Week 2 Discussion: Parallel
Architectures and Software

* Use of Intel SIMD SSE/AVX intrinsics for PA1 SIMD
* False sharing in shared memory architectures
e Parallel software

UCSB CS140

Use of Intel SIMD Intrinsics on CSIL

* Code to optimize in Programming Assignment 1 SIMD:
for (1=0; 1<n; 1++)
sum = sum+ af1];

. . . Use of 128-bit SIMD instruction
* Transform this loop with unrol}mg

\
for (1=0; 1<n/4*4; 1=1+4){ For each 4 members in array {
sum = sum + a[1]; Load 4 members to the SSE register
sum= sum + ali+11: < Accumulate with 4 additions in the >
sum= sum + a[1+2]; gengter
sum= sum + afi+3]; \ Fetch 4 results from the register and add
) together

for(i=n/4*4; i<n; i++) sum += a[i];

Related SSE Intrinsics

~ _m128i _mm_setzero si128() returns 128-bit zero vector
~ _m128i _mm_loadu_si128(__m128i Load data stored at pointer p of memory
*p) to a 128bit vector, returns this vector.

~ _m128i _mm_add _epi32(__m128ia, returns vector (agtby, a;+b4, a,+b,,
~_m128ib) as+bs) with 4 32-bit integers

7]

void _mm_storeu_si128(m128i *p, | stores content of 128-bit vector "a” to

~_m128ia) memory starting at pointer p
temp Source 1 X3 X2 v X1 X0
a[i] alit1] a[1+2] a[j+3]
Sum4 Source 2 Y3 Y2 Y1 YO

Sum4 Destination X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP YO 3

Use of Intel SIMD SSE Intrinsics

for (i = 0; n/4*4; i=i+4){

sum = sum + a[i];

SuUm=
SUm=

Sum=—

Load data from memory
to a 128-bit register

+ afi+1];
sum a[% I; Add 4 numbers
sum + a[i+2];

sum + a[i+3]} i Iflrallel

_ ml281 sum4=_mm_setzero_ sjl128();
for (i=0; n/4*4; i=i+4){
__ml28i temp= mm_loadu sil28 (& a[i]) ;

sum4= mm_add_epi32(sum4, temp); }

Next, copy out 4 integers from sum4 and add them to sum.

ints[4] attribute ((aligned(16)));
mm_storeu_s1128(_ m1281 *)s, sum4);

sum=s[0]+s[1]+s[2]+s[3]; 4

Related AVX2 (256 Bits) for PA1 SIMD

_ m256i _mm_setzero_si256()

__m256i _mm_loadu_si256(_m256i

P)

~_m156i _mm_add_epi32(__m256i a,

_ m256ib)

void _mm_storeu_si256(_ m256i *p,

__m256ia)

_ L

A5

y +] BEE

A'ITLI A6+B6

A5+B5

A4+B4 g Azél A1+B] A0+BO

returns 256-bit zero vector

Load data stored at pointer p of memory
to a 256bit vector, returns this vector.

returns vector (apg+bg, a,+by,..., a;+b;)
with 8 32-bit integers

” ”

stores content of 256-bit vector ”"a” to
memory starting at pointer p

https://www.cs.virginia.edu/~cr4bd/3330/F2018
/simdref.html 5

Cache coherence in a shared memory

machine

2:; /* shared variable */

X j—
Time || . Coref—0 Core 1

0 y0 = x; yl = 3%;

I x = 7T; Statement(s) not involving x

2 Statement(s) not involving x | z1 = 4*x;
y0 eventually ends up = 2 Corf 0 Core 1
y1l eventually ends up = 6 —— e
Statement zl is executed in Core 1 after x=7 in Core 0 Xz

Interconnect
Should z1 = 4*7 or 4*27?
21=4%7 %=

Cache coherence: an update to a variable cached
In one processor should be seen in other processors.

Hardware ensures cache coherence.

N
= M

Tz y1

y0

z1

False Sharing in Shared Memory Machines

Processor O

\

Cache 0

Processor 1

/

Cache 1

—

8

16

28

Proc 0

Write data #0
Invalidate cache block of Proc 1

Memory

« Cache block size is 32 bytes

Proc 1

Write data #12
Invalidate cache block
at Proc O

Local cache 1s not effectively used due frequent invalidation

No False Sharing

Processor O

Processor 1

Local cache can be effectively used for each processor

Cache O Cache 1
<
0 4 8 12 16 1 28 |
32-Byte Data Block ‘L 64 68 72 76 82 |
Memory 1
« Cache block size is 32 bytes
Time Proc 0 Proc 1
0 Write data #0
This block is not cached in other proc.
1 Write data #82

Invalidating cache block
does not affect others
8

-

Discussion on Parallel Software

*Examp]

eParalle]

e of valid and 1nvalid scheduling
| tree sum

eParalle]

1zIng matrix vector multiplication

*Running MPI on CSIL
*Expanse cluster usage
= If time does not permit, next week

’ !ask Scheduling: Map and execute tasks on

Task graph Which schedule 1s valid?
Proc 0 Proc 1

Each processor executes assigned
tasks sequentially

’ !ask Scheduling: Map and execute tasks on

Task graph Which schedule 1s valid?
Proc 0 Proc 1

Each processor executes 3551gned
tasks sequentially

Not valid
as T2->T4
dependence
1s violated.

Example: Estimation of Parallel Time

_ from a Schedule
Proc O Proc 1
Assume each task takes 1 time unit
Parallel time=4 o
T4
Shared memory machines
Proc 0 Proc 1

with 0 synchronization cost
Parallel time=3

Distributed memory machines

Communication costs 0 time unit

Parallel time=3

—

’ Example: Estimation of Parallel Time on
Distributed Memory Machines

Assume each task takes 1 time unit

Sending startup costs 0.5 Proc 0 Proc 1

Receiving costs 0 o
Message travel costs 0.5, which ~
can overlap with computation @

The path T1, T3, T4 costs 5
e Tlcosts1
Message T1->T3 costs: 0.5 +0.5
T3 costs 1 Parallel time= completion
Message T32>T4 costs: 0.5 +0.5 time of T3 =5
T4 costs 1

' How to write SPMD code for tree summation?

Hints for Programming Assignment 1

' Parallel summation: Textbook Figure 1.1

« Skew the previous graph

Cores

' Patterns of parallel computation:
: PN

Who needs to send it?

Divisible

Time

Divisible

Divisible

Step 3 by 8

Patterns of parallel computation & SPMD code

i Divisible
(2 by 2
DiVisine

me=mynode();
| If(I have no work at Step 1)
Ve— .. Send my number to a neighbor;

Divisible _

For step=1 to 3 do {

by 8 if(I have work at this step) {
Recelve a number and accumulate
If (I have no work at next step)

Send my sum to somebody who needs;

Patterns of parallel computation & SPMD code

5

Step O @ 9) (13

// % Divisible
Step 1 (2 + 2

P AVISlb
Step 2+@9' (6]

by 4 / [am divisible by 2

me=mynode(); I am divisible by
¥ e— . . |If(I have no work at Step 1) step

Divisiblg
by 8 Send my number t6 aneighbor;
For step=1 to 3 do {
if(I have work at this step) {
Recelve a number and accumulate
If (I have no work at next step)
Send my sum to somebody who needs;

Matrix-vector multiplication: y=A * x

(12 3) [(1\ [1%1+2+2+3+3) [14
4 5 6 | x| 2 | = 4x1+5*%x2+6x%x3 =1 32

\7 8 9/ \3) \7+14+8%24+9+3) \ 50)

Problem: y = A x x where A is a n X n matrix

and x is a column vector of dimension n.

Sequential code:

fori=1to n do
yi = 0;
for 7 =1 tondo
Yi = Yi T Qi * Tj;
endfor Textbook 113-114
endfor Exercise 0

Partitioning and Task graph for matrix-vector

-‘multiptication

Partitioned code:

for i =1 to n do
Sit Y =0;

for) =1 ton do

Yi = Y; + aij *Tj;

endfor

endfor

S; ;' Read row A; and vector .

_ yi= Row Ai multiplies x
Write element y;

Task graph:

& & O ®

Execution Schedule and Task Mapping

S; : Read row A; and vector x.

Write element y;

Task graph:

& & O

Schedule:
0 1 p-1
S1 Sr+12|
S2 |Sr+
sr | S2r Sn

Mapping function of tasks 5;:

procomap(i) = | =L | where r = [2].

yi= Row Ai multiplies x

Example,
n=10, p=3, what 1s r?

=4 with 4, 4, and 2
distribution.

=3 1s wrong with 3, 3,
3 distribution
Thus r=n/p 1s wrong

' Estimation of Parallel Time from the Schedule

Schedule:
0 1 p-1 eEach task performs n
S S”"J additions and n multiplications
s2 |sr+
*Assume Each
sr | ser Sn addition/multiplication
Costs ®
*Only count main arithmetic *The pe.trallel time 1s
Ccosts approximately n
« Ignore low-level — X 2nw
implementation cost such p

as local address
calculation, and loop
iteration overhead.

* They are less significant

' Unoptimized SPMD Code for y= A*x

Schedule:
0 1 p-1
S1 Sr+12|
S2 |Sr+
sr | S2r Sn
me=mynode();
fori=1tondo Si
if prci)c_sl.nap(i)ZZ me, then) y[i]=0
0ol for j=1 ton do

ylil=y[] + afi][j]*x[j]

* Easy to understand.
« Extra overhead to iterate through all n checkups

’ SPMD Code for y= A*x with loop checkup
verh remov

Schedule:
0 1 p—1

S1 Sr+12|

S2 |sr+

sr | S2r Sn
me=mynode();
p=noproc();
r = ceiling(n/p); Si

first = me*r +1; [i1=0
last = first +r; y

. for j=1ton do
for i fistto lastdo """ y[ij-y[i] + afi][}*x[]

e More difficult to read code
e No overhead for checkup

	Slide 1: Week 2 Discussion: Parallel Architectures and Software
	Slide 2: Use of Intel SIMD Intrinsics on CSIL
	Slide 3: Related SSE Intrinsics
	Slide 4: Use of Intel SIMD SSE Intrinsics
	Slide 5: Related AVX2 (256 Bits) for PA1 SIMD
	Slide 6: Cache coherence in a shared memory machine
	Slide 7: False Sharing in Shared Memory Machines
	Slide 8: No False Sharing
	Slide 9: Discussion on Parallel Software
	Slide 10: Task Scheduling: Map and execute tasks on multiprocessors
	Slide 11: Task Scheduling: Map and execute tasks on multiprocessors
	Slide 12: Example: Estimation of Parallel Time from a Schedule
	Slide 13: Example: Estimation of Parallel Time on Distributed Memory Machines
	Slide 14
	Slide 15: Parallel summation: Textbook Figure 1.1
	Slide 16: Patterns of parallel computation: Who needs to receive a number and add it? Who needs to send it?
	Slide 17: Patterns of parallel computation & SPMD code
	Slide 18: Patterns of parallel computation & SPMD code
	Slide 19: Matrix-vector multiplication: y= A * x
	Slide 20: Partitioning and Task graph for matrix-vector multiplication
	Slide 21: Execution Schedule and Task Mapping
	Slide 22: Estimation of Parallel Time from the Schedule
	Slide 23: Unoptimized SPMD Code for y= A*x
	Slide 24: SPMD Code for y= A*x with loop checkup overhead removed

