V.

Discussion: MPI Parallel Programming

*Running MPI on Expanse

Distribute data to processes and gather
data from processes

Parallel matrix multiplication with MPI

C3S140

Run MPI on a CSIL machine and on

— Expanse

https://sites.cs.ucsb.edu/~tyang class/140w26/install mpi. html

* You can use your laptop or CSIL machine to quickly test
and debug your MPI programs.

To compile for PA1 Q2 code:
make -f Makefile-CSIL

To run on a CSIL machine
make -f Makefile-CSIL run-mv_mult_test_mpi

* For reporting, run the job on an Expanse machine
make

make run-mv_mult_test_mpi

https://sites.cs.ucsb.edu/~tyang_class/140w22/install_mpi.html

Compilation of MPI C code at CSIL

Install the MPI package by yourself or use pre-installed MPI
* In the attached makefile with PA1 called Makefile-CSIL, the path
location prefix of the MPI package is:

MPI_PREFIX = ~tyang_class/local/bin/
* make -f Makefile-CSIL run-mv_mult_test_mpi

*Running result:

Test 1: Wall clock time = 0.000035 at Proc O of 2 processes
Test 2: Wall clock time = 0.001825 at Proc O of 2 processes
Summary: Failed 0 out of 2 tests

*mpicc and mpirun in ~tyang_class/local/bin/ are used to compile
and run MPI programs.

' Running a parallel job at Expanse

« To getinto a login node
ssh username@login.expanse.sdsc.edu

« Compile with make
 Submit a job that runs a parallel job

« Expanse cluster has 732 nodes and each node has 128
cores with AMD EPYC 7742 processors

« 256 GB memory and 1TB SSD for local scratch space.

« Attached storage: 12 petabytes of 100-200 GB/second
storage

mailto:username@login.expanse.sdsc.xsede.org

' Compilation of MPI C code at Expanse

wrapper script to compile

(Y source file

mpicc -O -o hello_mpi mpi_hello.c

Compilera;>'on >

-O or—g -Wall create this executable file name
(as opposed to default a.out)

sbatch -v run-hello.sh .
Submit a parallel

Job using a shell script

Job script that runs an MPI program at Expanse

1 /bin/bash JOb name you can observe
#SBATCH --job-name="hellomp1" — when querying status

#SBATCH --output="hellomp1.%j.70N.out"
#SBATCH --partition=shared

#SBATCH --nodes=2 \
#SBATCH --ntasks-per-node=2
#SBATCH --export=ALL ">~ This job runs with 2 nodes, 2 cores pe
#SBATCH -t 00:01:00 node for a total of 4 cores.

#SBATCH --account=csbl175

Job 1d in the submitted queue

Which cluster to run this program

Set a time limit that this job runs

dul '
module purge at most 1 minute.

module load slurm
module load cpu

module load gee ibrun 1in —v verbose mode will
module load openmpi give binding detail in running
module load sdsc Cq

the hello mp1 binary

ibrun -v ../hello_ mpi

' Useful Commands at Expanse

* How to check account balance?
= module load sdsc

= expanse-client user -r expanse
= Hours shown are shared among all users in cs140!
= Account is billed based on the nearest CPU node hour.

= Easy to use all hours with a deadlock job. Thus set the
maximum time usage: 1-2 mins.

» Use the squeue -u command to check the job status.
Use the scancel command to cancel a job.

- allocate a single node to execute some compute-
intensive job interactively.

* srun --export=ALL --partition=debug --account=csb175 --pty --
nodes=1 --ntasks-per-node=1 -t 0:30:00 /bin/bash

* When done, DONOT forget Ctrl-D or Cmd-D to exit.

Parallel Matrix Vector Multiplication

Collective Communication Application

Matrix-vector multiplication: y=A * x

(12 3) [(1\ [1%1+2+2+3+3) [14
4 5 6 | x| 2 | = 4x1+5*%x2+6x%x3 =1 32

\7 8 9/ \3) \7+14+8%24+9+3) \ 50)

Problem: y = A x x where A is a n X n matrix

and x is a column vector of dimension n.

Sequential code:

for i =1to n do
yi = 0;
for 7 =1 tondo
Yi = Yi T Qi * Tj;
endfor

endfor

Partitioning and Task graph for matrix-vector

-‘multiptication

Partitioned code:

for i =1 to n do
Sit Y =0;

for) =1 ton do
Yi = Y; + aij *Tj;

endfor

endfor

S; ;' Read row A; and vector .

, yi= Row Ai * Vector x
Write element y;

Task graph:

& & O ®

Execution Schedule and Task Mapping

S; : Read row A; and vector x.

_ yi= Row Ai * Vector x
Write element y;

Task graph:

& & O ®

Schedule:
0 1 p—1

S1 Sr+12|
s2 |sr+

sr | S2r Sn

Mapping function of tasks S;:

proc_map(i) = | =L | where r = [2]

Data Partitioning and Mapping for y= A*x

Data partitioning: for the above schedule:

Matrix A is divided into n rows Ay, As,--- A,,.

Local space

Ay 0

A,y 1

Ay proc 0 2

iﬂf 3
5

0

iﬁ proc 1 1
.

Ag §

Data mapping:

Row A; is mapped to processor proc_map(i), the
same as task 2. The indexing function is:
local(i) = (i — 1) mod r. Vectors x and y are

replicated to all processors.

' SPMD Code for y= A*x

int x[n], y[n], a[r|[n];

me=mynode();
for s =1ton do

if proc_map(i) == me, then do S;:

Si: yli] =0;

for y =1 ton do
yli] = yli] + allocal(i)][7] * z[j];

endfor

endfor

' Evaluation: Parallel Time

*Ignore the cost of local address
calculation.

*Each task performs » additions and »
multiplications.

*Each addition/multiplication costs ®

n
— X 2nw

P

*The parallel time 1s approximately

How is initial data distributed?

Assume 1nitially matrix A and vector x are distributed
evenly among processes

A x

Proc 0

Proc 1

Proc 2

Proc 3

Need to redistribute vector x to everybody in order to perform
parallel computation!
What MPI collective communication is needed?

' Communication Pattern for Data Redistribution

Data requirement for ~ F*°¢ © /y 11

Process 0 7
Proc 1 @//
MPI Gather
Proc 2 @/ -

Proc 3 @

Proc 0
Data requirement for T h A
all processes proc 1 |[VGa)

MPI_Allgather

Proc 2

Proc 3 \ Q{ W

MPI Code for Gathering Data

Data gather for float local_x[]; /*local storage for x*/
Process 0 float global_x[]; /*storage for all of x*/

MPI_Gather(local_x, n/p, MPI_FLOAT,
global_x, n/p, MPI_FLOAT,
0O, MPI_COMM_WORLD) ;

Repeat for all processes
It is the same as:

MPI_A11_gather(local_x, n/p, MPI_FLOAT,
global_x, n/p, MPI_FLOAT,
MPI_COMM_WORLD) ;

Allgather Allgather

« Concatenates the contents of each process’
send_buf p and stores this in each process’
recv_buf p.

 As usual, recv_count is the amount of data being
received from each process.

int MPI_Rllgather(

void * send_buf p /% in %/,

int send_count /% in */,
MPI Datatype send_ type Jx 0in %/,
void # recv_buf p /x out =/,
int recv_count /x in %/,
MPI_Datatype recv_type f+ 0in */,
MPI Comm comm f 0in #/);

Copyright © 2010, Elsevier
Inc. All rights Reserved

MPI SPMD Code for y=A*x

void Parallel_matrix_vector_prod(

LOCAL_MATRIX_T 1local_A Proc 0
int m Proc 1
int n Proc 2
float local_x[] o
float global _x[]

float local_y[]

int local_m

int local_n) {

/* local_m = n/p, local_n = n/p */

MPI_Allgather(local_x, local_n, MPI_FLOAT
global_x, local_n, MPI_FLOAT,
MPI_COMM_WORLD);

MPI SPMD Code for y=A*x

for (i = 0; i < local_m; i++) {
local_yl[i] = 0.0;
for (j = 0; j < n; j++)
local_yl[i] = local_yl[i] +
local_A[i] [jl*global_x[j];

} A x

e _

Proc 1

Proc 2

Proc 3

ext book solution for y=A*x
Page 114 of "An Introduction to Parallel Programming” by Peter

Pacheco, 2011

A = (ajj) 1s an m X n matrix

aoo ol ao,n—1
ayo ap ayp1 X0 |
. . o
i djl djpn—1 :
Xn—1
Um—1,0 | dm—1.1 Um—1.n—1

Vi = djpXg + dj1 X1 +dppXy + - dip—1Xn—1

N

I-th component of y

X 18 a vector with n components

Yo

V1

Vi =djpXo +dj1 X1+ djp—1Xp—1

Vm—1

f

Dot product of the ith
row of A with x.

' Use one dimensional C array to represent

— 2D matrix
A = (ajj) 1s an m x n matrix

0O 1 2 -

4 5 6 7

8 9 10 11
stored as

01234567891011

Copyright © 2010, Elsevier
Inc. All rights Reserved

Sequential code for y=A*x

ano anl ao.n—1
am a11 a1 n—1
a;n ajy dipn—1
void Mat vect mult(10 [amrt |~ ametm
double A[] /= in +/.
double =[] /= in =+/.
double vy |[] /= out =/,
int m /= 0in %/,
int n /= in */) |
int i, 7:
for (i = 0: i < m: i++) |
v[ii] = 0.0;
for (7 = 0: 3 < n: J++)

yli] += Alixn+jlxx[]];

h

p /% Mat_vect_mult =/

X

Yo

M

Vi = djoxo +dj1xX1 + - dip—1Xp—1

An—1 |

Vm—1

Copyright © 2010, Elsevier
Inc. All rights Reserved

Textbook MPI code for matrix-vector

-‘multiptication

void Mat vect mult(

double local AJ]
double local x|[]
double local vy]
int local m
int n

int local n

MPI Comm comm
double+ x;
int local 1, 7:
int local ok = 1;

NN NN N NN

in
in
out
in
in
in
in

+/
+/
/.
/.
/.
/.

#/) 1

Copyright © 2010, Elsevier
Inc. All rights Reserved

Textbook MPI code for y=A*x

¥ = malloc(n+sizeof(double));
MPI Allgather(local_x, local n., MPI_DOUELE,
X, local n, MPI DOUBLE, comm);

for (local_i = 0; local_i < local m: local_i++4) {
local_y[local _i] = 0.0;
for (4 = 0: 5 < n: j++)
local y|local i] += local Allocal isn+jl=x[j]:

h

free(x):
A x
Proc 1
Proc 2
Proc 3

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Speedups of Parallel Matrix-Vector
Multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4096 | 8192 | 16.384
l 1.0 1.0 1.0 1.0 1.0

1.8 1.9 1.9 1.9 2.0
| 3.1 36| 39 3.9
24 48 0.5 7.5 7.9

16 241 62 108 | 142 15.5

O =
I

Copyright © 2010, Elsevier
Inc. All rights Reserved

’ Efficiencies of Parallel Matrix-Vector
Multiplication

Order of Matrix
comm_sz || 1024 | 2048 | 4096 | 8192 | 16.384
l .00 | 1.00 | 1.00 [1.00 .00

0.89 | 094 | 097 | 0.96 0.98
0.51] 0.78 | 0.89 | 0.96 0.98
0.30 | 0.61 | 0.82] 0.94 0.98
0.15] 039 | 0.68 | 0.89 0.97

SO | 2

[a—
)]

Copyright © 2010, Elsevier
Inc. All rights Reserved

	Slide 1: Discussion: MPI Parallel Programming
	Slide 2: Run MPI on a CSIL machine and on Expanse
	Slide 3: Compilation of MPI C code at CSIL
	Slide 4: Running a parallel job at Expanse
	Slide 5: Compilation of MPI C code at Expanse
	Slide 6: Job script that runs an MPI program at Expanse
	Slide 7: Useful Commands at Expanse
	Slide 8: Parallel Matrix Vector Multiplication
	Slide 9: Matrix-vector multiplication: y= A * x
	Slide 10: Partitioning and Task graph for matrix-vector multiplication
	Slide 11: Execution Schedule and Task Mapping
	Slide 12: Data Partitioning and Mapping for y= A*x
	Slide 13: SPMD Code for y= A*x
	Slide 14: Evaluation: Parallel Time
	Slide 15: How is initial data distributed?
	Slide 16: Communication Pattern for Data Redistribution
	Slide 17: MPI Code for Gathering Data
	Slide 18: Allgather
	Slide 19: MPI SPMD Code for y=A*x
	Slide 20: MPI SPMD Code for y=A*x
	Slide 21: Text book solution for y=A*x Page 114 of "An Introduction to Parallel Programming” by Peter Pacheco, 2011
	Slide 22: Use one dimensional C array to represent 2D matrix
	Slide 23: Sequential code for y=A*x
	Slide 24: Textbook MPI code for matrix-vector multiplication
	Slide 25: Textbook MPI code for y=A*x
	Slide 26: Speedups of Parallel Matrix-Vector Multiplication
	Slide 27: Efficiencies of Parallel Matrix-Vector Multiplication

