors.
h The largest span of n-gram considered in CONV-KNRM [5].
F The number of filters in CONV-KNRM [5].
M The interaction matrix between query and document.
V Vocabulary size of unigrams in the corpus.
H Vocabulary size of n-grams in the corpus where n ≤ h.
N Number of documents in the corpus.
R Number of kernels in the neural ranking model.
µk Mean of the k-th kernel in KNRM and CONV-KNRM.
σk Standard deviation of the k-th kernel.
Kk (Mi ) The k-th kernel value for the i-th query term.
b Number of bits in hashing footprint.

Interaction operator ⊗. This step outputs an interaction matrix
M containing vector similarities for all pairs of one query term
vector and one document term vector.
• DRMM [9] and KNRM [34] consider only the interaction
between unigrams in the query and unigrams in the doc-
ument. Each matrix element Mi j is the cosine similarity
between the term vectors of the i-th query term and the j-th
document term.
• CONV-KNRM [5] extends KNRM to incorporate n-grams
in building a set of interaction matrices. Let h be the maxi-
mum n-gram length considered and there are h2 interaction
matrices. Each interaction matrix Mr,t where 1 ≤ r , t ≤ h
denotes a cosine similarity score matrix between query term
vector modeled with r -gram embeddings and document term
vectors modeled with t-gram embeddings. These n-gram
embeddings are computed from convolution filters and pre-
trained unigram embedding vectors. The dimension of n-
gram embeddings depends on the number of filters involved
(defined as F ).

Since computing each interaction matrix requires a dot prod-
uct computation for each matrix element, given a document with
n terms, the time complexity to compute the similarities of this
document form-word query is Θ(nml ) for DRMM and KNRM, and
Θ(nmF ) for CONV-KNRM.
Kernel computation operator Ker . Ker is used for extracting
multi-level soft matching features and generating inputs for neural
network computation.
• In DRMM, each interaction matrix element represents the
similarity between a query term and a document term, vary-
ing from −1 to 1. The interval [−1, 1] is divided into a set of
non-overlapping ranges. Thus a histogram can be generated
where each bucket represents one range, and the value of a
bucket represents the number of similarities falling into that
bucket. Different buckets contain soft matching signals of
different levels, just like kernels in the Kernel Pooling [34].
Thus in this paper, for simplicity, we denote each bucket as a
kernel. Calculating all kernel/bucket values requires Θ(nm)
time complexity.

• In KNRM and CONV-KNRM, each kernel is defined using
a distribution and computation involved is called kernel
pooling. There are R kernels defined in advance and symbols
µk and σk denote the mean and standard deviation of the k-
th kernel respectively. Each element value of an interaction
matrix contributes kernel computation. For KNRM with one
interaction matrixM , the kernel value of the k-th kernel for
the i-th query term is:

Kk (Mi ) =
n∑
j=1

exp(−
(Mi j − µk )

2

2σ 2
k

)

where n is the number of terms in the document. The output
of kernel computation is a vector of R size:
(
∑m
i=1 logK1 (Mi ), · · · ,

∑m
i=1 logKR (Mi ))

T . Building this ker-
nel for each query term requires Θ(nmR) time given there
are R kernels.
In CONV-KNRM, there are h2 interaction matrices and the
total cost of this kernel computation is Θ(nmRh2). This ex-
pression does not include the cost of preparing term vectors
and we discuss this issue further in Section 3.3.

Forward neural network computation f . This step uses a for-
ward neural network to compute the final ranking score based on a
vector of kernel values computed in the previous step.
• In DRMM, a multilayer perception network with one hidden
layer of a constant size is used and the logarithms of the
kernel/bucket values of the similarity ranges for the i-th
query terms form an input vector. The final ranking score is
a weighted linear combination of the neural network outputs
of all query terms. The time cost of computing is in Θ(mR).
• In KNRM, a simple single-layer network is used and the
input vector is a vector of size R computed in the previous
step. The time cost for neural network computation is in
Θ(R).
• In CONV-KNRM that extends KNRM, the formula of forward
neural computation in this step is about the same as KNRM
except that the output of the previous step produces a vector
of dimension Rh2 given h2 interaction matrices and this
vector is the input of this step. Thus the time cost for forward
neural network computation is in Θ(Rh2).

3 NEURAL RANKINGWITH LSH
We summarize the time cost of above interaction-based neural
ranking steps for query processing in Table 2. This section proposes
three techniques to bring down time cost of query processing:
approximation of term vectors with LSH in Section 3.1, fast kernel
computing in Section 3.2, and precomputing of term vectors for
CONV-KNRM in Section 3.3. The query-processing time cost after
using our three techniques is listed in Table 2 also.

3.1 LSH for fast interaction computation
We adopt a hyperplane LSH [4], motivated by the previous work in
clustering and nearest neighbor search [17, 30] that adopts such a
scheme also. In [17, 30], multiple LSH signatures are produced for
each document and the probability of similar documents falls into
the one of LSH buckets is computable. In our context, we only use
one LSH signature to approximate one term vector.



Table 2: Time complexity in Θ notion for ranking one single document with and without LSH.

Models DRMM KNRM CONV-KNRM CONV-KNRM
without precomputing with precomputing

With LSH? No Yes No Yes No Yes No Yes

Vectors - - - - (n +m)h2l F (n +m) (hbF + h2l F ) h2mlF (mhbF + h2mlF )
Interaction nml nm nml nm h2nmF h2nm h2nmF h2nm
Kernel nm nm nmR nm + bmR h2nmR h2 (nm + bmR ) h2nmR h2 (nm + bmR )
Neural mR mR R R Rh2 Rh2 Rh2 Rh2

Table 3: Dominating factor of storage space cost in bytes with and without LSH using a reference or value based method.

Models DRMM KNRM CONV-KNRM CONV-KNRM
without precomputing with precomputing

With LSH? No Yes No Yes No Yes No Yes

Reference 4nN + 4V l 4nN +Vb/8 4nN + 4V l 4nN +Vb/8 4nN + 4V l 4nN + 4V l 4hnN + 4HF 4hnN + Hb/8 + 4V l
Value 4nN l nNb/8 4nN l nNb/8 4nN l + 4V l 4nN l + 4V l 4hnFN + 4HF hnbN /8 + 4V l

Formally, for each embedding vector, we generate b-bit footprint

LSH(v )[i] =



1 ri · v > 0,
0 ri · v ≤ 0.

Here LSH(v )[i] denotes the i-th bit of the LSH footprint of the vec-
torv , and each vector ri is independently sampled by a multivariate
normal distribution from the vector space of the embeddings. The
time complexity to compute the above LSH for an embedding is
Θ(bl ), where l is the embedding length. In particular, for CONV-
KNRMwe need to compute LSH for then-gram vectors in the query,
which needs Θ(mhbF ), since query ofm words hasmh n-grams (s.t.
n ≤ h), and the length of each n-gram vector is F .

Then we estimate the angle between two embeddings by the
Hamming distance between their LSH footprints. Formally, given
any two embeddings x and y with angle θ between them, estimator
θ̂ is defined as θ̂ = π

b D (LSH(x ), LSH(y)), where D (·, ·) denotes
Hamming distance (Eq. (2) in [30]). Modern hardware is fast at
finding Hamming distance between two words, or equivalently,
counting the set bits of the XORed words. The time complexity
of deriving the Hamming distance that approximates the cosine
similarity is Θ(nm) for one n-word document andm-word query.

The above approximation error is estimated as follows. Given
any two embedding vectors u, v with angle θ between them, the
probability that both hyperplane LSH footprints have the identical
i-th bit is Pr[LSH(u)[i] = LSH(v )[i]] = 1 − θ/π (also in [4, 17, 30]).
Since each bit in the footprint is sampled independently, the Ham-
ming distance between the LSH footprints is a random variable of
Binomial distribution with p = θ/π . Let b be the number of bits in
the LSH footprint. Then the mean and variance of the Hamming dis-
tance areE[D (LSH(u), LSH(v ))] = b θ

π ,Var[D (LSH(u), LSH(v ))] =
b θ
π

(
1 − θ

π

)
. For the above angle estimator betweenu andv ,E[θ̂ ] =

π
b E[D (LSH(u), LSH(v ))] = θ . Note that for an unbiased estimator,
mean squared error (MSE) equals to its variance [31]. Then:

MSE = Var[θ̂] =
π 2

b2
Var[D (LSH(u), LSH(v ))]

= π
θ

b

(
1 −

θ

π

)
=

π 2

b

θ

π

(
1 −

θ

π

)
≤

π 2

4b
.

For a relatively large b value, the upper bound of MSE is fairly
small. For example, when b = 256,MSE ≤ 0.00963.

There is a line of work to derive feature hashing [32] that can
preserve cosine similarity with the same error variance. But each
hashed value in [32] is a sequence of float point numbers and
thus using such a method only accomplishes the dimensionality
reduction, does not significantly decrease the time complexity.

3.2 Fast kernel computation
Once interaction matrices are derived, kernel computation still
takes significant time compared to other steps in neural ranking.
Our key idea for the second optimization technique is to take advan-
tages that the distinct number of similarity values is limited after
the use of Hamming distances as an approximation. With this in
mind, we transform the kernel computation for a histogram-based
formula with a significantly lower computational cost. With b-bit
hyperplane LSH-based footprints, since there are at most b + 1 val-
ues of Hamming distance, we first build a histogram on Hamming
distances, and then compute kernels based on the histogram values.

For interaction matrixM in KNRM with R kernels, each kernel
can be computed as

Kk (Mi ) =
n∑
j=1

exp(−
(cos θ̂i j − µk )2

2σ 2
k

)

=

n∑
j=1

exp(−
(cos( πb Di j ) − µk )

2

2σ 2
k

)

=

b∑
d=0
|{j : Di j = d }|︸           ︷︷           ︸
online computed

· exp(−
(cos( πb d ) − µk )

2

2σ 2
k

)︸                          ︷︷                          ︸
offline computed

,

where Di j denotes the Hamming distance between the i-th query
term footprint LSH(q[i]) and the j-th document term footprint
LSH(d[j]). Set {j : Di j = d } is the histogram on Hamming distances
between query and document terms. The above formula marks the
part of computation conducted in the offline time.

The above histogram-based method reduces time complexity
of kernel computing from Θ(nmR) for the original algorithm to
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Figure 1: Architecture of interaction-based neural ranking.

Θ(nm+bmR). For web page ranking, a web page has 500 to 1Kwords
on average, and neural ranking models usually take 20 to 50 kernels,
there is a big cost difference. With b = 256, n = 807, and R = 30,
the reduction ratio from above cost order expression Θ(nmR) to
Θ(nm + bmR) is about 2.85. In our evaluation, we have observed
around 417.38x speed improvement with the above histogram-based
method. The reason for this large extra acceleration is partially
because the original computation uses floating point arithmetic
and our histogram-based method uses integer arithmetic. Another
reason is that it allows us to re-arrange computation for better
cache performance using a matrix notation and we will present
more details on computation re-arrangement in an extended paper.

For CONV-KNRM with h2 interaction matricesMr,t where 1 ≤
r , t ≤ h, the above transformation is applied to each of R kernels
for each of such matrices. Thus

Kk (M
r,t
i ) =

b∑
d=0
|{j : Dr,t

i j = d }|︸            ︷︷            ︸
online computed

· exp(−
(cos( πb d ) − µk )

2

2σ 2
k

)︸                          ︷︷                          ︸
offline computed

where Dr,t
i, j is the Hamming distance between the i-th LSH foot-

print of r -gram query term and the j-th LSH footprint of t-gram
document term. The cost of kernel computation drops from the
original complexity of Θ(h2nmR) to Θ(h2 (nm + bmR)).

3.3 Preparation of Term Vectors and Space Cost
For DRMM and KNRM, term vectors used for neural ranking di-
rectly adopt pretrained word embeddings (e.g. [19]), and thus there
is no extra computation needed. In CONV-KNRM, a set of F convolu-
tion filters is applied to n-gram vectors based on word embeddings.
The time complexity to prepare these document term vectors is
Θ(nh2lF ) while deriving query term vectors costs Θ(mh2lF ).

Since n >> m, the time of this convolution computation for
deriving document term vectors is dominating if it is conducted
at the runtime when a query is handled. Our evaluation shows
that without precomputing, CONV-KNRM spends too much time in
preparing document term vectors. To reduce this cost, precomputa-
tion of these vectors can be employed to conduct such computation
at the offline time. On the other hand, the disadvantage of precom-
puting is that it requires a substantial amount of space to store
precomputed vectors, and LSH mapping can reduce this need sig-
nificantly. The impact of incorporating LSH is described as follows.

• Without precomputing, following the original step of CONV-
KNRM, we need to perform the convolution computation to
derive all term vectors. Then we need extra Θ(mhbF ) time to
apply LSH to all unigram and n-gram term vectors for a query
and documents to be ranked.
• With precomputing, the convolution computation and LSH map-
ping of all document term vectors are conducted in the offline
time. The online query processing only needs to spend time to
prepare query term vectors, which costs Θ(mhbF + h2mlF ).
Caching and space cost. Table 3 lists the dominating factors of

disk space cost in bytes for the three algorithms with and without
LSH or precomputing, assuming each term ID takes 32 bits and
each floating number takes 32 bits. We describe two ways of storing
document term representations as follows.

1) Reference based method.
Each term including a unigram or n-gram in the vocabulary is

assigned an ID. Each term ID gives a reference to where the word
embedding or term vector is stored. For each document, we need
to store all the IDs of its necessary words or terms based on vector
precomputing. Figure 1 illustrates the flow of neural ranking with
two caches for runtime query processing. One cache is called the
forward index cache which gives a mapping from a document ID
to a set of term IDs this document owns. The second cache is called
the term vector cache which is a mapping from a term ID to a term
vector or its hash footprint. There is much higher access traffic to
the second cache in ranking a document and thus the high hit ratio
of the second cache is extremely important otherwise the cache
miss would lead to a large number of random I/O operations to the
disk.

2) Value based method. We store the values of embedding
vectors or LSH footprints together with each document ID and they
are directly accessible by a document ID. This method is useful
when the memory cache demand is too high in the above reference
method while it demands a larger amount of disk space.

For DRMM and KNRM with LSH, the main storage space cost
for the reference method is about 4hnN to store the term IDs of
documents and Vb/8 + 4V bytes to store the map from term IDs
to hash footprints where cost factor 4V is less significant. The
second portion is the memory cache demand for fast access of hash
footprints. The overall storage with LSH has a decent decrease
compared to that without LSH. The size of the term-vector cache
drops from about 4Vl without LSH to about Vb/8 with LSH. When
b = 256, l = 300, the reduction ratio is about 32.8x.

For CONV-KNRM with LSH, if the reference based method is
used with precomputing, the disk space needs 4hnN bytes for stor-
ing term IDs of N documents, and Hb/8 + 4H bytes for hash foot-
prints and index where 4H is less significant. Under precomputing,
the size of the term-vector cache demand drops from about 4HF
without LSH to about Hb/8 with LSH. When F = 128,b = 256, the
cache space demand reduction ratio is about 6x.

To compare the storage cost of reference-based and value-based
methods, using ClueWeb Category B dataset parameters with about
50 million documents, the dominating cost factor of storage space
in CONV-KNRM with precomputing is 4hnN using the reference-
based method and hnbN /8 using the value based method. The ratio
of the value-based storage space cost over reference-based cost is
approximately b

32 , which is 8 when b = 256. With this size of the



database, the ratio of the value-based space cost over reference-
based cost is also approximately nNb/8

4nN = 8 for DRMM with LSH
and KNRM with LSH, respectively. With b = 256, the term vector
disk space of the value-based method for CONV-KNRM is about
2.6TB for the ClueWeb dataset while the reference-based method
costs about 351GB. Our evaluation uses the reference-based method.

4 EVALUATION
The objectives of our evaluation are to compare ranking relevance
after applying LSH approximation with our design choices, demon-
strate its time and space benefits, and assess the impact of using
more complex embeddings on relevance and time cost.
Datasets and settings.We mainly report the performance using
ClueWeb09 Category B with 50M webpages and 200 queries from
the TREC Web Tracks 2009-2012 with 5-fold cross validation. We
have also used two other smaller TREC datasets: TREC45 based
on TREC Disks 4 and 5 with 0.5M news articles and AQUAINT
with 1M news articles. Following the settings in [5, 9, 34], we first
exclude spam webpages and rerank for top 1,000 documents of each
query given by Galago initial ranking in the Lemur system [16]. For
DRMM, the neural network has R = 30 kernels as input, and has a
hidden layer of 5 neurons. For KNRM and CONV-KNRM, we do not
update the embeddings during the training for simplicity, hence
the accuracy scores may have a degradation compared with the
results from the original papers. Other parameters used are: l = 300,
F = 128, h = 2. We do not compare with the representation-based
methods since the previous work shows that the interaction-based
models perform better [23].
Word representationwith dual embeddings.The previouswork
in DRMM, KNRM, CONV-KNRM typically used pretrained embed-
dings (e.g. word2vec ) as a starting point. Nalisnick et al. firstly
introduced Dual Embedding [21] for document ranking, given the
fact that word2vec [19] with Negative Sampling actually trains
two sets of word embedding vectors, defined as “input” (IN) and
“output” (OUT) vector representations. Vector interactions between
IN and IN are typically used in DRMM, KNRM, CONV-KNRM, and
others for measuring term similarity. To leverage dual embedding
interaction-based neural ranking models, we add a “dual” interac-
tion matrix using IN vector representations and OUT vector rep-
resentations and applying the same kernel computing techniques
with the doubled time cost.
Ranking relevance and query processing time with hyper-
plane LSH. Table 4 shows the NDCG@20 scores [14] and average
query time for different neural ranking models when using regular
word embedding vectors or dual embeddings. The query process-
ing C++ code for DRMM, KNRM, and CONV-KNRM is compiled
with an optimization flag in a Linux machine which has Intel Xeon
E5-2680v3 2.5 GHz dual socket and 128 GB DDR4 DRAM, and a
local SSD with about 0.1 ms latency [29]. All the results are within
confidence interval ±0.01 with p-value < 0.05. When increasing
the number of bits for LSH, the NDCG score is getting closer to
the original ones starting 64 bits, and the scores of 256 bits are
fairly close to the original ones and we select this number as our
choice in conducting other comparison. The competitiveness us-
ing LSH for NDCG@5 and @10 is similar. From Row 2, even time
cost is roughly doubled, dual embeddings does yield a good im-
provement of relevance score compared to regular embeddings and

LSH approximation can make it one or two orders of magnitude
faster while retaining most of the relevance benefits from dual
embeddings.

For average query time in Table 4, we use precomputing to derive
the bigram and unigram embeddings for CONV-KNRM with and
without LSH. The query response time in this table does not include
the I/O cost to access document term embedding vectors. With 256
bits, DRMM with LSH is 4.12x faster than DRMM; KNRM with LSH
80.54x faster than KNRM; CONV-KNRM with LSH is 106.52x faster
than CONV-KNRM. A similar speedup is accomplished when dual
embeddings are used. Here we assume that term IDs of each docu-
ment in processing a query are cached in memory. This forward
index cache shown in Figure 1 does not need to be large and in the
worst case with a cache miss, the I/O cost of accessing 1,000 such
vectors is about 100ms from a local SSD. Thus we do not discuss
the size demand of such a cache in this paper.

Figure 2: Errors of cosine similarity estimated with LSH.

To explain why the above three algorithms with LSH approxima-
tion can still be competitive in relevance when using a reasonable
number of hash bits, Figure 2 shows that the mean squared errors
of LSH-based cosine similarity approximation is relatively small
for word2vec embeddings of unigrams and bigrams when increas-
ing the number of hyperplane LSH bits. For example, when the
number of LSH bits becomes 256, the actual approximation error is
within 0.009, which corroborates that the relevance loss in Table 4
is reasonably small with such approximation.
Query time breakdown and impact of design optimization.
With b = 256, Table 5 shows query time breakdown for different
models in four steps discussed in Section 2 and Section 3 to re-rank
1,000 documents for a query for ClueWeb. Again document I/O
cost is not included, which can be as high as 100ms per query. The
underlined numbers are estimated since they require either too
much time or too much space in experiments. For all methods, the
time for forward neural computation step is relatively less signifi-
cant compared with other steps. For DRMM, the interaction matrix
computing time dominates and LSH produces a great reduction.
For CONV-KNRM, the time cost for preparing term vectors cor-
responding word and n-gram embeddings is very expensive, and
precomputing yields a significant advantage. For both KNRM and



Table 4: NDCG@20 scores and online query processing time in milliseconds.

Model DRMM KNRM CONV-KNRM Dual DRMM Dual KNRM Dual CONV-KNRM
NDCG@20 Time NDCG@20 Time NDCG@20 Time NDCG@20 Time NDCG@20 Time NDCG@20 Time

Original 0.2580 140 0.2581 1,047 0.2688 4,900 0.2600 287 0.2665 2,073 0.2786 11,813

16-bit LSH 0.2449 7 0.2437 6 0.2563 13 0.2372 20 0.2371 7 0.2364 40
32-bit LSH 0.2464 13 0.2418 7 0.2521 18 0.2469 20 0.2557 13 0.2569 43
64-bit LSH 0.2489 20 0.2464 8 0.2571 20 0.2526 27 0.2563 26 0.2585 46
128-bit LSH 0.2528 27 0.2491 11 0.2619 27 0.2542 33 0.2633 27 0.2629 68
256-bit LSH 0.2518 34 0.2522 13 0.2640 46 0.2586 54 0.2627 33 0.2724 127
512-bit LSH 0.2551 48 0.2576 27 0.2680 86 0.2582 73 0.2624 80 0.2709 260
1024-bit LSH 0.2522 60 0.2561 53 0.2662 160 0.2573 140 0.2594 147 0.2753 548

Table 5: Query time breakdown in milliseconds for ranking 1000 documents.

Models DRMM KNRM CONV-KNRM CONV-KNRM DRMM KNRM CONV-KNRM CONV-KNRM
Precomputing LSH LSH LSH Precomp. LSH

Vect. preparation 0 0 76,800.5 0.5 0 0 109,568.7 0.7
Interaction ⊗ 121.0 50.6 1842.2 1842.2 13.7 9.7 32.0 32.0

Kernel Comp. Ker 10.1 993.2 3046.9 3046.9 11.8 1.8 7.3 7.3
Forward NN f 9.0 3.3 9.9 9.9 8.8 1.7 6.7 6.7

Total (ms) 140.1 1047.1 81,700.0 4899.5 34.3 13.2 109,614.7 46.7

Table 6: The size of disk storage and the memory cache for term vectors in GB.

Models DRMM KNRM CONV-KNRM CONV-KNRM
w/o precomputing w/ precomputing

With LSH? No Yes No Yes No Yes No Yes

TREC45 1.8 (0.8) 1.0 (0.02) 1.8 (0.8) 1.0 (0.02) 1.8 (0.8) 1.8 (0.8) 10.3 (8.3) 3.4 (1.3)

AQUAINT 2.7 (0.9) 1.8 (0.02) 2.7 (0.9) 1.8 (0.02) 2.7 (0.9) 2.7 (0.9) 12.5 (8.9) 5.1 (1.4)

ClueWeb09 178.4 (16.4) 162.5 (0.5) 178.4 (16.4) 162.5 (0.5) 178.4 (16.4) 178.4 (16.4) 492.4 (169.5) 351.0 (28.2)

CONV-KNRM, LSH reduces interaction matrix and kernel value
computation significantly. The time for kernel computation is no
longer dominating and our histogram-based kernel algorithm yields
417.38x reduction.

Table 6 compares the space requirements for three datasets with
b = 256. The parameters of the datasets are listed blow. For the
TREC45 data set, N = 0.528 million, average n = 484, V = 0.67
million, H = 16.2 million. For the AQUAINT data set, N = 1.03
million, n = 440, V = 0.72 million, H = 17.3 million. For the
ClueWeb09 dataset, N = 50.22 million, n = 807, V = 13.6 million,
H = 328.43 million [22]. The table lists two numbers in each entry.
One is the total amount of disk storage space needed and another
number inside a parenthesis is the size of the term-vector cache.

Our method using LSH reduces the size of term-vector cache
significantly for DRMM/KNRM and CONV-KNRM with precom-
puting. For ClueWeb, the reference based method for CONV-KNRM
without LSH needs about 492.4 GB in disk while memory size for
term-vector cache is 169.5 GB. If such a memory cache is not avail-
able, the foot prints of each document need to be fetched with a
random disk I/O. For ranking top 1000 documents matched for a
query, the total I/O access cost can take about 100 seconds in our
experiments. By integrating LSH, 351 GB disk space is still needed
and the size of the term-vector cache is reduced by 6.01x to only
28.2 GB, which is fairly affordable.

5 CONCLUSION
This paper presents the design choices and algorithm optimization
to improve the efficiency of three interaction-based neural ranking
algorithms with LSH and a histogram-based kernel computing
method. The evaluation shows that the proposed design choice
yields 4.12x, 80.54x, and 106.52x time speedups for DRMM, KNRM,
and CONV-KNRM respectively in the tested ClueWeb dataset with a
reasonable response time and competitive relevance. Precomputing
is used in our CONV-KNRM implementation for avoiding expensive
document term vector preparation while it does carry extra space
cost. Our LSH integration moderately decreases the overall storage
space while making a major reduction for the term vector cache
space demand, and the reduction ratio is 32.8x for DRMM and
KNRM, and 6.01x for CONV-KNRM. This is critical to enable fast in-
memory access of (hashed) embedding contents for a large dataset.
More complex dual embeddings can improve relevance while its
fast LSH approximation still preserves the most of its benefits.
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