
Discussion: MPI Parallel Programming

CS140

•Running MPI on Expanse

•Distribute data to processes and gather
data from processes

•Parallel matrix multiplication with MPI

Run MPI on a CSIL machine and on

Expanse

• You can use your laptop or CSIL machine to quickly test

and debug your MPI programs.

To compile for PA1 Q2 code:

make -f Makefile-CSIL

To run on a CSIL machine

make -f Makefile-CSIL run-mv_mult_test_mpi

• For reporting, run the job on an Expanse machine

make
make run-mv_mult_test_mpi

https://sites.cs.ucsb.edu/~tyang_class/140w26/install_mpi. html

https://sites.cs.ucsb.edu/~tyang_class/140w22/install_mpi.html

Compilation of MPI C code at CSIL

Install the MPI package by yourself or use pre-installed MPI
• In the attached makefile with PA1 called Makefile-CSIL, the path
location prefix of the MPI package is:

MPI_PREFIX = ~tyang_class/local/bin/

• make -f Makefile-CSIL run-mv_mult_test_mpi

•Running result:
Test 1: Wall clock time = 0.000035 at Proc 0 of 2 processes
Test 2: Wall clock time = 0.001825 at Proc 0 of 2 processes
Summary: Failed 0 out of 2 tests

•mpicc and mpirun in ~tyang_class/local/bin/ are used to compile
and run MPI programs.

Running a parallel job at Expanse

• To get into a login node

ssh username@login.expanse.sdsc.edu

• Compile with make

• Submit a job that runs a parallel job

Home

Linux
Allocated cluster Login

node

• Expanse cluster has 732 nodes and each node has 128
cores with AMD EPYC 7742 processors

• 256 GB memory and 1TB SSD for local scratch space.

• Attached storage: 12 petabytes of 100-200 GB/second
storage

mailto:username@login.expanse.sdsc.xsede.org

Compilation of MPI C code at Expanse

mpicc -O -o hello_mpi mpi_hello.c

wrapper script to compile
source file

create this executable file name

(as opposed to default a.out)

Compiler option

-O or –g -Wall

sbatch -v run-hello.sh
Submit a parallel

job using a shell script

Job script that runs an MPI program at Expanse

#!/bin/bash

#SBATCH --job-name="hellompi"

#SBATCH --output="hellompi.%j.%N.out"

#SBATCH --partition=shared

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=2

#SBATCH --export=ALL

#SBATCH -t 00:01:00

#SBATCH --account=csb175

module purge

module load slurm

module load cpu

module load gcc

module load openmpi

module load sdsc

ibrun -v ../hello_mpi

Job name you can observe

when querying status

Job id in the submitted queue

Which cluster to run this program

This job runs with 2 nodes, 2 cores per

node for a total of 4 cores.

Set a time limit that this job runs

at most 1 minute.

ibrun in –v verbose mode will

give binding detail in running

the hello mpi binary

Useful Commands at Expanse

• How to check account balance?

▪ module load sdsc

▪ expanse-client user -r expanse

▪ Hours shown are shared among all users in cs140!

▪ Account is billed based on the nearest CPU node hour.

▪ Easy to use all hours with a deadlock job. Thus set the

maximum time usage: 1-2 mins.

• Use the squeue -u command to check the job status.

Use the scancel command to cancel a job.

• allocate a single node to execute some compute-

intensive job interactively.

• srun --export=ALL --partition=debug --account=csb175 --pty --

nodes=1 --ntasks-per-node=1 -t 0:30:00 /bin/bash

▪ When done, DONOT forget Ctrl-D or Cmd-D to exit.

Parallel Matrix Vector Multiplication

Collective Communication Application

Matrix-vector multiplication: y= A * x

Partitioning and Task graph for matrix-vector

multiplication

yi= Row Ai * Vector x

Execution Schedule and Task Mapping

yi= Row Ai * Vector x

Data Partitioning and Mapping for y= A*x

SPMD Code for y= A*x

Evaluation: Parallel Time

•Ignore the cost of local address

calculation.

•Each task performs n additions and n

multiplications.

•Each addition/multiplication costs ω

•The parallel time is approximately

How is initial data distributed?

Assume initially matrix A and vector x are distributed

evenly among processes

Need to redistribute vector x to everybody in order to perform

parallel computation!

What MPI collective communication is needed?

Communication Pattern for Data Redistribution

Data requirement for

Process 0

Data requirement for

all processes

MPI_Gather

MPI_Allgather

MPI Code for Gathering Data

Data gather for

Process 0

Repeat for all processes

Allgather

• Concatenates the contents of each process’

send_buf_p and stores this in each process’

recv_buf_p.

• As usual, recv_count is the amount of data being

received from each process.

Copyright © 2010, Elsevier
Inc. All rights Reserved

A

B

D

C

A B C D

A B C D

A B C D

A B C D

Allgather

MPI SPMD Code for y=A*x

MPI SPMD Code for y=A*x

Text book solution for y=A*x

Page 114 of "An Introduction to Parallel Programming” by Peter

Pacheco, 2011

i-th component of y
Dot product of the ith

row of A with x.

Use one dimensional C array to represent

2D matrix

Copyright © 2010, Elsevier
Inc. All rights Reserved

stored as

Sequential code for y=A*x

Copyright © 2010, Elsevier
Inc. All rights Reserved

Textbook MPI code for matrix-vector

multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved

Textbook MPI code for y=A*x

Copyright © 2010, Elsevier
Inc. All rights Reserved

Speedups of Parallel Matrix-Vector

Multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved

Efficiencies of Parallel Matrix-Vector

Multiplication

Copyright © 2010, Elsevier
Inc. All rights Reserved

	Slide 1: Discussion: MPI Parallel Programming
	Slide 2: Run MPI on a CSIL machine and on Expanse
	Slide 3: Compilation of MPI C code at CSIL
	Slide 4: Running a parallel job at Expanse
	Slide 5: Compilation of MPI C code at Expanse
	Slide 6: Job script that runs an MPI program at Expanse
	Slide 7: Useful Commands at Expanse
	Slide 8: Parallel Matrix Vector Multiplication
	Slide 9: Matrix-vector multiplication: y= A * x
	Slide 10: Partitioning and Task graph for matrix-vector multiplication
	Slide 11: Execution Schedule and Task Mapping
	Slide 12: Data Partitioning and Mapping for y= A*x
	Slide 13: SPMD Code for y= A*x
	Slide 14: Evaluation: Parallel Time
	Slide 15: How is initial data distributed?
	Slide 16: Communication Pattern for Data Redistribution
	Slide 17: MPI Code for Gathering Data
	Slide 18: Allgather
	Slide 19: MPI SPMD Code for y=A*x
	Slide 20: MPI SPMD Code for y=A*x
	Slide 21: Text book solution for y=A*x Page 114 of "An Introduction to Parallel Programming” by Peter Pacheco, 2011
	Slide 22: Use one dimensional C array to represent 2D matrix
	Slide 23: Sequential code for y=A*x
	Slide 24: Textbook MPI code for matrix-vector multiplication
	Slide 25: Textbook MPI code for y=A*x
	Slide 26: Speedups of Parallel Matrix-Vector Multiplication
	Slide 27: Efficiencies of Parallel Matrix-Vector Multiplication

