42

Week 1 Discussion

UCSB CS140, Winter 2026

' Table of Content

« Tips on gcc, C macro preprocessor
 Exercise 1

= Makefile

* Minimum unit test for C

= Matrix multiplication
 Memory leak detection with Valgrind
 GNU debugger: gdb

' Useful gcc Options

* Include: -I<path>

* Define: -D<identifier>

- Optimization: -O«<level>
- Library: -l<libraryname>

Example:
gcc -DDEBUG -0O2 -I/usr/include example.c -o
example -Im

void func(int numsf], int m) {
#ifdef DEBUG

printf(“input m is %d: “, m);
#endif
}

' Macro Preprocessor pitfalls

« Example: the “min” function
int min(int a, int b)
{ if (a < b) return a; else return b; }

#define minCa,b) (@) < (b) ? () : (b))

« Different when evaluating expression has side-effect
for min(a++,b)

= min function increments a once

= min macro may increment a twice ifa<b
» Text substitution can expose unexpected groupings

#define mult(a,b) a*b

mult(5+3,2+4)

« Expandsto5 + 3 * 2 + 4

* To fix this, enclose each macro argument in parenthesis:
#define mult(a,b) (a)*(b)

’ How to avoid defining things twice?

= Example: include the same .h file twice

#include "myheader.h” .
#include “file.h”/ Contains “#include myheader.h”

= Convention: surround each header (.h) file with a
conditional:

/*F11e myheader.h*/
#ifndef _MYHEADER_H___
#define __MYHEADER_H_ _
/* Declarations */
#endif

Makefile for Exercise 1

Usage:
CC=gcc &
CFLAGS=-Wall -02 make
CPPFLAGS=-DDEBUG make run
OBJECTS= exercise.o exercise_test.o minunit.o make clean

TARGET=exercise

all: $(TARGET)

%.0 : %.c exercise.h
$(CC) -c $(CFLAGS) $(CPPFLAGS) $< «— |

Pattern rule $< means
the source file.

#Pattern rule $@ means the target file
$(TARGET): $(OBJECTS)
$(CC) $(CFLAGS) $(OBJECTS) -0 $@

run:
J$(TARGET)
clean:
rm $(OBJECTS)
rm $(TARGET)

Minimum unit test for C

_rdo {...} while(0)

/*minunit.h defines a statement®/ /
#define mu_assert(message, condition) do { \

if (!(condition)) return message; \

} while (0)

just means {...}
to group C
statements

[*minunit.c*/
int _mu tests run=0; /*count #tests*/
int _mu tests failed=0; /*count #tests failed */
char* mu_run_test(char * (*test_fun)()){
char *message = (*test_fun)();
_mu _tests run++;
if (message){

_mu_tests failed++:
}
N

return message,

| Run a test based on
this function
pointer

n

lon empty message
neans failed

' Combine C statements in Macro with dof{ ..}
while(0)

#define mu_assert(condition,msg) {\ * Let’s remove “do”
- 3 “while(0)”

if (!(condition)) return msg; \

}

if (x>0)

mu_assert(“error 17, x>1);
else

mu_assert(“error 27, x<-1);

<z
If (x>0)

{if (1(x>1)) return “error 17;}; gcc compilation error!
else
{1f (!(x<1)) return “error 27;};

Use of mu_assert in HW1

int del1(int x){

struct key_action {
char *cmd;
int (*func)();

X

void set_key action
struct key_action *i'ec,\
char *cmd, int (*f)(){
if(rec!=NULL) {

rec->cmd=cmd;
rec->func=f;

}

I~

return x-1;
}

[*Make a call and if result is unexpected, return
an error message. Otherwise return NULL */

char * set_key_ action_test(void){
struct key_action *rec= (struct key_action™)
malloc(sizeof(struct key action));
__char “key="del1";
set_key action(rec, key, del1);

mu_assert("Error in set_key",
strcmp(key, rec->cmd)==0);
mu_assert("Error in set_action”,
rec->func == del1);
[*All checkups are valid so far*/
return NULL;

9

How to fix the memorv leak in this code?

Mistake in using mu_assert

int del1(int x){

struct key_action { return x-1;
char *cmd:; }
int (*func)();
% char * set_key action_test(void){

struct key_action rec;
char *key="del1";

void set_key action(\\\set_key_action(&rec, key, del1);
struct key_action *rec,

char *cmd, int (*f)()X{ char®* msg=mu_assert("Error in set_key",
if(rec!=NULL) { strcmp(key, rec.cmd)==0);
rec->cmd=cmd; return msg;
rec->func=F: }
}

| \

mu_assert 1s NOT a function. It 1s a magro!

HW1: Matrix-vector multiplication: y=A * x

A
(1 2 3)
15 6

\7 8 9)

(1)

2

\ 3/

(15142524 3%3
41 +5%x2+6%3

(14)

32

\ 7*1+8%2+9%3)

\ 50

[*exercise.c*/

void mat_vect _mult(
double A[], double x[], double y[], int m,int n){

inti, j;

for(i=0;i<m;i++){

for(j=0;j<n;j++){

y[i] +=Al*n+]"*x[];

}

7

nit test for matrix
vector multiplication

If the result 1s not expected.
return a message. If successful,

char* matrix_vect test(int m, int n) {

return msg;
!
char *test1(void {
return matrix_- _test(2,4);
}

double *A = malloc(m*n*sizeof(double));
double *x = malloc(n*sizeof(double));
double *y = malloc(m*sizeof(doubl

[*... initialize A, x*/
mat_vect _mult(A, x, y, m, n);

char *msg=test vect

free(A); free(x); free(y);

/

- void run_all tests(void){

return NULL \

char* test vect(dquble y[], nt m,
int n){
Int 1;
double expected= n*(n-1)/2;
for 1=0; 1 <m;\{++){
mu_assert(”’One error",
y[1] ==expected);
}
return NULL;

mu_run_test(testl);

;

Valgrind debugging tool

« Goal: detect memory errors
= Accesses outside of memory bounds
= Memory leaks

* Great for finding errors that would only show during
harsh test cases

« Can you find two errors in this program?

Hinclude <stdlib.h>
void f(void) {
int* x = malloc(10 * sizeof(int));

x[10] = O; = 1. Invalid memory access

}

int main(void) {

f();

reTUN
} 2. Memory never free()'d

Running Example in Valgrind

* Running valgrind with the program:
= valgrind --leak-check=yes myprog arg1 arg2

« Invalid access output (error 1):

Process ID =—19182== Invalid write of size 4
= 2219182== at 0x804838F: f (example.c:6)
==19182== by 0x80483AB: main (example.c:11)<€— Where the
error occurs

« Memory leak output (error 2):
==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==19182== at Ox1B8FF5CD: malloc'(Vvg=teplace_malloc.c:130)
==19182== by 0x8048385: f (a.c:5)
==19182== by 0x80483AB: main (a.c:11)

Size of the leak

GDB, the GNU Debugger

« Command-based. Compile with —g and invoked with:
gdb <executable file>
« Example to reverse a string

$ cc -g reversefirst.c -o reverse
$ gdb reverse

(gdb) help

<...”

Type "help" followed by a class name for a list of commands in that class.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.

(gdb)

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu
Phone: 818-677-49%8

Basic GDB Commands

General Commands:

file [<file>] selects <file> as the program to debug

run [<args>] runs selected program with arguments <args>
attach <pid> attach gdb to a running process <pid>

Kill kills the process being debugged
quit quits the gdb program
help [<topic>] accesses the internal help documentation

Stepping and Continuing:

clontinue] continue execution (after a stop)
s[tep] step one line, entering called functions
n[ext] step one line, without entering functions

finish finish the function and print the return value

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu
Phone: 818-677-495416

' GDB Breakpoints

» Useful breakpoint commands:

b[reak] [<where>]|sets breakpoints. <where> can be
a number of things, including a hex
address, a function name, a line
number, or a relative line offset

[rlwatch <expr> sets a watchpoint, which will break
when <expr> is written to [or read]

info break|[points] prints out a listing of all breakpoints
clear [<where>] clears a breakpoint at <where>
d[elete] [<nums>] deletes breakpoints by number

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu
Phone: 818-677-495417

Playing with Data in GDB

« Commands for looking around:

list [<where>] prints out source code at <where>
search <regexp> searches source code for <regexp>
backtrace [<n>] prints a backtrace <n> levels deep
info [<what>] prints out info on <what> (like

local variables or function args)
p[rint] [<expr>] prints out the evaluation of <expr>

« Commands for altering data and control path:
set <name> <expr> Sets variables or arguments
return [<expr>] returns <expr> from current function
jump <where> jumps execution to <where>

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu
Phone: 818-677-495418

(gdb) list 1 ---> can use “I” for “list”
1 /* REVERSE.C */

2

3 #include <stdio.h>

4

5 [* Function Prototype */

6 void reverse ();

7

8 [RRRRE R R KRR R KRR R R R Kk
9

10 main ()

(gdb) |

11

12 {

13 char str [100]; /* Buffer to hold reversed string */

14

15 reverse ("cat", str); /* Reverse the string "cat" */

16 printf ("reverse (\"cat\") = %s\n", str); /* Display */
17 reverse ("noon", str); /* Reverse the string "noon" */
18 printf ("reverse (\"noon\") = %s\n", str); /* Display */

19 }

gdb - Example

---> same as “list”; continues from the previous

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu
Phone: 818-677-495419

gdb - Example

(gdb) break main ---> set a breakpoint in function main
Breakpoint 1 at 0x29f4: file reversefirst.c, line 15.

(gdb) break 16 ---> set a breakpoint in line 16 (current source)
Breakpoint 2 at Ox2a0c: file reversefirst.c, line 16.

(gdb) break reverse ---> set a breakpoint in function reverse
Breakpoint 3 at 0x2a80: file reversefirst.c, line 33.

(gdb) info break ---> display information on breakpoints

Num Type Disp Enb Address What

1 breakpoint keepy 0x000029f4 in main at reversefirst.c:15

2 breakpoint keepy 0x00002a0c in main at reversefirst.c:16

3 breakpoint keepy 0x00002a80 in reverse at reversefirst.c:33
(gdb) run

Starting program: /home/usersNN/userID/reverse/reverse

Breakpoint 1, main () at reversefirst.c:15
15 reverse ("cat", str); /* Reverse the string "cat” */
(gdb) continue ---> you can use “c” as well

Breakpoint 3, reverse (before=0x40001028 "cat", after=0x7f7f0958 "")
at reversefirst.c:33

33 len = strlen (before); Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu

(gdb) _ Phone: 818-677-495420

gdb - Example

(gdb) backtrace ---> show the execution stack
#0 reverse (before=0x40001028 "cat", after=0x7f7f0958 "") at reversefirst.c:33
#1 0x2a0c in main () at reversefirst.c:15

(gdb) |

28 {

29 inti;

30 int j;

31 int len;

32

33 len = strlen (before);

34

35 for(j=len-1,i=0;j>=0;]j-, i++) /* Reverse loop */

36 after[i] = before[j];

37

(gdb) next ---> execute next line

35 for(j=len-1,i=0;j>=0;j-, i++) /* Reverse loop */

(gdb) n ---> same as “next”

m - Prof. Andrzej (AJ) Bieszczad
36 after[i] = before[j]; Email: andrzej@csun.edu

(gdb) Phone: 818-677-495421

gdb - Example

(gdb) print after[i]
$1 =0 "000
(gdb) p beforel[j]
$2 =116t

(gdb) _

(gdb) n

---> display data (expression)

---> same as “print’

35 for(j=len-1,i=0;j>=0;j-, i++) /* Reverse loop */

(gdb) p after

$4 = Ox7f7f0958 "t"

(gdb) p before

$5 = 0x40001028 "cat"

(gdb) c

Continuing.

Breakpoint 2, main () at reversefirst.c:16
16 printf ("reverse (\"cat\") = %s\n", str); /*
17 (gdb) _

---> print

Display */

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu
Phone: 818-677-495422

gdb - Example

(gdb) n

reverse ("cat") = tac

17 reverse ("noon", str); /* Reverse the string "noon" */

(gdb) s

Breakpoint 3, reverse (before=0x40001030 "noon", after=0x7f7f0958 "tac")
at reversefirst.c:33

33 len = strlen (before);

(gdb) return 0

Make reverse return now? (y orn)y

#0 main () at reversefirst.c:18

18 printf ("reverse (\"noon\") = %s\n", str); /* Display */

(gdb) p str

$4 ="tac", "\000' <repeats 96 times>

(gdb) n

reverse ("noon") = tac ---> this is the output from

the program

19 }

(gdb) quit

$

Prof. Andrzej (AJ) Bieszczad
Email: andrzej@csun.edu
Phone: 818-677-495423

-

Parallel Architecture

Discussion

UCSB CS140

)
u u u u u u llh
Bisection width vs Bisection bandwidth 1~ |

A
)
Assume each link of this ring
architecture carries 1GB/sec.
What is the bisection width
and bandwidth?

Device 6 Device 2

-

Device 3

Device 5

Device 4

Ring Topology

Circuit Globe

)
u u u u u u l&'
Bisection width vs Bisection bandwidth 1~

[

A1
.
What is the bisection width
and bandwidth?

Partition the network with all possible
even cuts.] \
* For each cut, compute # links that Device 6 Device 2
connect two subnets and their
aggregated bandwidth.
Choose the minimum in each setting . .
Device 5 Device 3

Bisection width 2 Device 4
Ring Topology
Bisection

bandwidth 2 GB/s

LY

Bisection width vs Bisection bandwidth 1~ |

)

Links carry 1GB/s or 2GB/s as
marked.

2 Device 1

What is the bisection width > Devica

and bandwidth? 1 i 7

Device 3

Device 5

Bisection width 2 Device 4 :
Ring Topology

Circuit Globe

Bisection

bandwidth 3 GB/s

\
—

%

Bisection width and bandwidth =%

What is bisection width of a 2D torus with g2 nodes: ?

EE . S
- — 1 T
| I
’/] _
W, o <

What is the bisection bandwidth, assume each
link carries 1GBytes/sec

Bisection width and bandwidth

—_—

,
- =

Bisection width: 29

D TR
' 2

N (L) -,

Bisection bandwidth: 2q GB/s

' Network transmission cost

Message transmission time = ¢ +
latency (seconds) <‘
length of message (byte
1/bandwidth (bytes per second)

Assume latency between two CSIL machines: 1 millisecond
Average bandwidth between them is 1GB/second

How long does it to transmit a message of 1KB bytes?

About 0.001s + 1000/(10%)=0.001001s =1.001ms

How long does it to transmit a message of IMB bytes?
About 0.001s + 10%/(10%)=0.002 s =2ms

Fully connected network

 Each node is directly connected to every other node.

Assume p= 2k
bisection width = p?/4=k?
Why?

Divide two partitions A and B of size k
#Cross edges between A and B are:

1 node in partition A has k edges connected with k nodes in
partition B.

k nodes in Partition A connect k? edges in Partition B

How to Run a Job at Expanse Cluster
https://sites.cs.ucsb.edu/~tyang_class/140w26/expanse140.html

» v >
compute’” queue

' = {9
,—7 Login node
" ‘ ' ‘ expanse.sdsc.xse

Fxpanse cluster

de.org
= Expanse cluster managed by XSEDE has 728
standard CPU nodes, 54 GPU nodes and 4 large-
memory nodes.
= ssh username@login.expanse.sdsc.edu
= Login node can only be used for light activities
= For example, can compile C code, but not Java code

= Sample example at Expanse under
/home/tyang/cs140sample/mpi/

= Submit a job to run code at “compute” partition
= To submit a job that runs a hello binary
= sbatch run-hello.sh

mailto:username@comet.sdsc.xsede.org

Job shell script that runs a sequential hello

_program at Expanse
41/bin/bash P J O}l: name you (:atlz1 tobserve
#SBATCH --job-name="hello" when querying status

#SBATCH --output="job_hello.%j.out" — :
#SBATCH --partition=shared +—— | Jobid in the submitted queue

#SBATCH --nodes=1 -—
#SBATCH --ntasks-per-node=1
#SBATCH --export=ALL
#SBATCH --account=csb175

#SBATCH -t 00:01:00 ~__

/hello Set a time limit that this job runs at

most 1 minute.

TA T OO C L T ITAILOF

Which cluster to run this program

 This job runs with 1 nodes, 1 core per
node under CS140 account csb175

Run the hello program

main(void){
printf(“Hello\n”);

v

Other useful information regarding
Expanse

Command Functionality
expanse-client user -p Check computing resource balance
sbatch run-hello.sh Submit job

squeue —u username Check the job queues

sacct -u username Check status of your jobs

scancel JobID Cancel job

To get an account

Step 1: Open your account in https://access-ci.org

Step 2: Fill your account name to a google sheet that will be
announced 1n Piazza

Step 3: TAs will add your user name to the class resource allocation

Step 4: ssh username@login.expanse.sdsc.edu

https://access-ci.org/
https://access-ci.org/
https://access-ci.org/
mailto:username@comet.sdsc.xsede.org

	Slide 1: Week 1 Discussion
	Slide 2: Table of Content
	Slide 3: Useful gcc Options
	Slide 4: Macro Preprocessor pitfalls
	Slide 5: How to avoid defining things twice?
	Slide 6: Makefile for Exercise 1
	Slide 7: Minimum unit test for C
	Slide 8: Combine C statements in Macro with do{ …} while(0)
	Slide 9: Use of mu_assert in HW1
	Slide 10: Mistake in using mu_assert
	Slide 11: HW1: Matrix-vector multiplication: y= A * x
	Slide 12: Unit test for matrix vector multiplication
	Slide 13: Valgrind debugging tool
	Slide 14: Running Example in Valgrind
	Slide 15: GDB, the GNU Debugger
	Slide 16: Basic GDB Commands
	Slide 17: GDB Breakpoints
	Slide 18: Playing with Data in GDB
	Slide 19: gdb - Example
	Slide 20: gdb - Example
	Slide 21: gdb - Example
	Slide 22: gdb - Example
	Slide 23: gdb - Example
	Slide 24: Parallel Architecture Discussion
	Slide 25: Bisection width vs Bisection bandwidth
	Slide 26: Bisection width vs Bisection bandwidth
	Slide 27: Bisection width vs Bisection bandwidth
	Slide 28: Bisection width and bandwidth
	Slide 29: Bisection width and bandwidth
	Slide 30
	Slide 31: Fully connected network
	Slide 32: How to Run a Job at Expanse Cluster https://sites.cs.ucsb.edu/~tyang_class/140w26/expanse140.html
	Slide 33: Job shell script that runs a sequential hello program at Expanse
	Slide 34: Other useful information regarding Expanse

