
Week 2 Discussion: Parallel

Architectures and Software

UCSB CS140

• Use of Intel SIMD SSE/AVX intrinsics for PA1 SIMD

• False sharing in shared memory architectures

• Parallel software

2

Use of Intel SIMD Intrinsics on CSIL

• Code to optimize in Programming Assignment 1 SIMD:

 for (i=0; i<n; i++)

 sum = sum+ a[i];

• Transform this loop with unrolling

 for (i = 0; i<n/4*4; i=i+4){

 sum = sum + a[i];

 sum= sum + a[i+1];

 sum= sum + a[i+2];

 sum= sum + a[i+3];

}

for(i=n/4*4; i<n; i++) sum += a[i];

For each 4 members in array {

 Load 4 members to the SSE register

 Accumulate with 4 additions in the

register

}

Fetch 4 results from the register and add

together

Use of 128-bit SIMD instruction

3

Related SSE Intrinsics

__m128i _mm_setzero_si128() returns 128-bit zero vector

__m128i _mm_loadu_si128(__m128i

*p)

Load data stored at pointer p of memory

to a 128bit vector, returns this vector.

__m128i _mm_add_epi32(__m128i a,

__m128i b)

returns vector (a0+b0, a1+b1, a2+b2,

a3+b3) with 4 32-bit integers

 void _mm_storeu_si128(__m128i *p,

__m128i a)

stores content of 128-bit vector ”a” to

memory starting at pointer p

sum4

temp

sum4

a[i] a[i+1] a[i+2] a[i+3]

4

Use of Intel SIMD SSE Intrinsics

__m128i sum4=__mm_setzero_si128();

 for (i = 0; n/4*4; i=i+4){

 __m128i temp=_mm_loadu_si128 (& a[i]) ;

 sum4=_mm_add_epi32(sum4, temp); }

• Next, copy out 4 integers from sum4 and add them to sum.

for (i = 0; n/4*4; i=i+4){

 sum = sum + a[i];

 sum= sum + a[i+1];

 sum= sum + a[i+2];

 sum= sum + a[i+3]}

Load data from memory

to a 128-bit register

Add 4 numbers

in parallel

int s[4] __attribute__((aligned(16)));

_mm_storeu_si128(__m128i *)s, sum4);

sum=s[0]+s[1]+s[2]+s[3];

5

Related AVX2 (256 Bits) for PA1 SIMD

__m256i _mm_setzero_si256() returns 256-bit zero vector

__m256i _mm_loadu_si256(__m256i

*p)

Load data stored at pointer p of memory

to a 256bit vector, returns this vector.

__m156i _mm_add_epi32(__m256i a,

__m256i b)

returns vector (a0+b0, a1+b1,…, a7+b7)

with 8 32-bit integers

 void _mm_storeu_si256(__m256i *p,

__m256i a)

stores content of 256-bit vector ”a” to

memory starting at pointer p

https://www.cs.virginia.edu/~cr4bd/3330/F2018

/simdref.html

Cache coherence in a shared memory

machine

x = 2; /* shared variable */

y0 eventually ends up = 2

y1 eventually ends up = 6

Statement z1 is executed in Core 1 after x=7 in Core 0

X=7

X=2

X=2

Should z1 = 4*7 or 4*2?

Cache coherence: an update to a variable cached

in one processor should be seen in other processors.

Hardware ensures cache coherence.

z1=4*7

False Sharing in Shared Memory Machines

• Cache block size is 32 bytes

7

Processor 0 Processor 1

0 4 8 12 16 28

32-Byte Data Block

Cache 0 Cache 1

Memory

Time Proc 0 Proc 1

0 Write data #0

Invalidate cache block of Proc 1

1 Write data #12

Invalidate cache block

at Proc 0

Local cache is not effectively used due frequent invalidation

No False Sharing

• Cache block size is 32 bytes

8

Processor 0 Processor 1

0 4 8 12 16 28

32-Byte Data Block

Cache 0 Cache 1

Memory

Time Proc 0 Proc 1

0 Write data #0

This block is not cached in other proc.

1 Write data #82

Invalidating cache block

does not affect others

Local cache can be effectively used for each processor

64 68 72 76 82

Discussion on Parallel Software

•Example of valid and invalid scheduling

•Parallel tree sum

•Parallelizing matrix vector multiplication

•Running MPI on CSIL

•Expanse cluster usage

▪ If time does not permit, next week

Task Scheduling: Map and execute tasks on

multiprocessors

T1

T4

T2 T3 T1

T4

T3

T2

Proc 0 Proc 1

Task graph Which schedule is valid?

T1

T2

T3 T4

Proc 0 Proc 1

T1

T4

T2 T3

Proc 0 Proc 1

Each processor executes assigned

tasks sequentially

Task Scheduling: Map and execute tasks on

multiprocessors

T1

T4

T2 T3 T1

T4

T3

T2

Proc 0 Proc 1
Task graph Which schedule is valid?

T1

T2

T3 T4

Proc 0 Proc 1

T1

T4

T2 T3

Proc 0 Proc 1

Each processor executes assigned

tasks sequentially
valid

valid

Not valid

as T2->T4

dependence

is violated.

Example: Estimation of Parallel Time

from a Schedule

T1

T4

T3

T2

Proc 0 Proc 1

Assume each task takes 1 time unit

T1

T4

T2 T3

Proc 0 Proc 1

Parallel time=4

Shared memory machines

with 0 synchronization cost

Parallel time=3

Distributed memory machines

Communication costs 0 time unit

Parallel time=3

Example: Estimation of Parallel Time on

Distributed Memory Machines

Assume each task takes 1 time unit

T1

T4

T2 T3

Proc 0 Proc 1
Sending startup costs 0.5

Receiving costs 0

Message travel costs 0.5, which

can overlap with computation

The path T1, T3, T4 costs 5

• T1 costs 1

• Message T1→T3 costs: 0.5 +0.5

• T3 costs 1

• Message T3→T4 costs: 0.5 +0.5

• T4 costs 1

Parallel time= completion

time of T3 = 5

How to write SPMD code for tree summation?

Hints for Programming Assignment 1

Parallel summation: Textbook Figure 1.1

• Skew the previous graph

Copyright © 2010, Elsevier
Inc. All rights Reserved

Patterns of parallel computation:

Who needs to receive a number and add it?

Who needs to send it?

Divisible

by 2

Divisible

by 4

Divisible

by 8

Step 0

Step 1

Step 2

Step 3

Gap=4

Gap=2

Gap=1

Patterns of parallel computation & SPMD code

Divisible

by 2

Divisible

by 4

Divisible

by 8

me=mynode();

If(I have no work at Step 1)

 Send my number to a neighbor;

For step=1 to 3 do {

 if(I have work at this step) {

 Receive a number and accumulate

 If (I have no work at next step)

 Send my sum to somebody who needs;

 }

}

Step 0

Step 1

Step 2

Step 3

Patterns of parallel computation & SPMD code

Divisible

by 2

Divisible

by 4

Divisible

by 8

Step 0

Step 1

Step 2

Step 3
me=mynode();

If(I have no work at Step 1)

 Send my number to a neighbor;

For step=1 to 3 do {

 if(I have work at this step) {

 Receive a number and accumulate

 If (I have no work at next step)

 Send my sum to somebody who needs;

 }

}

I am divisible by 2

I am divisible by

step

Matrix-vector multiplication: y= A * x

Textbook 113-114

Exercise 0

Partitioning and Task graph for matrix-vector

multiplication

yi= Row Ai multiplies x

Execution Schedule and Task Mapping

yi= Row Ai multiplies x

Example,

n=10, p=3, what is r?

r=4 with 4, 4, and 2

distribution.

r=3 is wrong with 3, 3,

3 distribution

Thus r=n/p is wrong

Estimation of Parallel Time from the Schedule

•Only count main arithmetic

costs

• Ignore low-level

implementation cost such

as local address

calculation, and loop

iteration overhead.

• They are less significant

•Each task performs n

additions and n multiplications.

•Assume Each

addition/multiplication

costs ω

•The parallel time is

approximately

Unoptimized SPMD Code for y= A*x

• Easy to understand.

• Extra overhead to iterate through all n checkups

me=mynode();

for i = 1 to n do

 if proc_map(i)== me, then

 do Si
y[i]=0

for j= 1 to n do

 y[i]=y[i] + a[i][j]*x[j]

Si

SPMD Code for y= A*x with loop checkup

overhead removed

• More difficult to read code

• No overhead for checkup

me=mynode();

p= noproc();

r = ceiling(n/p);

first = me*r +1;

last = first +r;

for i = first to last do

 do Si

y[i]=0

for j= 1 to n do

 y[i]=y[i] + a[i][j]*x[j]

Si

	Slide 1: Week 2 Discussion: Parallel Architectures and Software
	Slide 2: Use of Intel SIMD Intrinsics on CSIL
	Slide 3: Related SSE Intrinsics
	Slide 4: Use of Intel SIMD SSE Intrinsics
	Slide 5: Related AVX2 (256 Bits) for PA1 SIMD
	Slide 6: Cache coherence in a shared memory machine
	Slide 7: False Sharing in Shared Memory Machines
	Slide 8: No False Sharing
	Slide 9: Discussion on Parallel Software
	Slide 10: Task Scheduling: Map and execute tasks on multiprocessors
	Slide 11: Task Scheduling: Map and execute tasks on multiprocessors
	Slide 12: Example: Estimation of Parallel Time from a Schedule
	Slide 13: Example: Estimation of Parallel Time on Distributed Memory Machines
	Slide 14
	Slide 15: Parallel summation: Textbook Figure 1.1
	Slide 16: Patterns of parallel computation: Who needs to receive a number and add it? Who needs to send it?
	Slide 17: Patterns of parallel computation & SPMD code
	Slide 18: Patterns of parallel computation & SPMD code
	Slide 19: Matrix-vector multiplication: y= A * x
	Slide 20: Partitioning and Task graph for matrix-vector multiplication
	Slide 21: Execution Schedule and Task Mapping
	Slide 22: Estimation of Parallel Time from the Schedule
	Slide 23: Unoptimized SPMD Code for y= A*x
	Slide 24: SPMD Code for y= A*x with loop checkup overhead removed

