
Lecture Notes on Parallel Scientific Computing
Tao Yang

Department of Computer Science

University of California at Santa Barbara

Contents

1 Design and Implementation of Parallel Algorithms 2

1.1 A simple model of parallel computation . 2

1.2 SPMD parallel programming on Message-Passing Machines . 4

2 Issues in Network Communication 5

2.1 Message routing for one-to-one sending . 5

2.2 Basic Communication Operations . 6

2.3 One-to-All Broadcast . 7

2.4 All-to-All Broadcast . 8

2.5 One-to-all personalized broadcast . 9

3 Issues in Parallel Programming 9

3.1 Dependence Analysis . 10

3.1.1 Basic dependence . 10

3.1.2 Loop Parallelism . 10

3.2 Program Partitioning . 10

3.2.1 Loop blocking/unrolling . 12

3.2.2 Interior loop blocking . 12

3.2.3 Loop interchange . 13

3.3 Data Partitioning . 13

3.3.1 Data partitioning methods . 13

3.3.2 Consistency between program and data partitioning . 16

3.3.3 Data indexing between global space and local space . 17

3.4 A summary on program parallelization . 17

4 Matrix Vector Multiplication 18

5 Matrix-Matrix Multiplication 19

5.1 Sequential algorithm . 19

5.2 Parallel algorithm with sufficient memory . 20

5.3 Parallel algorithm with 1D partitioning . 21

5.3.1 Submatrix partitioning . 21

6 Gaussian Elimination for Solving Linear Systems 22

6.1 Gaussian Elimination without Partial Pivoting . 22

1

6.1.1 The Row-Oriented GE sequential algorithm . 22

6.1.2 The row-oriented parallel algorithm . 24

6.1.3 The column-oriented algorithm . 25

7 Gaussian elimination with partial pivoting 27

7.1 The sequential algorithm . 27

7.2 Parallel column-oriented GE with pivoting . 28

8 Iterative Methods for Solving Ax = b 29

8.1 Iterative methods . 29

8.2 Norms and Convergence . 30

8.3 Jacobi Method for Ax = b . 31

8.4 Parallel Jacobi Method . 32

8.5 Gauss-Seidel Method . 32

8.6 The SOR method . 33

9 Numerical Differentiation 33

9.1 First-derivative formulas . 33

9.2 Central difference for second-derivatives . 34

9.3 Example . 35

10 ODE and PDE 35

10.1 Finite Difference Method . 36

10.2 GE for solving linear tridiagonal systems . 37

10.3 PDE: Laplace’s Equation . 38

1 Design and Implementation of Parallel Algorithms

1.1 A simple model of parallel computation

• Representation of Parallel Computation: Task model.

A task is an indivisible unit of computation which may be an assignment statement, a subroutine or even an

entire program. We assume that tasks are convex, which means that once a task starts its execution it can run to

completion without interrupting for communications.

Dependence. There exists a dependence between tasks. A task Ty depends on Tx, then there is a dependence

edge from Tx to Ty. Task nodes and their dependence constitute a graph which is a directed acyclic task graph

(DAG).

Weights. Each task Tx can have a computation weight τx representing the execution time of this task. There is

a cost cx,y in sending a message from one task Tx to another task Ty if they are assigned to different processors.

• Execution of Task Computation.

Architecture model. Let us first assume distributed memory architectures. Each processor has its own local

memory. Processors are fully connected.

2

Task execution. In the task computation, a task waits to receive all data before it starts its execution. As soon

as the task completes its execution it sends the output data to all successors.

Scheduling is defined by a processor assignment mapping, PA(Tx), of the tasks Tx onto the p processors and

by a starting time mapping, ST (Tx), of all nodes onto the real positive numbers set. CT (Tx) = ST (Tx) + τx is

defined as the completion time of task Tx in this schedule.

Dependence Constraints. If a task Ty depends on Tx, Ty cannot start until the data produced by Tx is available

in the processor of Ty. i.e.

ST (Ty)− ST (Tx) ≥ τx + cx,y.

Resource constraints Two tasks cannot be executed in the same processor, and time.

Fig. 1(a) shows a weighted DAG with all computation weights assumed to be equal to 1. Fig. 1(b) and (c) show

the schedules with different communication weight assumptions. Both (b) and (c) use Gantt charts to represent

schedules. A Gantt chart completely describes the corresponding schedule since it defines both PA(nj) and ST (nj).

The PA and ST values for schedule (b) is summarized in Figure 1(d).

T1

T2 T3

T4

T1

T2 T3

T4

T1

T2

T3

T4

c = 0.5
τ =1

c = 0
τ = 1

10 0 1

T1 T2 T3 T4

PA 0 0 1 0
ST 0 1 1 2

(a) (b) (c) (d)

Figure 1: (a) A DAG with node weights equal to 1. (b) A schedule with communication weights equal to 0. (c) A
schedule with communication weights equal to 0.5. (d) The PA/ST values for schedule (b).

Difficulty. Finding the shortest schedule for a general task graph is hard (known as NP-complete).

• Evaluation of Parallel Performance. Let p be the number of processors used.

Sequential time = Summation of all task weights.

Parallel time = Length of the schedule.

Speedup =
Sequential time

Parallel Time
, Efficiency =

Speedup

p
.

• Performance bound.

Let the degree of parallelism be the maximum size of independent task sets. Let the critical path be the path in

the task graph with the longest length (including node computation weights only). The length of critical path is

also called the graph span.

Then the following conditions must be true. Span law:

Parallel time ≥ Length of the critical path,

Work law:

Parallel time ≥ Sequential time

p

In addition,

Speedup ≤ Degree of parallelism.

3

x2

x1

x3

x4 x5

τ
z

y

c

Figure 2: A DAG with node weights equal to 1.

Example. For Figure 2, assume that p = 2, all task weights τ = 1. Thus we have Seq = 9. We do not know the

communication weights. One of the maximum independent set is {x3, y, z}. Thus the degree of parallelism is 3. One

critical path is { x1, x2, x3, x4, x5} with length 5 (noticed that the edge communication weights are not included). Thus

PT ≥ max(Length(CP),
seq

p
) = max(5,

9

2
) = 5.

Speedup ≤ Seq

5
=

9

5
= 1.8.

1.2 SPMD parallel programming on Message-Passing Machines

SPMD programming style – single program multiple data.

• Data and program are distributed among processors, code is executed based on a predetermined schedule.

• Each processor executes the same program but operates on different data based on processor identification.

Data communication and synchronization are implemented via message exchange. Two types:

• Synchronous message passing, a processor sends a message and waits until the message is received by the destina-

tion.

• Asynchronous message passing. Sending is non-blocking and the processor that executes the sending procedure

does not have to wait for an acknowledgment from the destination.

Library functions:

• mynode()– return the processor ID. p processors are numbered as 0, 1, 2, · · · , p− 1.

• numnodes()– return the number of processors allocated.

• send(data,dest). Send data to a destination processor.

• receive(addr). Executing receive() will get a specific or any message from the local communication buffer and

store it in the space specified by addr.

• broadcast(data): Broadcast a message to all processors.

4

Examples.

• SPMD code: Print “hello”;

Execute in 4 processors. The screen is: hello
hello
hello
hello

• SPMD code: x=mynode();
If x > 0, then Print “hello from ” x.

Screen: hello from 1
hello from 2
hello from 3

• Program is:

x=3

For i = 0 to p-1.

y(i)= i*x;

Endfor

SPMD code: int x, y, i;
x=3;
i=mynode();
y=i*x;

or int x, y, i;
i=mynode();
if (i==0) then x=3; broadcast(x).
else receive(x).
y=i*x;

2 Issues in Network Communication

2.1 Message routing for one-to-one sending

. . .

P
0

P
l

Figure 3: Routing a message from processor P0 to Pl.

If an embedding is not perfect and two non-neighbor processors need to communicate, then a message routing is needed

between these two processors. Figure 3 depicts a message to be sent from Processor P0 to Pl with distance l. We discuss

the types of message routing as follows.

1. Store-Forward. Each intermediate processor forwards the message to the next processor after it has received

and stored the entire message.

2. Wormhole (cut through) routing. A channel is opened between the source and destination. The message is

divided into small pieces (called flits). The flits are pipelined through the network channel. Sending is fast but

the channel is used exclusively.

We define

5

• α is called the startup time, which is the time required to handle a message at the sending processor. That includes

the cost of packaging this message (e.g. adding the header).

• th is the latency for a message to reach a neighbor processor. When a message is packed, it takes some time to

deliver a message from the processor to the network and then to another processor. Notice that th is usually small

compared to α in the current parallel computers.

• β is the data transmission speed between two processors. That is related to communication bandwidth (usually

β=1/bandwidth). β ×m will be the delay in delivering a message of the size m.

P0

P1

P2

P0 P1 P2 P3

l

time

P0

P1

P2

21 3 v...
m

time

(a) (b)

Figure 4: (a) An example of the store-forward routing model. (b) An example of wormhole model.

The store-forward model. Figure 4(a) depicts the store-forward model with l = 3, Each intermediate processor

forwards the message to the next processor after it has received and stored the entire message. The total delay is

tcomm = α+ (th +m× β)× l.

For a neighbor communication, we simply model the cost as tcomm ≈ α+ βm.

Wormhole/cut-through routing. In the wormhole communication model, A message of size m is divided into small

v units and these units are pipelined through the communication channel. Figure 4(b) depicts the message pipelining

between four processors (l = 3) with v = 4. The total communication delay is modeled as:

tcomm = α + (
m

v
β + th)(l + v).

To get the shortest time delay, we derive the optimal package number v as:

dt

dv
= 0, −mβl

v2
+ th = 0, v =

√

mβl

th

Thus
tcomm = α + mβ + mβl

v
+ th(l + v)

= α + mβ + th(l + 2v)
≈ α + βm.

Thus the node distance (i.e., the number of hops between two nodes) does not play a significant role in the above

communication cost.

2.2 Basic Communication Operations

In most of scientific computing programs, program code and data are divided among processors and data exchanges

between processors are often needed. Such exchanges require efficient communication schemes since communication

delay affects the overall parallel performance. There are various communication patterns in a parallel program and we

list popular communication opeations as follows:

6

• One-one sending. That is the simplest format of communication.

• One-all broadcasting. In this operation, one processor broadcasts the same message to different processors.

• All-all broadcasting. Every processor broadcasts a message to different processors. This operation is depicted in

Figure5(a).

P0 P1 P2

P0 P1 P2

P0

P1 P2 Pn
. . .

(a) (b)

Figure 5: (a) An example of all-all broadcasting.(b) An example of accumulation (gather).

• Accumulation (or called gather). In this case, a processor receives a message from each of other processors and

puts these messages together, as shown in Figure 5(b).

• Reduction. In this operation, each processor Pi holds one value Vi. Assume there are p processors. The global

reduction computes the aggregate value of

V0 ⊕ V1 ⊕ . . . ⊕ Vp,

and make it available to one processor (or to all processors). The operation ⊕ could stand for any reduction

function, for example, the global sum.

• One-all personalized communication or called single node scatter. In this operation, one processor sends one

personalized message to all of other processors. Different processors receive different messages.

• All-all personalized communication. In this operation, each processor sends one personalized message to all of

other processors.

2.3 One-to-All Broadcast

0 1 2 354 6
Ring

Figure 6: Broadcasting on a ring with the store-forward model.

We first discuss the implementation of broadcast on a ring using the store-forward routing model. Figure 6 depicts a

broadcasting operation carried on a ring. The message is sent from processor 0 and let p be the number of processors,

α be startup time, β - transmission speed and m be the size of the message. Then the total cost of this broadcasting is:

p

2
× (α+ βm)

7

If the architecture is a linear array instead of ring, then the worst-case cost is

p(α+ βm).

Figure 7 depicts a broadcasting operation carried on a mesh. Assume that the message is sent from the left and top

processor. The communication is divided into two stages.

• At stage 1, the message is broadcasted in the first row. It costs
√
p(α+ βm).

• At stage 2, the message is broadcasted in in all columns independently. The cost is:
√
p(α + βm).

The total cost is: 2
√
p(α+ βm).

MESH

Stage 1

Stage 2

Figure 7: Broadcasting on a mesh with the store-forward model.

Fast direct node communication is allowed, then the communication cost can be further reduced for this broadcasting

case. One architecture technique is called wormhole routing which allows pipelined fast communication between nodes

even they are not directly connected. Figure 8 shows a bisection method to broadcast in a linear array under such an

assumption. The bisection method is described as follows:

1. At the first, the message is directly sent to the center of the linear array. It costs α+ βm.

2. Then the message broadcasting is conducted independently in the left part and right part.

3. Repeat 1) and 2) recursively.

The bisection method takes about log p steps. The cost is (α + βm) log p. Notice there is no channel contention in

wormhole routing since the broadcasting is conducted independently in subparts.

2.4 All-to-All Broadcast

We discuss briefly how an all-all broadcast algorithm can be designed on a ring with p processors.

• Each processor x forwards a message to its neighbor (x+ 1) mod p.

• After p− 1 steps, all processors receive messages from all other processors. Thus the cost is (p− 1)(α+ βm).

8

1

2

3

Figure 8: Broadcasting on a linear array with a wormhole model.

Figure 9 depicts the method with p = 4. At step 1, message 1 reaches its neighbor and at step 2, this message reach the

next neighbor. This process is repeated for 3 steps.

RING

Step 1 Step 2

3

4

3

4

1

2 1

2

Store-Forward

Figure 9: All-all broadcasting on a ring with the store-forward model.

2.5 One-to-all personalized broadcast

We discuss briefly on broadcasting a personalized message to each processor. Assume that the architecture is a linear

array, the broadcast starts from the center of this linear array, as shown in Figure 10.

p/2-1 p/2 p/2 p/2-1Message size:

Figure 10: Personalized broadcasting on a linear with the store-forward model.

Then the center carries p/2 messages to the left part and p/2 messages to the right part. After the center sends these

p/2 messages to its left neighbor, the total number of messages for this left neighbor to forward decreases by 1. Thus

the cost of each step is listed as follows:

Step 1 α + p
2mβ

Step 2 α + (p2 − 1)mβ
· · ·

Step p/2 α + 1mβ
Total cost ≈ p

2α+ 1
2 (

p
2)

2mβ.

3 Issues in Parallel Programming

We address the basic techniques in dependence analysis, program/data partitioning and mapping.

9

3.1 Dependence Analysis

Before executing a program in processors, we need to identify the inherent parallelism in this program. In this chapter,

we discuss several graphical representations of program parallelism.

3.1.1 Basic dependence

We need to introduce the concept of dependence. We call a basic computation unit as a task. A task is a program

fragment, which could be a basic assignment, a procedure or a logical test. A program consists of a sequence of tasks.

When tasks are executed in parallel on different processors, the relative execution order of those tasks is different from

the one in the sequential execution. It is mandatory to study orders between tasks that must be followed so that the

semantic of this program does not change during parallel execution.

For example:

S1 : x = a+ b

S2 : y = x+ c

For this example, each statement is considered as a task. Assume statements are executed in separate processors. S2

needs to use the value of x defined by S1. If two processors share one memory, S1 has to be executed first in one

processor. The result of x is updated in the global memory. Then S2 can fetch x from the memory and start its

execution. In a distributed environment, after the execution of S1, data x needs to be sent to the processor where S2 is

executed. This example demonstrates the importance of dependence relations between tasks. We formally define basic

types of data dependence between tasks.

Definition: Let IN(T) be the set of data items used by task T and OUT (T) be the set of data items modified by task

T .

• OUT (T1)
⋂

IN(T2) 6= ∅
T2 is data flow-dependent (or called true-dependent) on T1. Example: S1 : A = x+B

S2 : C = A ∗ 3

• OUT (T1)
⋂

OUT (T2) 6= ∅
T2 is output-dependent on T1. S1 : A = x+B

S2 : A = 3

• IN(T1)
⋂

OUT (T2) 6= ∅
T2 is anti-dependent on T1. S1 : B = A+ 3

S2 : A = 3

Coarse-grain dependence graph. Tasks operate on a set of data items of large sizes and perform a large chunk of

computations. An example of such a dependence graph is shown in Figure 11.

3.1.2 Loop Parallelism

Loop parallelism can be modeled by the iteration space of a loop program which contains all iterations of a loop and

data dependence between iteration statements. An example is in Fig. 12.

3.2 Program Partitioning

Purpose:

10

S1: A=X+B
S2: C=A*3
S3: A=A+C

S1

S2

S3

flow

outputanti

flow anti

Figure 11: An example of a dependence graph. Functions f, g, h do not modify their input arguments.

For i= 1 to n

S i: a(i)=b(i)+c(i)

1D Loop:

S1 S2 Sn

For i= 1 to n
 Si: a(i)=a(i−1) +c(i) S1 S2 Sn

2D Loop:

For i = 1 to 3
For j= 1 to 3

S i,j : X(i,j)=X(i,j−1)+1
S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

Figure 12: An example of a loop dependence graph (loop iteration space).

11

• Increase task grain size.

• Reduce unnecessary communication.

• Simplify the mapping of a large number of tasks to a small number of processors.

Two techniques are considered: loop blocking/unrolling and interior loop blocking. Loop interchange technique that

assists partitioning will also be discussed.

3.2.1 Loop blocking/unrolling

For i = 1 to 2n

Si: a(i) = b(i) + c(i)

For i = 1 to n

do S2i−1: a(2i−1)=b(2i−1)+c(2i−1)

do S2i: a(2i)=b(2i)+c(2i)

S2nS2 S3 S4S1

S1

S2

S3

S4
S2n−1

S2n

Figure 13: An example of 1D loop blocking/unrolling.

An example is Fig. 13. In general, sequential code: For i = 1 to r*p
Si : a(i) = b(i)+c(i)

Blocking this loop by a factor of r: For j = 0 to p-1
For i = r*j+1 to r*j+r
a(i) = b(i)+c(i)

Assume there are p processors. A SPMD code for the above partitioning can be: me=mynode();
For i = r*me+1 to r*me+r

a(i) = b(i)+c(i)

3.2.2 Interior loop blocking

This technique is to block an interior loop and make it one task.

For i = 1 to 3
For j= 1 to 3

S i,j : X(i,j)=X(i,j−1)+1
S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

For i = 1 to 3

For j= 1 to 3

S i,j : X(i,j)=X(i,j−1)+1

Ti

T1 T2 T3

T1

T2

T3

Preserve parallelism.

Figure 14: An example of interior loop blocking.

Grouping statements together may reduce available parallelism. We should try to preserve parallelism as much as

possible in partitioning a loop program. One such an example is in Fig. 14. Fig. 15 shows an example of interior

loop blocking that does not preserve parallelism. Loop interchange can be used before partitioning in assisting the

exploitation of parallelism.

12

For i = 1 to 3

For j= 1 to 3

S i,j :
S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

For i = 1 to 3

For j= 1 to 3

S i,j :

Ti

T1 T2 T3

T1 T2 T3

X(i,j)=X(i−1,j)+1

X(i,j)=X(i−1,j)+1

After Loop Interchange

For i = 1 to 3
For j= 1 to 3

S i,j :
S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

For i = 1 to 3

For j= 1 to 3

S i,j :

Ti

T1 T2 T3

T1

T2

T3

X(i,j)=X(i−1,j)+1

X(i,j)=X(i−1,j)+1

No parallelism

Preserve parallelism.

Figure 15: An example of partitioning that reduces parallelism and the role of loop interchange.

3.2.3 Loop interchange

Loop interchange is a program transformation that changes the execution order of a loop program as shown in Fig. 16.

Loop interchange is not legal if the new execution order violates data dependence. An example of illegal interchange is

in Fig. 17.

An example of interchanging triangular loops is shown below:

For i = 1 to 10
For j = i+1 to 10
X(i,j)=X(i,j-1)+1

−→ For j = 2 to 10
For i = 1 to j-1
X(i,j)=X(i,j-1)+1

3.3 Data Partitioning

For distributed memory architectures, data partitioning is needed when there is no enough space for replication. Data

structure is divided into data units and assigned to the local memories of the processors. A data unit can be a scalar

variable, a vector or a submatrix block.

3.3.1 Data partitioning methods

1D array −→ 1D processors.

Assume that data items are counted from 0, 1, · · ·n − 1, and processors are numbered from 0 to p − 1. Let r = ⌈n
p
⌉.

Three common methods for a 1D array are depicted in Fig. 18.

• 1D block. Data i is mapped to processor ⌊ i
r
⌋.

13

S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

Execution order

For i = 1 to 3
For j= 1 to 3

S i,j :

For i = 1 to 3

For j= 1 to 3

S i,j :

Figure 16: Loop interchange re-orders execution.

For i = 1 to 3
For j= 1 to 3

S i,j :
S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

X(i,j)=X(i−1,j+1)+1

For i = 1 to 3

For j= 1 to 3

S i,j : X(i,j)=X(i−1,j+1)+1

Legal?

S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

Execution order

Dependence

Figure 17: An illegal loop interchange.

r

0 1 2 3p 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3p p 32103210

r r r r r r r r

(a) Block. (b) Cyclic. (c) Block cyclic.

Figure 18: Data partitioning schemes.

14

• 1D cyclic. Data i is mapped to processor i mod p.

• 1D block cyclic. First the array is divided into a set of units using block partitioning (block size b). Then these

units are mapped in a cyclic manner to p processors. Data i is mapped to processor ⌊ i
b
⌋ mod p.

2D array −→ 1D processors.

Data elements are counted as (i, j) where 0 ≤ i, j ≤ · · ·n− 1. Processors are numbered from 0 to p− 1. Let r = ⌈n
p
⌉.

• Row-wise block. Data (i, j) is mapped to processor ⌊ i
r
⌋.

• Column-wise block. Data (i, j) is mapped to processor ⌊ j
r
⌋.

Proc

0 1 2 3

Proc 0

Proc 1

Proc 2

Proc 3

Figure 19: The left is the column-wise block and the right is the row-wise block.

• Row-wise cyclic Data (i, j) is mapped to processor i mod p.

• Other partitioning. Column-wise cyclic, Column-wise block cyclic. Row-wise block cyclic.

2D array −→ 2D processors.

Data elements are counted as (i, j) where 0 ≤ i, j ≤ · · ·n−1. Processors are numbered as (s, t) where 0 ≤ s, t ≤ · · · q−1

where q =
√
p. Let r = ⌈n

q
⌉.

• (Block,Block). Data (i, j) is mapped to processor (⌊ i
r
⌋, ⌊ j

r
⌋)

• (Cyclic,Cyclic). Data (i, j) is mapped to processor (i mod q, j mod q).

0 1 2 3

0

1

2

3

(0,0) (0,1) (0,2) (0,3)

Proc Proc Proc Proc 0 1 2 3 0 1 2 3 0 1 2 3
0
1
2
3
0
1
2
3
0
1
2
3

(0,3)

Processor

Figure 20: The left is the 2D block mapping (block,block) and the right is the 2D cyclic mapping (cyclic,cyclic).

• Other partitioning. (Block, Cyclic), (Cyclic, Block), (Block cyclic, Block cyclic).

15

3.3.2 Consistency between program and data partitioning

Given a computation partitioning and processor mapping, there are several choices available for data partitioning and

mapping. How can we make a good choice of data partitioning and mapping? For distributed memory architectures

large grain data partitioning is preferred because there is a high communication startup overhead in transferring a small

size data unit. If a task requires to access a large number of distinct data units and data units are evenly distributed

among processors, then there will be substantial communication overhead in fetching a large number of non-local data

items for executing this task. Thus the following rule of thumb can be used to guide the design of program and data

partitioning:

Consistency. The program partitioning and data partitioning are consistent if sufficient parallelism is

provided by partitioning and at the same time the number of distinct units accessed by each task is minimized.

The following rule is a simple heuristic used in determining data and program mapping.

“Owner computes rule”: If a computation statement x modifies a data item i, then the processor that

owns data item i executes statement x.

For example, sequential code: For i = 0 to r*p-1
Si : a(i) = 3.

Blocking this loop by a factor of r For j = 0 to p-1
For i = r*j to r*j+r-1
a(i) = 3.

Assume there are p processors. SPMD code is: me=mynode();
For i = r*me to r*me+r-1

a(i) = 3.

Data array a(i) are distributed to processors such that if processor x executes a(i) = 3, then a(i) is assigned to processor

x. For example, we let processor 0 own data a(0), a(1), · · · , a(r − 1). Otherwise if processor 0 does not have a(0), this

processor needs to allocate some temporal space to perform a(0) = 3 and send the result back the processor that owns

a(0), which leads to a certain amount of communication overhead.

The above SPMD code is for block mapping. For cyclic mapping, the code is:

me=mynode();
For i = me to r*p-1 step-size
p

a(i) = 3.

A more general SPMD code structure for an arbitrary processor mapping method proc map(i) (but with more code

overhead) is

me=mynode();
For i =0 to rp-1

if (proc map(i) == me) a(i) = 3.

For block mapping, proc map(i) = ⌊ i
r
⌋.

For cyclic mapping, proc map(i) = i mod p.

16

3.3.3 Data indexing between global space and local space

There is one more problem with the previous program: statement “a(i)=3” uses “i” as the index function and the value

of i is in a range from 0 to r ∗ p− 1. When a processor allocates r units, there is a need to translate the global index i to

a local index which accesses the local memory at that processor. This is depicted in Fig.21. The correct code structure

is shown below.

int a[r];
me=mynode();
For i =0 to rp-1

if (proc map(i) == me) a(local(i)) = 3.

For block mapping, local(i) = i mod r. For cyclic mapping, local(i) = ⌊ i
p
⌋.

A 1 2 3 4 5

0 1 2 0 1 2

Local array, Proc 0 Local array, Proc 1

0

Figure 21: Global data vs local data index.

In summary, given data item i (i starts from 0).

• 1D Block.

Processor ID: proc map(i) = ⌊ i
r
⌋.

Local data address: Local(i) = i mod r.

An example of mapping with p=2 and r=3 is:

Proc 0 Proc 1
0 → 0 3 → 0
1 → 1 4 → 1
2 → 2 5 → 2

• 1D Cyclic.

Processor ID: proc map(i) = i mod p.

Local data address: Local(i) = ⌊ i
p
⌋.

An example of cyclic mapping with p=2 is:

proc 0 proc 1
0 → 0 1 → 0
2 → 1 3 → 1
4 → 2 5 → 2
6 → 3

3.4 A summary on program parallelization

The process of program parallelization is depicted in Figure 22 and we will demonstrate this process in parallelizing

following scientific computing algorithms.

• Matrix-vector multiplication.

• Matrix-matrix multiplication.

• Direct methods for solving a linear equation. e.g. Gaussian Elimination.

17

Program

Code
Partitioning

Data
Partitioning

dependence
Tasks + Data

mapping
scheduling

mapping

P processors P processors

parallel code

Figure 22: The process of program parallelization.

• Iterative methods for solving a linear equation. e.g. Jacobi.

• Finite-difference methods for differential equations.

4 Matrix Vector Multiplication

Problem: y = A ∗ x where A is a n× n matrix and x is a column vector of dimension n.

Sequential code: for i = 1 to n do
yi = 0;
for j = 1 to n do

yi = yi + ai,j ∗ xj ;
Endfor

Endfor

An example:




1 2 3
4 5 6
7 8 9



 ∗





1
2
3



 =





1 ∗ 1 + 2 ∗ 2 + 3 ∗ 3
4 ∗ 1 + 5 ∗ 2 + 6 ∗ 3
7 ∗ 1 + 8 ∗ 2 + 9 ∗ 3



 =





14
32
50





The sequential complexity is 2n2ω where ω is the time for an addition or multiplication.

Partitioned code: for i = 1 to n do
Si : yi = 0;

for j = 1 to n do
yi = yi + ai,j ∗ xj ;

Endfor
Endfor

Dependence task graph is shown in Fig. 23.

Task schedule on p processors is shown in Fig. 23.

Mapping function of tasks Si. For the above schedule: proc map(i) = ⌊ i−1
r
⌋ where r = ⌈n

p
⌉.

Data partitioning based on the above schedule: matrix A is divided into n rows A1, A2, · · ·An.

Data mapping: Row Ai is mapped to processor proc map(i), the same as task i. The indexing function is: local(i) =

(i− 1) mod r. Vectors x and y are replicated to all processors.

18

S1 S2 S3 Sn

Task graph:

Schedule:

S1

S2

Sr

Sr+1

S2r Sn

Sr+2

0 1 p−1

Figure 23: Task graph and a schedule for matrix vector multiplication.

A1
A2
A3
A4
A5
A6
A7
A8

proc 1

proc 0

0
1
2
3

0
1
2
3

Local space

Figure 24: An illustration of data mapping for matrix-vector multiplication.

SPMD parallel code: int x[n], y[n], a[r][n];
me=mynode();
for i = 1 to n do

if proc map(i) = me, then do Si:
Si : y[i] = 0;

for j = 1 to n do
y[i] = y[i] + a[local(i)][j] ∗ x[j];

Endfor
Endfor

The parallel time is PT = n
p
× 2nω since each task Si costs 2nω, ignoring the overhead of computing local(i). Thus

PT = 2n2ω
p

.

5 Matrix-Matrix Multiplication

5.1 Sequential algorithm

Problem: C = A ∗B where A and B are n× n matrices.

19

Sequential code: for i = 1 to n do
for j = 1 to n do
sum = 0;
for k = 1 to n do

sum = sum+ a(i, k) ∗ b(k, j);
Endfor
c(i, j) = sum;

Endfor
Endfor

An example:
(

1 2
3 4

)

∗
(

5 7
6 8

)

=

(

1 ∗ 5 + 2 ∗ 6 1 ∗ 7 + 2 ∗ 8
3 ∗ 5 + 4 ∗ 6 3 ∗ 7 + 4 ∗ 8

)

Time Complexity. Each multiplication or addition counts one time unit ω.

No of operations =

n
∑

i=1

n
∑

j=1

n
∑

k=1

2ω = 2n3ω

5.2 Parallel algorithm with sufficient memory

Partitioned code: for i = 1 to n do
Ti : for j = 1 to n do

sum = 0;
for k = 1 to n do

sum = sum+ a(i, k) ∗ b(k, j);
Endfor
c(i, j) = sum;

Endfor
Endfor

Since tasks Ti (1 ≤ i ≤ n) are independent, we use the following mapping for the parallel code:

• Matrix A is partitioned using row-wise block mapping

• Matrix C is partitioned using row-wise block mapping

• Matrix B is duplicated to all processors

• Task Ti is mapped to the processor of row i in matrix A.

The SPMD code with parallel time 2n3ω/p is: For i = 1 to n
if proc map(i)==me do Ti;

Endfor

A more detailed description of the algorithm is:

for i = 1 to n do
if proc map(i)==me do

for j = 1 to n do
sum = 0;
for k = 1 to n do

sum = sum+ a(local(i), k) ∗ b(k, j);
Endfor
c(local(i), j) = sum;

Endfor
endif

Endfor

20

5.3 Parallel algorithm with 1D partitioning

The above algorithm assumes that B can be replicated to all processors. In practice, that costs too much memory. We

describe an algorithm in which all of matrices A, B, and C are uniformly distributed among processors.

Partitioned code: for i = 1 to n do
for j = 1 to n do
Ti,j : sum = 0;

for k = 1 to n do
sum = sum+ a(i, k) ∗ b(k, j);

Endfor
c(i, j) = sum;

Endfor
Endfor

Data access: Each task Ti,j reads row Ai and column Bj to write data element ci,j .

Task graph: There are n2 independent tasks: T1,1 T1,2 · · ·T1,n

T2,1 T2,2 · · ·T2,n

· · ·
Tn,1 Tn,2 · · ·Tn,n

Mapping.

• Matrix A is partitioned using row-wise block mapping

• Matrix C is partitioned using row-wise block mapping

• Matrix B is partitioned using column-wise block mapping

• Task Ti,j is mapped to the processor of row i in matrixA. Cluster 1: T1,1 T1,2 · · ·T1,n

Cluster 2: T2,1 T2,2 · · ·T2,n

· · ·
Cluster n: Tn,1 Tn,2 · · ·Tn,n

Parallel algorithm: For j = 1 to n
Broadcast column Bi to all processors
Do tasks T1,j , T2,j, · · · , Tn,j in parallel.

Endfor

Parallel time analysis. Each multiplication or addition counts one time unit ω. Each task Ti,j costs 2nω. Also we

assume that each broadcast costs (α+ βn) log p.

PT =

n
∑

j=1

((α + βn) log p+
n

p
2nω) = n(α+ βn) log p+

2n3ω

p
.

5.3.1 Submatrix partitioning

In practice, the number of processors is much less than n2. Also it does not make sense to utilize n2 processors since the

code suffers too much communication overhead for fine-grain computation. To increase the granularity of computation,

we map the n× n grid to processors using the 2D block method.

First we partition all matrices (A,B,C of size n×n) in a submatrix style. Each processor (i, j) is assigned a submatrix

of size n/q×n/q where q =
√
p. Let r = n/q. The submatrix partitioning of A can be demonstrated using the following

example with n = 4 and q = 2.

21

A =









a11 a12 a13 a1n
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44









=⇒
(

A11 A12

A21 A22

)

where

A11 =

(

a11 a12
a21 a22

)

, A12 =

(

a13 a14
a23 a24

)

, A21 =

(

a31 a32
a41 a42

)

, A22 =

(

a33 a34
a43 a44

)

.

Then the sequential algorithm can be re-organized as

for i = 1 to q do
for j = 1 to q do
Ci,j = 0;
for k = 1 to q do

Ci,j = Ci,j +Ai,k ∗Bk,j ;
Endfor

Endfor
Endfor

Then we use the same idea of re-ordering:

Ci,j = Ai,i ∗Bi,j +Ai,i+1 ∗Bi+1,j + · · ·+Ai,n ∗Bn,j +Ai,1 ∗B1,j +Aj,2 ∗B2,j + · · ·+Ai,i−1 ∗Bi−1,j .

Parallel algorithm:

For k = 1 to q
On each processor (i, j), t = (k + i) mod q + 1.
At each row, Ai,t at processor (i, t) is broadcasted to other processors in the same row (i, j) where 1 ≤ j ≤ q.
Do Ci,j = Ci,j +Ai,t ∗Bt,j in parallel for all processors.
Every processor (i,j) sends Bi,t to processor (i− 1, j).

Endfor

Parallel time analysis. A submatrix multiplication (Ai,t ∗ Bt,j) costs 2r3ω. A submatrix addition costs r2ω. Each

inner most statement costs 2r3ω. Also we assume that each broadcast of a submatrix costs (α+ βr2) log q.

PT =

q
∑

k=1

((α+ βr2)(1 + log q) + 2r3ω) = q(α+ β(n/q)2)(1 + log q) + 2(n/q)3ω = (
√
pα+ β

n2

√
p
)(1 + log

√
p) +

2n3ω

p
.

This algorithm has communication overhead much smaller than the 1D algorithm presented in the previous subsection.

6 Gaussian Elimination for Solving Linear Systems

6.1 Gaussian Elimination without Partial Pivoting

6.1.1 The Row-Oriented GE sequential algorithm

The Gaussian Elimination method for solving linear system Ax = b is listed below. Assume that column n + 1 of A

stores column b. Loop k controls the elimination steps. Loop i controls i-th row accessing and loop j controls j-th

column accessing.

22

Forward Elimination: For k = 1 to n− 1
For i = k + 1 to n
ai,k = ai,k/ak,k;
For j = k + 1 to n+ 1

ai,j = ai,j − ai,k ∗ ak,j ;
Endfor

Endfor
Endfor

Notice that since the lower triangle matrix elements become zero after elimination, their space is used to store multipliers

(ai,k = ai,k/ak,k).

Backward Substitution: Note that xi uses the space of ai,n+1. For i = n to 1
For j = i+ 1 to n
xi = xi − ai,j ∗ xj ;
Endfor

xi = xi/ai,i;
Endfor

An example: Given the following matrix system:

(1) 4x1 − 9x2 + 2x3 = 2
(2) 2x1 − 4x2 + 4x3 = 3
(3) −x1 + 2x2 + 2x3 = 1

We eliminate the coefficients of x1 for equations (2) and (3) and make them zero.

(2)-(1)* 2
4 : 0.5x2 + 3x3 = 2 (4)

(3)-(1)*- 14 : − 1
4x2 +

5
2x3 = 3

2 (5)

Then we eliminate the coefficients of x2 for equation (5).

(5)-(4)*- 12 : 4x3 = 5
2

Now we have an upper triangular system:
4x1 − 9x2 + 2x3 = 2

1
2x2 + 3x3 = 2

4x3 = 5
2

Given this upper triangular system, backward substitution performs the following operations:

x3 = 5
8

x2 = 2−3x3
1
2

= 1
4

x1 = 2+9x2−2x3

4 = 3
4

The forward elimination process can be expressed using an augmented matrix (A | b) where b is treated as the n+1

column of A.





4 −9 2 2
2 −4 4 3
−1 2 2 1





(2)=(2)−(1)∗ 2
4

(3)=(3)−(1)∗−1
4=⇒





4 −9 2 2
0 1

2 3 2
0 −1

4
5
2

3
2



 −→





4 −9 2 2
0 1/2 3 2
0 0 4 5/2





Time complexity: Each of division, multiplication and subtraction counts one time unit ω.

#Operations in forward elimination:

n−1
∑

k=1

n
∑

i=k+1



1 +

n+1
∑

j=k+1

2



ω =

n−1
∑

k=1

n
∑

i=k+1

(2(n− k) + 3)ω ≈ 2ω

n−1
∑

k=1

(n− k)2 ≈ 2n3

3
ω

23

#Operations in backward substitution:

n
∑

i=1

(1 +

n
∑

j=i+1

2)ω ≈ 2ω

n
∑

i=1

(n− i) ≈ n2ω

Thus the total number of operations is about 2n3

3 ω. The total space needed is about n2 double-precision numbers.

6.1.2 The row-oriented parallel algorithm

A program partitioning for the forward elimination part:

For k = 1 to n− 1
For i = k + 1 to n

T i
k : aik = aik/akk

For j = k + 1 to n+ 1
aij = aij − aik ∗ akj

EndFor

The data access pattern of each task is:
T i
k : Read rows Ak, Ai

Write row Ai.

Dependence Graph.

T
1
2

T1
3

T1
4

T1
n

T2
3

T2
n

T2
4

T3
4

T
n−1
n

T3
n

k=1

k=2

k=n−1

k=3

Thus for each step k, tasks T k+1
k T k+2

k . . . T n
k are independent. We can have the following algorithm design for the

row-oriented GE algorithm: For k = 1 to n− 1
Do T k+1

k T k+2
k . . . T n

k in parallel on p processors.

Task and data mapping. We first group tasks into a set of clusters using “owner computes rule”. Each task T i
k

that modifies the same row i is in the same cluster Ci. Row i and cluster Ci will be mapped to the same processor.

We discuss how rows should be mapped to processors. If block mapping is used, we profile the computation load of

clusters C2, C3, . . . , Cn below. Processor 0 will get the smallest amount of load and the last processor gets the most of

computation load for block mapping; thus load is NOT balanced among processors. Cyclic mapping should be used.

T1
3 T

n

1

T
2

n
T2

3

Tn-1

n

T
1

2

C1 C 2 C 3 C n

 p procs
..
.

. . .
φ

24

. . .

Load

C C C

cluster

C2 3 4 n

Parallel Algorithm: Proc 0 broadcasts Row 1
For k = 1 to n− 1

Do T k+1
k . . . T n

k in parallel.
Broadcast row k + 1.

Endfor

SPMD Code: me=mynode();
For i = 1 to n

if proc map(i)==me, initialize Row i;
Endfor
If proc map(1)==me, broadcast Row 1 else receive it;
For k = 1 to n− 1

For i = k + 1 to n
If proc map(i)==me, do T i

k.
EndFor
If proc map(k+1)==me, then broadcast Row k + 1 else receive it.

EndFor

6.1.3 The column-oriented algorithm

The column-oriented algorithm essentially interchanges loops i and j of the GE program in Section 6.1.1.

Forward elimination part:

For k = 1 to n− 1
For i = k + 1 to n
ai,k = ai,k/ak,k

EndFor
For j = k + 1 to n+ 1
For i = k + 1 to n
ai,j = ai,j − ai,k ∗ ak,j

EndFor
EndFor

EndFor

Given the first step of forward elimination in the previous example,





4 −9 2 2
2 −4 4 3
−1 2 2 1





(2)=(2)−(1)∗ 2
4

(3)=(3)−(1)∗−1
4=⇒





4 −9 2 2
0 1

2 3 2
0 −1

4
5
2

3
2





One can mark the data access (writing) sequence for row-oriented elimination below. Notice that 1 computes and

25

stores the multiplier 2
4 and 5 stores −1

4 .



 1 2 3 4

5 6 7 8





Then the data writing sequence for column-oriented elimination is:



 1 3 5 7

2 4 6 8





Notice that 1 computes and stores the multiplier 2
4 and 2 stores −1

4 .

Column-oriented backward substitution. We change the loops of i and j in the row-oriented backward substitution

code. Notice again that column n+ 1 stores the solution vector x.

For j = n to 1
xj = xj/aj,j ;
For i = j − 1 to 1
xi = xi − ai,jxj ;

Endfor
EndFor

For example, given a upper triangular system:
4x1 − 9x2 + 2x3 = 2

0.5x2 + 3x3 = 2
4x3 = 5

2 .

The row-oriented algorithm performs:

x3 = 5
8

x2 = 2− 3x3

x2 = x2

0.5
x1 = 2 + 9x2

x1 = x1 − 2x3

x1 = x1

4 .

The column-oriented algorithm performs:

x3 = 5
8

x2 = 2− 3x3

x1 = 2− 2x3

x2 = x2

0.5
x1 = x1 + 9x2

x1 = x1

4 .

Partitioned forward elimination: For k = 1 to n− 1

T k
k : For i = k + 1 to n

aik = aik/akk
Endfor

For j = k + 1 to n+ 1

T j
k : For i = k + 1 to n

aij = aij − aik ∗ akj
Endfor

Endfor
Endfor

Task graph:

26

T
1
2

T1
3

T1
4

T1
n k=1

T2
3

T2
n

T2
4 k=2

T3
4

T
n−1
n

T3
n

k=n−1

k=3

T 1
1

T
2
2

+1

+1

+1

T3
3

...

...

...

+1

Backward substitution on p processors

Partitioning: For j = n to 1

Sx
j xj = xj/aj,j ;

For i = j − 1 to 1
xi = xi − ai,jxj ;

Endfor

EndFor

Dependence:

Sx
n −→ Sx

n−1 −→ · · · −→ Sx
1 .

Parallel algorithm: Execute all these tasks (Sx
j , j = n, · · · , 1) gradually on the processor that owns x (column n+1).

The code is: If owner(column x)==me then
For j = n to 1

Receive column j if not available.
Do Sx

j .
EndFor

Else If owner(column j)==me, send column j to the owner of column x.

7 Gaussian elimination with partial pivoting

7.1 The sequential algorithm

Pivoting will avoid the problem when ak,k is too small or zero. We just need to change the forward elimination algorithm

by adding the follow statements: at stage k, interchange rows such that |ak,k| is the maximum in the lower portion of

the column k. Notice that b is stored in column n+ 1 and interchanging should also be applied to elements of b.

Example of GE with Pivoting:





0 1 1
3 2 −3
1 5 −1

∣

∣

∣

∣

∣

∣

2
2
5





(1)↔(2)
=⇒





3 2 −3
0 1 1
1 5 −1

∣

∣

∣

∣

∣

∣

2
2
5





(3)−(1)∗ 1
3=⇒





3 2 −3
0 1 1
0 13

3 0

∣

∣

∣

∣

∣

∣

2
2
13
3





27

(2)↔(3)
=⇒





3 2 −3
0 13

3 0
0 1 1

∣

∣

∣

∣

∣

∣

2
13
3
2





(3)−(2)∗ 3
13=⇒





3 2 −3
0 13

3 0
0 0 1

∣

∣

∣

∣

∣

∣

2
13
3
1





x1 = 1
x2 = 1
x3 = 1

The backward substitution does not need any change.

Row-oriented forward elimination: For k = 1 to n− 1
Find m such that |am,k| = maxn≥i≥k{|ai,k|};
If am,k = 0, No unique solution, stop;

Swap row(k) with row(m);
For i = k + 1 to n
aik = aik/akk;
For j = k + 1 to n+ 1

ai,j = ai,j − ai,k ∗ ak,j ;
Endfor

Endfor
Endfor

Column-oriented forward elimination: For k = 1 to n− 1
Find m such that |am,k| = maxn≥i≥k{|ai,k|};
If am,k = 0, No unique solution, stop;
Swap row(k) with row(m);
For i = k + 1 to n
ai,k = ai,k/ak,k

EndFor
For j = k + 1 to n+ 1
For i = k + 1 to n
ai,j = ai,j − ai,k ∗ ak,j

EndFor
EndFor

EndFor

7.2 Parallel column-oriented GE with pivoting

Partitioned forward elimination: For k = 1 to n− 1
P k
k Find m such that |am,k| = maxi≥k{|ai,k|};

If am,k = 0, No unique solution, stop.

For j = k to n+ 1

Sj
k : Swap ak,j with am,j;

Endfor
T k
k : For i = k + 1 to n

ai,k = ai,k/ak,k
Endfor

For j = k + 1 to n+ 1

T j
k For i = k + 1 to n

ai,j = ai,j − ai,k ∗ ak,j
Endfor

Endfor

Dependence structure for iteration k: The above partitioning produces the following dependence structure.

28

Pk
k

Sk
k S k

k+1
... Sk

n+1

Tk
k

T k
k+1 ... Tk

n+1

Find the maximum element.

Swap each column

Scaling column k

updating columns k+1,k+2,...,n+1

Broadcast swapping positions

Broadcast column k

We can further merging tasks and combine small messages as:

• Define task Uk
k as performing P k

k , S
k
k , and T k

k .

• Define task U j
k as performing Sj

k, and T j
k (k + 1 ≤ j ≤ n+ 1).

Then the new graph has the following structure.

S k
k+1

... Sk
n+1

T k
k+1 ... Tk

n+1 updating columns k+1,k+2,...,n+1

Broadcast swapping positions

Pk
k

Sk
k

Tk
k

Find the maximum element.

Scaling column k
Swap column k.

and column k.

Swap column k+1,k+2,...,n+1

Uk

k

Uk
k+1

Uk
n+1

Parallel algorithm for GE with pivoting:

For k = 1 to n− 1
The owner of column k does Uk

k and broadcasts the swapping positions and
column k.

Do Uk+1
k . . . Un

k in parallel.
Endfor

8 Iterative Methods for Solving Ax = b

8.1 Iterative methods

We use the following example to demonstrate the Jacobi iterative method. Given,

(1) 6x1 − 2x2 + x3 = 11
(2) −2x1 + 7x2 + 2x3 = 5
(3) x1 + 2x2 − 5x3 = -1

We reformulate it as:

=⇒
x1 = 11

6 − 1
6 (−2x2 + x3)

x2 = 5
7 − 1

7 (−2x1 + 2x3)
x3 = 1

5 − 1
−5 (x1 + 2x2)

=⇒
x
(k+1)
1 = 1

6 (11− (−2x
(k)
2 + x

(k)
3))

x
(k+1)
2 = 1

7 (5 − (−2x
(k)
1 + 2x

(k)
3))

x
(k+1)
3 = 1

−5 (−1− (x
(k)
1 + 2x

(k)
2))

We start from an initial approximation x1 = 0, x2 = 0, x3 = 0. Then we can get a new set of values for x1, x2, x3. We

keep doing this until the difference from iteration k and k + 1 is small, that means the error is small. The values of xi

for a number of iterations are listed below.

29

Iter 0 1 2 3 4 · · · 8
x1 0 1.833 2.038 2.085 2.004 · · · 2.000
x2 0 0.714 1.181 1.053 1.001 · · · 1.000
x3 0 0.2 0.852 1.080 1.038 · · · 1.000

Iteration 8 actually delivers the final solution with error < 10−3. Formally we stop when ‖ ~x(k+1) − ~x(k) ‖< 10−3 where

~xk is a vector of the values of x1, x2, and x3 after iteration k. We need to define norm ‖ ~x(k+1) − ~x(k) ‖.

The general iterative method can be re-formulated as: Assign an initial value to ~x(0)

k=0
Do

~x(k+1) = H ∗ ~x(k) + d
until ‖ ~x(k+1) − ~x(k) ‖< ε

For the above example, we have:





x1

x2

x3





k+1

=





0 2
6 − 1

6
2
7 0 − 2

7
1
5

2
5 0









x1

x2

x3





k

+





11
6
5
7
1
5





8.2 Norms and Convergence

Norm of a vector. One application of vector norms is in error control, e.g. ‖ Error ‖< ε. In the rest of discussion,

we sometime simply use notation x instead of ~x. Given x = (x1, x2, · · ·xn):

‖ x ‖1=
n
∑

i=1

| xi |, ‖ x ‖2=
√

∑

| xi |2, ‖ x ‖∞= max | xi | .

Example:

x = (−1, 1, 2)

‖ x ‖1= 4, ‖ x ‖2=
√

1 + 1 + 22 =
√
6, ‖ x ‖∞= 2.

Properties of norm:

‖ x ‖> 0, ‖ x ‖= 0 if x = 0.

‖ αx ‖=| α |‖ x ‖, ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ .

Norm of a matrix. Given a matrix of dimension n× n, a matrix norm has the following property:

‖ A ‖> 0, ‖ A ‖= 0 if A=0 .

‖ αA ‖=| α |‖ A ‖, ‖ A+B ‖≤‖ A ‖ + ‖ B ‖ .

‖ AB ‖≤‖ A ‖‖ B ‖, ‖ Ax ‖≤‖ A ‖‖ x ‖ where x is vector .

Define

‖ A ‖∞= max
1≤i≤n

n
∑

j=1

aij max sum row

‖ A ‖1= max
1≤j≤n

n
∑

i=1

aij max sum column

30

Example:

A =

[

5 9
−2 1

]

‖ A ‖∞= max(5 + 9, 2 + 1) = 14, ‖ A ‖1= max(5 + 2, 9 + 1) = 10

Convergence of iterative methods

Definition: Let x∗ be the exact solution and xk be the solution vector after step k. Sequence x0, x1, x2, · · · , xn converges

to the solution x∗ with respect to norm ‖ . ‖ if ‖ xk − x∗ ‖< ε when k is very large. Namely k → ∞, ‖ xk − x∗ ‖→ 0.

A condition for convergence: Let error ek = xk − x∗. Since

xk+1 = Hxk + d, x∗ = Hx∗ + d.

Then

xk+1 − x∗ = H(xk − x∗), ek+1 = He∗.

We have

‖ ek+1 ‖≤‖ Hek ‖≤‖ H ‖‖ ek ‖≤‖ H ‖2‖ ek−1 ‖≤ · · · ≤‖ H ‖k+1‖ e0 ‖

Then if ‖ H ‖< 1, =⇒ The method converges.

8.3 Jacobi Method for Ax = b

For each iteration:

xk+1
i =

1

aii
(bi −

∑

j>i

aijx
k
j) i = 1, · · ·n

Example:
(1) 6x1 − 2x2 + x3 = 11
(2) −2x1 + 7x2 + 2x3 = 5
(3) x1 + 2x2 − 5x3 = -1

=⇒
x
(k+1)
1 = 1

6 (11− (−2x
(k)
2 + x

(k)
3))

x
(k+1)
2 = 1

7 (5 − (−2x
(k)
1 + 2x

(k)
3))

x
(k+1)
3 = 1

−5 (−1− (x
(k)
1 + 2x

(k)
2))

Jacobi method in a matrix-vector form





x1

x2

x3





k+1

=





0 2
6 − 1

6
2
7 0 − 2

7
1
5

2
5 0









x1

x2

x3





k

+





11
6
5
7
1
5





In general:

A =











a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann











, D =











a11
a22

. . .

ann











, B = A−D.

Then from Ax = b,

(D +B)x = b.

Thus Dx = −Bx+ b, then

xk+1 = −D−1Bxk +D−1b

i.e.

H = −D−1B, d = D−1b.

31

8.4 Parallel Jacobi Method

xk+1 = −D−1Bxk +D−1b

Parallel solution:

• Distribute rows of B and the diagonal elements of D to processors.

• Perform computation based on the owner-computes rule.

• Perform all-all broadcasting after each iteration.

8.5 Gauss-Seidel Method

The basic idea is to utilize new solutions as soon as they are available. For example,

(1) 6x1 − 2x2 + x3 = 11
(2) −2x1 + 7x2 + 2x3 = 5
(3) x1 + 2x2 − 5x3 = -1

=⇒ Jacobi method.

xk+1
1 = 1

6 (11− (−2xk
2 + xk

3))

xk+1
2 = 1

7 (5 − (−2xk
1 + 2xk

3))

xk+1
3 = 1

−5 (−1− (xk
1 + 2xk

2))

=⇒ Gauss-Seidel method.

xk+1
1 = 1

6 (11− (−2xk
2 + xk

3))

xk+1
2 = 1

7 (5− (−2xk+1
1 + 2xk

3))

xk+1
3 = 1

−5 (−1− (xk+1
1 + 2xk+1

2))

We show a number of iterations for the GS method, which converges faster than Jacobi’s method.

0 1 2 3 4 5
x1 0 1.833 2.069 1.998 1.999 2.000
x2 0 1.238 1.002 0.995 1.000 1.000
x3 0 1.062 1.015 0.998 1.000 1.000

Formally the GS method is summarized as below. For each iteration:

xk+1
i =

1

aii
(bi −

∑

j<i

aijx
k+1
j −

∑

j 6=i

aijx
(k)
j), i = 1, · · · , n.

Matrix-vector Format. Let A=D+L+U where L is the lower triangular part of A. U is the upper triangular part.

D~xk+1 = b− L~xk+1 − U~xk

(D + L)~xk+1 = b− U~xk

~xk+1 = −(D + L)−1U~xk + (D + L)−1b

Example:

xk+1
1 = 1

6 (11− (−2xk
2 + xk

3))

xk+1
2 = 1

7 (5− (−2xk+1
1 + 2xk

3))

xk+1
3 = 1

−5 (−1− (xk+1
1 + 2xk+1

2))

6xk+1
1 = 2xk

2 −xk
3 +11

−2xk+1
1 +7xk+1

2 = −2xk
3 +5

xk+1
1 +2xk+1

2 −5xk+1
3 = -1

32





6 0 0
−2 7 0
1 2 −5









x1

x2

x3





k+1

=





0 2 −1
0 0 −2
0 0 0









x1

x2

x3





k

+





11
5
−1





H =





6 0 0
−2 7 0
1 2 −5





−1

∗





0 2 −1
0 0 −2
0 0 0



 , d =





6 0 0
−2 7 0
1 2 −5





−1

∗





11
5
−1



 .

More on convergence. We can actually judge the convergence of Jacobi and GS by examining A but not H .

We call a matrix A as strictly diagonally dominant if

| aii |>
n
∑

j=1,j 6=i

| aij | i=1,2, ...,n

Theorem: If A is strictly diagonally dominant, then both Gauss-Seidel and Jacobi methods converge.

Example:




6 −2 1
−2 7 2
1 2 −5



 x =





11
5
−1





A is strictly diagonally dominant:

| 6 |> 2 + 1, 7 > 2 + 2, 5 > 1 + 2

Then both Jacobi and G.S. methods will converge.

8.6 The SOR method

SOR stands for Successive Over Relaxation. The rate of convergence can be improved (accelerated) by the SOR method:

Step 1. Use the Gauss-Seidel method: xk+1 = Hxk + d.

Step 2. Do a correction: xk+1 = xk + w(xk+1 − xk).

9 Numerical Differentiation

Topics for the rest of the quarter: Finite-difference methods for solving ODE/PDEs.

1. Use numerical differentiation to approximate (partial) derivatives.

2. Set up a set of linear equations (usually sparse).

3. Solve the linear equations.

In this section, we will discuss how to approximate derivatives.

9.1 First-derivative formulas

We discuss formulas for computing the first derivative f’(x). The definition of the first derivative is:

33

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

Thus the forward difference method is:

f ′(x) ≈ f(x+ h)− f(x)

h

We can derive it using the Taylor’s expansion:

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(z)

where z is between x and x+ h. Then

f ′(x) =
f(x+ h)− f(x)

h
− h

2
f ′′(z).

Truncation error is O(h).

There are other formulas:

• Backward difference:

f ′(x) =
f(x)− f(x− h)

h
+

h

2
f ′′(z).

• Central difference:

f(x+ h) = f(x)− hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(z1),

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x) − h3

6
f (3)(z2).

Then

f(x+ h)− f(x− h) = 2hf ′(x) +
h3

6
(f (3)(z1)− f (3)(z2)).

Thus the method is:

f(x) =
f(x+ h)− f(x− h)

2h
+O(

h2

3!
).

9.2 Central difference for second-derivatives

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

3!
f (3)(x) +

h4

4!
f (4)(z1)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

3!
f (3)(x) +

h4

4!
f (4)(z2)

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(z) +O(
h4

4!
).

Thus:

f ′′(x) =
f(x+ h) + f(x− h)− 2f(x)

h2
+O(

h2

4!
).

34

9.3 Example

We approximate f ′(x) = (cos x)′ at x = π
6 using the forward difference formula.

i h f(x+h)−f(x)
h

Error Ei
Ei−1

Ei

1 0.1 -0.54243 0.04243
2 0.05 -0.52144 0.02144 1.98
3 0.025 -0.51077 0.01077 1.99

From this case, we can see that this truncation error Ei is proportional to h. If h is halved, =⇒, the error is also halved.

We approximate f ′′(x) = (cosx)′′ at x = π
6 . Using the central difference formula f ′′(x) ≈ (f(x+h)−2f(x)+f(x−h))/h2,

we have:

i h f ′′(x) ≈ Error Ei
Ei−1

Ei

1 0.5 -0.84813289 0.0178929
2 0.25 -0.86152424 0.04504 3.97
3 0.125 -0.86489835 0.0127 3.99
4 0.0625 -0.86574353 0.002819 4.00

The truncation error Ei is proportional to h2.

10 ODE and PDE

ODE stands for Ordinary Differential Equations. PDE stands for Partial Differential Equations.

An ODE Example: Growth of Population

• Population : N(t), t is time.

• Assumption : Population in a state grows continuously with time at a birth rate (λ) proportional to the number

of persons. Let δ be the average number of persons moving-in to this state (after subtracting the moving-out

number.)

d N(t)

dt
= λN(t) + δ.

• Let λ = 0.01. δ = 0.045 million.
d N(t)

dt
= 0.01N(t) + 0.045.

• If N(1990) = 1million, what are N(1991), N(1992), N(1993), · · · , N(1999)?

Other Examples

•

f ′(x) = x f(0) = 0.

What are f(0.1), f(0.2), · · · , f(0.5)?
•

f”(x) = 1, f(0) = 1, f(1) = 1.5.

What are f(0.2), f(0.4), f(0.6), f(0.8)?

35

• The Laplace PDE.
∂2U(x, y)

∂x2
+

∂2U(x, y)

∂y2
= 0.

The domain is a 2D region. Usually we know some boundary values or condition and we need to find values for

some points within this region.

10.1 Finite Difference Method

1. Discretize a region or interval of variables, or domain of this function.

2. For each point in the discretized domain, setup an equation using a numerical differentiation formula.

3. Solve the linear equations.

Example. Given:

y′(x) = 1, y(0) = 0

Domain x: 0, 1h, 2h, · · · , nh.

Find: y(h), y(2h), · · · , y(nh).

Method: At each point x = ih, 1 = y′(ih) ≈ y((i+1)h)−y(ih)
h

.

Thus

y((i+ 1)h)− y(ih) = h for i = 0, 1, · · ·n− 1.

y(h)− y(0) = h

y(2h)− y(h) = h

...

y(nh)− y((n− 1)h) = h

=⇒














1
−1 1

−1 1
. . .

−1 1





























y(h)
y(2h)

...
y((n− 1)h)

y(nh)















=















h
h
...
h
h















Example. Given:

y′′(x) = 1, y(0) = 0, y(1) = 0

Domain: 0, x1, x2, · · ·, xn, 1.

Let xi = i ∗ n and yi = y(i ∗ h) where h = 1
n+1 .

Find: y1, y2, · · · , yn.

Method: At each point xi,

1 = y′′(xi) ≈
yi+1 − 2yi + yi−1

h2

Thus

yi+1 − 2yi + yi−1 = h2 For i = 1, · · ·n.

36

Then

y0 − 2y1 + y2 = h2

y1 − 2y2 + y3 = h2

...

yn−1 − 2yn + yn+1 = h2

i.e.














−2 1
1 −2 1

1 −2 1
. . . 1
1 −2





























y1
y2
...

yn−1

yn















=















h2

h2

...
h2

h2















10.2 GE for solving linear tridiagonal systems















a1 b1
c2 a2 b2

c3 a3 b3
. . .

cn an

























x1

x2

x3

... xn











=















d1
d2
d3
...
dn















Forward Elimination:

For i=2 to n-1
temp =

ai,i−1

ai−1,i−1

aii = aii − ai−1,i ∗ temp
bi = bi − bi−1 ∗ temp

EndFor

Backward Substitution: xn = bn
cnn

For i=n-1 to 1
xi = (bi − xi+1 ∗ ai,i+1)/aii

EndFor

Parallel solutions for tridiagonal systems. There is no parallelism in the above GE method. We discuss an

algorithm called the Odd-Even Reduction method (or called Cyclic Reduction).

Basic idea: The basic idea is to eliminate the odd-numbered variables from the n equations and formulate n/2 equations.

This reduction process is modeled as a tree dependence structure and can be parallelized. For example:

(1) a1x1 + b1x2 = d1
(2) c2x1 + a2x2 + b2x3 = d2
(3) c3x2 + a3x3 + b3x4 = d3

=⇒ a′2x2 + b′2x4 = d′2.

(3) c3x2 + a3x3 + b3x4 = d3
(4) c4x3 + a4x4 + b4x5 = d4
(5) c5x4 + a5x5 + b5x6 = d5

=⇒ c′3x2 + a′4x4 + b′5x6 = d4.

Odd-even reduction part: In general, given n = 2q− 1 equations, one reduction step eliminates all odd variables and

reduces the system to 2q−1 − 1 equations. Recursively applying such reduction in logn steps (q-1), we finally have one

equation with one variable. For example, n=7, q=3.

37

Eq. 1 (x1 x2)

Eq. 2(x1 x2 x3)

Eq.3 (x2 x3 x4)

Eq. 4 (x3 x4 x5)

Eq. 5 (x4 x5 x6)

Eq.6 (x5 x6 x7)

Eq.7 (x6 x7)

Eq.1’ (x2 x4)

Eq. 2’ (x2 x4 x5)

Eq. 3’ (x4 x6)

Eq. 1’’(x4)

(a) Odd−even reduction process.

Reduction
Step 1

Reduction
step 2

Backward substitution part: After one equation with one variable is derived, the solution for this variable can be

found. Then backward substitution process is applied recursively in logn steps to find all solutions.

A task graph for odd-even reduction and back substitution is:

Reduction on Eq 1 2 3

Reduction on Eq 3 4 5

Reduction on Eq 5 6 7

Reduction on Eq 1’2’3’

Solve x1 (Eq 1)

Solve x5 (Eq 5)

Solve x3 (Eq 3)

Solve x7 (Eq 7)

using Eq. 1’Solve x2

Solve x6 using Eq 3’

Solve x4
using Eq 1’’

(b) The task graph for reduction and backward solving.

10.3 PDE: Laplace’s Equation

We demonstrate the sequential and parallel solutions for a PDE that models a steady-state heat-flow problem on a

rectangular 10cm × 20cm metal sheet. One edge maintains temperature of 100 degree, other three edges maintain 0

degree as shown in Figure 25. What are the steady-state temperatures at interior points?

0

0 0

0 0 0

100

0

Temperature

x

Temperature

10cm

20cm

u11 u21 u31

Figure 25: The problem domain for a Laplace equation in modeling the steady-state temperature.

The mathematical model is the Laplace equation:

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0

with the boundary condition:

u(x, 0) = 0, u(x, 10) = 0.

38

u(0, y) = 0, u(20, y) = 100.

We divide the region into a grid with gap h at each axis. At each point (ih, jh), let u(ih, jh) = ui,j. The goal is to find

the value of all points ui,j .

Numerical Solution: Use the approximating formula for numerical differentiation:

f ′′(x) ≈ f(x+ h) + f(x− h)− 2f(x)

h2

Thus
∂2u(xi, yi)

∂x2
≈ ui+1,j − 2ui,j + ui−1,j

h2

∂2u(xi, yi)

∂y2
≈ ui,j+1 − 2ui,j + ui,j−1

h2

Then

ui+1,j − 2uij + ui−1,j + ui,j+1 − 2ui,j + ui,j−1 = 0

or

4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 = 0

This is called 5-point stencil computation since 5 points are involved within each equation.

Example. For the case in Figure 25, Let u11 = x1, u21 = x2, u31 = x3.

At u11, 4x1 − 0− 0− x2 = 0

At u21, 4x2 − x1 − 0− x3 − 0 = 0

At u31, 4x3 − x2 − 0− 100− 0 = 0




4 −1 0
−1 4 −1
0 −1 4









x1

x2

x3



 =





0
0

100





Solutions:

x1 = 1.786, x2 = 7.143, x3 = 26.786

A general grid. Given a general (n+ 2)× (n+ 2) grid, we have n2 equations:

4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 = 0

for 1 ≤ i, j ≤ n. For example, when r = 2, n = 6:

Temperature

held at U
0

Temperature

held at U1

held at U

Temperature held at U

Temperature

0

0

39

We order the unknowns as (u11, u12, · · · , u1n, u21, u22, · · · , u2n, · · · , un1, · · · , unn).

For n = 2, the ordering is:








x1

x2

x3

x4









=









u11

u12

u21

u22









The matrix is:








4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

















x1

x2

x3

x4









=









u01 + u10

u20 + u31

u02 + u13

u32 + u23









In general, the left side matrix is:















T −I
−I T −I

−I T −I
. . .

. . .
. . .

−I T















n2×n2

T =















4 −1
−1 4 −1

−1 4 −1
. . .

. . .
. . .

−1 4















n×n

I =















1
1

1
. . .

1















n×n

The matrix is very sparse, and a direct method for solving this system takes too much time.

The Jacobi Iterative Method. Given

4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1 = 0

for 1 ≤ i, j ≤ n. The Jacobi program is:

Repeat
For i=1 to n
For j=1 to n
unew
i,j = 0.25(ui+1,j + ui−1,j + ui,j+1 + ui,j−1).

EndFor
EndFor

Until ‖ unew − u ‖< ǫ

Parallel Jacobi Method. Assume we have a mesh of n× n processors. Assign ui,j to processor pi,j .

The SPMD Jacobi program at processor pi,j:

Repeat
Collect data from four neighbors: ui+1,j , ui−1,j, ui,j+1, ui,j−1 from pi+1,j , pi−1,j , pi,j+1, pi,j−1.
unew
i,j = 0.25(ui+1,j + ui−1,j + ui,j+1 + ui,j−1).
diffi,j = |unew

ij − uij |
Do a global reduction to get the maximum of diffi,j as M .

Until M < ǫ.

Performance evaluation.

• Each computation step takes ω = 5 operations for each grid point.

• There are 4 data items to be received. The size of each item is 1 unit. Assume sequential receiving and then

communication costs 4(α+ β) for these 4 items.

40

• Assume that the global reduction takes (α + β) logn.

• The sequential time Seq = Kωn2 where K is the number of steps for convergence.

• Assume ω = 0.5, β = 0.1, α = 100, n = 500, p2 = 2500.

The parallel time PT = K(ω + (4 + logn)(α+ β)).

Speedup =
ω ∗ n2

ω + (4 + logn)(α + β)
≈ 192.

Efficiency =
Speedup

n2
= 7.7%.

In practice, the number of processors is much less than n2. Also the above analysis shows that it does not make sense

to utilize n2 processors since the code suffers too much communication overhead for fine-grain computation. To increase

the granularity of computation, we map the n× n grid to processors using 2D block method.

Grid partitioning. Assume that the grid is mapped to a p × p mesh where p << n. Let γ = n
p
. An example of a

mapping with γ = 2, n = 6 is shown below.

Temperature

held at U
0

Temperature

held at U1

held at U

Temperature held at U

Temperature

0

0

Code partitioning. Re-write the kernel part of the sequential code as:

For bi = 1 to p
For bj = 1 to p
For i = (bi − 1)γ + 1 to biγ
For j = (bj − 1)γ + 1 to bjγ
unew
i,j = 0.25(ui+1,j + ui−1,j + ui,j+1 + ui,j−1).

EndFor
EndFor

EndFor
EndFor

Parallel SPMD code. On processor pbi,bj :

Repeat
Collect the data from its four neighbors.
For i = (bi − 1)γ + 1 to biγ
For j = (bj − 1)γ + 1 to bjγ
unew
i,j = 0.25(ui+1,j + ui−1,j + ui,j+1 + ui,j−1).

EndFor
EndFor
Compute the local maximum diffbi,bj for the difference between old values and new values.
Do a global reduction to get the maximum diffbi,bj as M .

Until M < ǫ.

Performance evaluation.

• At each processor, each computation step takes ωγ2 operations.

41

• The communication cost for each step on each processor is 4(α+ ωβ).

• Assume that the global reduction takes (α + β) log p.

• The number of steps for convergence is K.

• Assume ω = 0.5, β = 0.1, α = 100, n = 500, γ = 100, p2 = 25.

PT = K(γ2ω + (4 + log p)(α + rβ))

Speedup =
ωγ2p2

γ2ω + (4 + log p)(α+ ωβ)
≈ 19.45

Efficiency = 77.8%.

42

