
Week 1 Discussion

UCSB CS140, Winter 2026

Table of Content

• Tips on gcc, C macro preprocessor

• Exercise 1

▪ Makefile

▪ Minimum unit test for C

▪ Matrix multiplication

• Memory leak detection with Valgrind

• GNU debugger: gdb

Useful gcc Options

• Include: -I<path>

• Define: -D<identifier>

• Optimization: -O<level>

• Library: -l<libraryname>

Example:

 gcc –DDEBUG –O2 –I/usr/include example.c –o
example –lm

void func(int nums[], int m) {

#ifdef DEBUG

 printf(“input m is %d: “, m);

#endif

}

Macro Preprocessor pitfalls

• Example: the “min” function
int min(int a, int b)
 { if (a < b) return a; else return b; }

#define min(a,b) ((a) < (b) ? (a) : (b))

• Different when evaluating expression has side-effect

for min(a++,b)

▪ min function increments a once

▪ min macro may increment a twice if a < b

• Text substitution can expose unexpected groupings

#define mult(a,b) a*b

mult(5+3,2+4)

• Expands to 5 + 3 * 2 + 4

• To fix this, enclose each macro argument in parenthesis:

#define mult(a,b) (a)*(b)

How to avoid defining things twice?

▪ Example: include the same .h file twice

#include “myheader.h”

#include “file.h”

▪ Convention: surround each header (.h) file with a

conditional:

/*File myheader.h*/
#ifndef __MYHEADER_H__
#define __MYHEADER_H__
/* Declarations */
#endif

Contains “#include myheader.h”

Makefile for Exercise 1

CC=gcc

CFLAGS=-Wall –O2

CPPFLAGS=-DDEBUG

OBJECTS= exercise.o exercise_test.o minunit.o

TARGET=exercise

all: $(TARGET)

%.o : %.c exercise.h

 $(CC) -c $(CFLAGS) $(CPPFLAGS) $<

#Pattern rule $@ means the target file

$(TARGET): $(OBJECTS)

 $(CC) $(CFLAGS) $(OBJECTS) -o $@

run:

./$(TARGET)

clean:

rm $(OBJECTS)

rm $(TARGET)

Pattern rule $< means

 the source file.

Usage:

make

make run

make clean

Minimum unit test for C

/*minunit.h defines a statement*/

#define mu_assert(message, condition) do { \

 if (!(condition)) return message; \

 } while (0)

do {...} while(0)

just means {…}

to group C

statements

/*minunit.c*/

int _mu_tests_run=0; /*count #tests*/

int _mu_tests_failed=0; /*count #tests failed */

char* mu_run_test(char * (*test_fun)()){
char *message = (*test_fun)();

_mu_tests_run++;

if (message){

_mu_tests_failed++;
}

 return message;

}

Run a test based on

this function

pointer

Non empty message

means failed

Combine C statements in Macro with do{ …}
while(0)

#define mu_assert(condition,msg) { \

 if (!(condition)) return msg; \

 }

if (x>0)

 mu_assert(“error 1”, x>1);

else

 mu_assert(“error 2”, x<-1);

Let’s remove “do”

“while(0)”

If (x>0)

 {if (!(x>1)) return “error 1”;};

else

 {if (!(x<1)) return “error 2”;};

gcc compilation error!

Use of mu_assert in HW1

9

void set_key_action(

 struct key_action *rec,

 char *cmd, int (*f)()){
if(rec!=NULL) {

rec->cmd=cmd;

rec->func=f;

}
}

struct key_action {
char *cmd;

int (*func)();

};

int del1(int x){
return x-1;

}
/*Make a call and if result is unexpected, return

an error message. Otherwise return NULL */

char * set_key_action_test(void){

 struct key_action *rec= (struct key_action*)

malloc(sizeof(struct key_action));

 char *key="del1";

 set_key_action(rec, key, del1);

 mu_assert("Error in set_key",

 strcmp(key, rec->cmd)==0);

 mu_assert("Error in set_action",

 rec->func == del1);

 /*All checkups are valid so far*/

 return NULL;

}
How to fix the memory leak in this code?

Mistake in using mu_assert

10

void set_key_action(

 struct key_action *rec,

 char *cmd, int (*f)()){
if(rec!=NULL) {

rec->cmd=cmd;

rec->func=f;

}
}

struct key_action {
char *cmd;

int (*func)();

};

int del1(int x){
return x-1;

}

char * set_key_action_test(void){

 struct key_action rec;

 char *key="del1";

 set_key_action(&rec, key, del1);

 char* msg=mu_assert("Error in set_key",

 strcmp(key, rec.cmd)==0);

 return msg;

}

mu_assert is NOT a function. It is a macro!

HW1: Matrix-vector multiplication: y= A * x

/*exercise.c*/

void mat_vect_mult(

double A[], double x[], double y[], int m, int n) {

int i, j;

 for (i = 0; i < m; i++) {

for (j = 0; j < n; j++) {

y[i] +=A[i*n+j]*x[j];

}
 }}

A x

Unit test for matrix
vector multiplication

char* matrix_vect_test(int m, int n) {

 double *A = malloc(m*n*sizeof(double));

 double *x = malloc(n*sizeof(double));

 double *y = malloc(m*sizeof(double));

/*… initialize A, x*/

mat_vect_mult(A, x, y, m, n);

char *msg=test_vect(y, m, n);

free(A); free(x); free(y);

return msg;

}
char *test1(void){

return matrix_vect_test(2,4);

}

char* test_vect(double y[], int m,

int n){

int i;

double expected= n*(n-1)/2;

for (i = 0; i < m; i++){

 mu_assert(”One error",

y[i] ==expected);
}

return NULL;

}

If the result is not expected.

return a message. If successful,

return NULL

void run_all_tests(void){

 mu_run_test(test1);

}

Valgrind debugging tool

• Goal: detect memory errors

▪ Accesses outside of memory bounds

▪ Memory leaks

• Great for finding errors that would only show during

harsh test cases

• Can you find two errors in this program?

#include <stdlib.h>

void f(void) {

 int* x = malloc(10 * sizeof(int));

 x[10] = 0;

}

int main(void) {

 f();

 return 0;

}

1. Invalid memory access

2. Memory never free()’d

Running Example in Valgrind

• Running valgrind with the program:

▪ valgrind --leak-check=yes myprog arg1 arg2

• Invalid access output (error 1):

• Memory leak output (error 2):

==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==19182== at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130)

==19182== by 0x8048385: f (a.c:5)

==19182== by 0x80483AB: main (a.c:11)

==19182== Invalid write of size 4

==19182== at 0x804838F: f (example.c:6)

==19182== by 0x80483AB: main (example.c:11)

Process ID

Where the

error occurs

Size of the leak

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu

Phone: 818-677-495415

GDB, the GNU Debugger

• Command-based. Compile with –g and invoked with:

 gdb <executable file>

• Example to reverse a string

$ cc -g reversefirst.c -o reverse

$ gdb reverse

(gdb) help

<…>

Type "help" followed by a class name for a list of commands in that class.

Type "help" followed by command name for full documentation.

Command name abbreviations are allowed if unambiguous.

(gdb)

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu

Phone: 818-677-495416

Basic GDB Commands

• General Commands:

 file [<file>] selects <file> as the program to debug

 run [<args>] runs selected program with arguments <args>

 attach <pid> attach gdb to a running process <pid>

 kill kills the process being debugged

 quit quits the gdb program

 help [<topic>] accesses the internal help documentation

• Stepping and Continuing:

 c[ontinue] continue execution (after a stop)

 s[tep] step one line, entering called functions

 n[ext] step one line, without entering functions

 finish finish the function and print the return value

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu

Phone: 818-677-495417

GDB Breakpoints

• Useful breakpoint commands:

 b[reak] [<where>] sets breakpoints. <where> can be

 a number of things, including a hex

 address, a function name, a line

 number, or a relative line offset

 [r]watch <expr> sets a watchpoint, which will break

 when <expr> is written to [or read]

 info break[points] prints out a listing of all breakpoints

 clear [<where>] clears a breakpoint at <where>

 d[elete] [<nums>] deletes breakpoints by number

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu

Phone: 818-677-495418

Playing with Data in GDB

• Commands for looking around:

list [<where>] prints out source code at <where>

search <regexp> searches source code for <regexp>

backtrace [<n>] prints a backtrace <n> levels deep

info [<what>] prints out info on <what> (like

 local variables or function args)

p[rint] [<expr>] prints out the evaluation of <expr>

• Commands for altering data and control path:

set <name> <expr> sets variables or arguments

return [<expr>] returns <expr> from current function

jump <where> jumps execution to <where>

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu

Phone: 818-677-495419

gdb - Example

(gdb) list 1 ---> can use “l” for “list”

1 /* REVERSE.C */

2

3 #include <stdio.h>

4

5 /* Function Prototype */

6 void reverse ();

7

8 /**/

9

10 main ()

(gdb) l ---> same as “list”; continues from the previous

11

12 {

13 char str [100]; /* Buffer to hold reversed string */

14

15 reverse ("cat", str); /* Reverse the string "cat" */

16 printf ("reverse (\"cat\") = %s\n", str); /* Display */

17 reverse ("noon", str); /* Reverse the string "noon" */

18 printf ("reverse (\"noon\") = %s\n", str); /* Display */

19 }

20

(gdb) _

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu

Phone: 818-677-495420

gdb - Example
(gdb) break main ---> set a breakpoint in function main

Breakpoint 1 at 0x29f4: file reversefirst.c, line 15.

(gdb) break 16 ---> set a breakpoint in line 16 (current source)

Breakpoint 2 at 0x2a0c: file reversefirst.c, line 16.

(gdb) break reverse ---> set a breakpoint in function reverse

Breakpoint 3 at 0x2a80: file reversefirst.c, line 33.

(gdb) info break ---> display information on breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x000029f4 in main at reversefirst.c:15

2 breakpoint keep y 0x00002a0c in main at reversefirst.c:16

3 breakpoint keep y 0x00002a80 in reverse at reversefirst.c:33

(gdb) run

Starting program: /home/usersNN/userID/reverse/reverse

Breakpoint 1, main () at reversefirst.c:15

15 reverse ("cat", str); /* Reverse the string "cat" */

(gdb) continue ---> you can use “c” as well

Breakpoint 3, reverse (before=0x40001028 "cat", after=0x7f7f0958 "")

 at reversefirst.c:33

33 len = strlen (before);

(gdb) _

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu

Phone: 818-677-495421

gdb - Example

(gdb) backtrace ---> show the execution stack

#0 reverse (before=0x40001028 "cat", after=0x7f7f0958 "") at reversefirst.c:33

#1 0x2a0c in main () at reversefirst.c:15

(gdb) l

28 {

29 int i;

30 int j;

31 int len;

32

33 len = strlen (before);

34

35 for (j = len - 1, i = 0; j >= 0; j--, i++) /* Reverse loop */

36 after[i] = before[j];

37

(gdb) next ---> execute next line

35 for (j = len - 1, i = 0; j >= 0; j--, i++) /* Reverse loop */

(gdb) n ---> same as “next”

36 after[i] = before[j];

(gdb) _

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu

Phone: 818-677-495422

gdb - Example

(gdb) print after[i] ---> display data (expression)

$1 = 0 '\000'

(gdb) p before[j] ---> same as “print”

$2 = 116 't'

(gdb) _

(gdb) n

35 for (j = len - 1, i = 0; j >= 0; j--, i++) /* Reverse loop */

(gdb) p after ---> print

$4 = 0x7f7f0958 "t"

(gdb) p before

$5 = 0x40001028 "cat"

(gdb) c

Continuing.

Breakpoint 2, main () at reversefirst.c:16

16 printf ("reverse (\"cat\") = %s\n", str); /* Display */

17 (gdb) _

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu

Phone: 818-677-495423

gdb - Example

(gdb) n

reverse ("cat") = tac

17 reverse ("noon", str); /* Reverse the string "noon" */

(gdb) s

Breakpoint 3, reverse (before=0x40001030 "noon", after=0x7f7f0958 "tac")

 at reversefirst.c:33

33 len = strlen (before);

(gdb) return 0

Make reverse return now? (y or n) y

#0 main () at reversefirst.c:18

18 printf ("reverse (\"noon\") = %s\n", str); /* Display */

(gdb) p str

$4 = "tac", '\000' <repeats 96 times>

(gdb) n

reverse ("noon") = tac ---> this is the output from
the program

19 }

(gdb) quit

$ _

Parallel Architecture

Discussion

UCSB CS140

Bisection width vs Bisection bandwidth

Assume each link of this ring

architecture carries 1GB/sec.

What is the bisection width

and bandwidth?

Bisection width vs Bisection bandwidth

What is the bisection width

and bandwidth?

Bisection width 2

Bisection

bandwidth
2 GB/s

Partition the network with all possible

 even cuts.

• For each cut, compute # links that

connect two subnets and their

aggregated bandwidth.

Choose the minimum in each setting

Bisection width vs Bisection bandwidth

2

1

2

21

2

Links carry 1GB/s or 2GB/s as

marked.

What is the bisection width

and bandwidth?

Bisection width 2

Bisection

bandwidth
3 GB/s

Bisection width and bandwidth

What is bisection width of a 2D torus with q2 nodes: ?

What is the bisection bandwidth, assume each

link carries 1GBytes/sec

Bisection width and bandwidth

Bisection width: 2q

Bisection bandwidth: 2q GB/s

Message transmission time = α + m β

latency (seconds)

1/bandwidth (bytes per second)

length of message (bytes)

Network transmission cost

Assume latency between two CSIL machines: 1 millisecond

Average bandwidth between them is 1GB/second

How long does it to transmit a message of 1KB bytes?

How long does it to transmit a message of 1MB bytes?

About 0.001s + 1000/(109)=0.001001s =1.001ms

About 0.001s + 106/(109)=0.002 s =2ms

Fully connected network

• Each node is directly connected to every other node.

Assume p= 2k

bisection width = p2/4=k2

Why?

Divide two partitions A and B of size k

#Cross edges between A and B are:

1 node in partition A has k edges connected with k nodes in
partition B.

k nodes in Partition A connect k2 edges in Partition B

A B

How to Run a Job at Expanse Cluster
https://sites.cs.ucsb.edu/~tyang_class/140w26/expanse140.html

▪ Expanse cluster managed by XSEDE has 728

standard CPU nodes, 54 GPU nodes and 4 large-

memory nodes.

▪ ssh username@login.expanse.sdsc.edu

▪ Login node can only be used for light activities

▪ For example, can compile C code, but not Java code

▪ Sample example at Expanse under

/home/tyang/cs140sample/mpi/

▪ Submit a job to run code at “compute” partition

▪ To submit a job that runs a hello binary

▪ sbatch run-hello.sh

Home

Expanse cluster

Login node

expanse.sdsc.xse

de.org

“compute” queue

mailto:username@comet.sdsc.xsede.org

Job shell script that runs a sequential hello

program at Expanse
#!/bin/bash

#SBATCH --job-name="hello"

#SBATCH --output=”job_hello.%j.out"

#SBATCH --partition=shared

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1

#SBATCH --export=ALL

#SBATCH --account=csb175

#SBATCH -t 00:01:00

../hello

Job name you can observe

when querying status

Job id in the submitted queue

Which cluster to run this program

This job runs with 1 nodes, 1 core per

node under CS140 account csb175

Set a time limit that this job runs at

most 1 minute.

Run the hello program

 main(void){

 printf(“Hello\n”);

}

Other useful information regarding

Expanse

Command Functionality

expanse-client user -p Check computing resource balance

sbatch run-hello.sh Submit job

squeue –u username Check the job queues

sacct -u username Check status of your jobs

scancel JobID Cancel job

To get an account

Step 1: Open your account in https://access-ci.org

Step 2: Fill your account name to a google sheet that will be

announced in Piazza

Step 3: TAs will add your user name to the class resource allocation

Step 4: ssh username@login.expanse.sdsc.edu

https://access-ci.org/
https://access-ci.org/
https://access-ci.org/
mailto:username@comet.sdsc.xsede.org

	Slide 1: Week 1 Discussion
	Slide 2: Table of Content
	Slide 3: Useful gcc Options
	Slide 4: Macro Preprocessor pitfalls
	Slide 5: How to avoid defining things twice?
	Slide 6: Makefile for Exercise 1
	Slide 7: Minimum unit test for C
	Slide 8: Combine C statements in Macro with do{ …} while(0)
	Slide 9: Use of mu_assert in HW1
	Slide 10: Mistake in using mu_assert
	Slide 11: HW1: Matrix-vector multiplication: y= A * x
	Slide 12: Unit test for matrix vector multiplication
	Slide 13: Valgrind debugging tool
	Slide 14: Running Example in Valgrind
	Slide 15: GDB, the GNU Debugger
	Slide 16: Basic GDB Commands
	Slide 17: GDB Breakpoints
	Slide 18: Playing with Data in GDB
	Slide 19: gdb - Example
	Slide 20: gdb - Example
	Slide 21: gdb - Example
	Slide 22: gdb - Example
	Slide 23: gdb - Example
	Slide 24: Parallel Architecture Discussion
	Slide 25: Bisection width vs Bisection bandwidth
	Slide 26: Bisection width vs Bisection bandwidth
	Slide 27: Bisection width vs Bisection bandwidth
	Slide 28: Bisection width and bandwidth
	Slide 29: Bisection width and bandwidth
	Slide 30
	Slide 31: Fully connected network
	Slide 32: How to Run a Job at Expanse Cluster https://sites.cs.ucsb.edu/~tyang_class/140w26/expanse140.html
	Slide 33: Job shell script that runs a sequential hello program at Expanse
	Slide 34: Other useful information regarding Expanse

