CS140 W2026 PA1: Distributed Memory MPI and SIMD Programming

Please refer to the function comments for their specifications in every problem described below.
Do not change the provided function signatures or .h files. The autograding tool on GradeScope
will use these signatures and .h files for testing. For MPI programming, compilation should keep
—O3 option so code is optimized by C compiler.

Notice that to submit a job in Expanse, you need to modify the job script. For example to use 8
cores, change the allocation as:

#SBATCH --partition=shared
#SBATCH --nodes=1
#SBATCH --ntasks-per-node==8

1. Write an MPI program that computes a tree-structured global sum. Notice that the
number of processes participating in the global sum may not be a power of two. Do not
change the function signature of treesum_mpi.c. Your task is to write function
global sum() which runs on each process and performs a tree-structure summation only
using MPI_Send() and MPI_Recv(). You are NOT allowed to use any MPI collective
function such as MPI_Reduce(). For this problem, you need to write your own test file in
treesum_test mpi.c following the sample given as mv_mult test mpi.c and should
include the execution of some correctness tests. Our grading will run your
treesum_mpi.c code using the included Makefile and our own test code.

Function to be tested by our grading script: global sum

Files to submit: treesum test mpi.c, treesum_mpi.c

2. The sample code released includes a matrix vector multiplication in mv_mult mpi.c with
a test file called mv_mult_test mpi.c. Your task is to leverage this code and parallelize
the following iterative matrix multiplication algorithm using block mapping. Matrix A is
of size n x n. Column vectors x , y, and d are of size nx1.

Fork= 0tot-1
y =d+ Ax

X=y
EndFor

Functions to be tested by our grading script: itmv_mult, init_matrix

Files to submit: itmv_mult mpi.c, itmv_mult _test mpi.c

Report to include: README.txt

Q 2.a Function itmv_mult_seq() in itmv_multi_mpi.c is the sequential code for this algorithm
when argument matrix_type is 0. When matrix_type=1, that means the input matrix is an upper
triangular matrix which will be handled in Problem 2.b.

The test file itmv_multi test mpi.c should use the following matrix:

The diagonal elements of matrix A are 0. Namely. A[i][i]= 0. Non-diagonal elements
are A[i][j]=-1/n. Every element in vector d is (2n-1)/n. Initially each element of vector x
is 0. You need to complete function init_matrix for such initialization at every process.
Your test program should check the correctness of data initialization in every process and
execute the corresponding tests in run_all tests() successfully.

Part 2.a of README.txt should include a performance report when n=4096 and t=1024
for the above test case. Report the parallel time, gigaflops, speedup, and efficiency when
the number of cores used is 2 and 4 where each core runs one MPI process. We expect
your mapping solutions delivers decent parallel speedups. If not, check your code and evaluating
setup.

Q2.b Revise your parallel code for Problem 2.a to handle an upper triangular matrix A where all
of its lower triangular elements are 0. The input parameter matrix type is 1 in this case. For such
a matrix, A[1][j]=0 if i>j. Because of this zero pattern, the inner most loop j of the sequential
code for computing Ax is modified with the start position as 1 instead of 0 to skip unnecessary
computation. See itmv_mult seq() defined in itmv_multi mpi.c for more details:

for i=0 to n-1
for j=i to n-1

ylil=d[i] + A[i][j]*x[j]

Your parallel code in function itmv_mult should work with such a matrix and should avoid
perform computation which yields 0 (namely should not multiply the lower triangular part of
matrix A). The test matrix case added to itmv_mult test mpi.c for 2.b is the same as one for
Problem 2a, except that the lower triangular portion is 0. Namely A[i][j]= -1/n for 0< j<i<n
otherwise O for other elements. All elements in vector d are (2n-1)/n. Initially each element
of vector x is 0. Your init_matrix function should accomplish this. Your test code needs to
execute the 8 tests in run_all_tests() successfully.

Part 2b of README.txt should include a performance summary when n=4096 and t=1024
for the above test case. Report the parallel time, gigaflops, speedup, and efficiency when the
number of cores used is 2 and 4 where each core runs one MPI process. Explain why the
efficiency of the Problem 2.b solution for the above matrix is lower than that we have
observed for Problem 2.a and describe a strategy that can be used to address this issue.

3. Modify the released sum code simd sum.c in simd.tar.gz to complete a function called
sum_avx() using AVX2 SIMD intrinsics. The startup code contains a function (sum_sse)
that uses Intel SSE intrinsics with 128 bits to vectorize the sum of n integers. Following
the code structure of this function, use AVX2 intrinsics with 256 bits registers to
complete sum_avx().

Conduct a latency and gigaflops comparison of 3 sum implementations in this code when
n=1,000,000 in one core of an AMD CPU server of the Expanse cluster using -O gcc
flag and -O3 flag separately.

1) The naive sum of n integers (function sum_naive);

2) The vectorized sum with SSE intrinsics (function sum_sse);

3) The vectorized sum with AVX-256 intrinsics (function sum_avx).

For -O compilation flag, is the naive sum is substantially slower than others?
For -O3 compilation flag, 1s the naive sum is substantially slower than others?

List the latency and GFLOPs of the above 3 version of implementation in Q3 of
README.txt. Explain the reason for above raised questions in your report.

If you write your report Q1 and Q2 with CSIL instead of Expanse, then complete Q3
report using CSIL.

