
Parallel Architectures

UCSB CS140, T. Yang

Outline

• Parallel architectures for high performance
computing

▪ SIMD

▪ Cluster computing and cloud

▪ Shared memory architecture with cache
coherence

• Reference

▪ Chapter 2 of An Introduction to Parallel
Programming" by Peter Pacheco, 2011, Morgan
Kaufmann Publishers

#
 C

h
a

p
te

r S
u

b
title

Flynn’s Taxonomy

Copyright © 2010, Elsevier
Inc. All rights Reserved

SISD

Single instruction stream

Single data stream

(SIMD)

Single instruction stream

Multiple data stream

MISD

Multiple instruction stream

Single data stream

(MIMD)

Multiple instruction stream

Multiple data stream

SIMD for Data Parallelism

• Parallelism achieved by dividing data among processors.

▪ Applies the same instruction to multiple data items.

control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)

 x[i] += y[i];

x[1] x[2] x[n]

n data items

n ALUs

• Drawbacks

▪ All ALUs are required to execute the same instruction

simultaneously, or remain idle.

▪ Efficient for large data parallel problems, but not flexible for more

complex parallel problems.

5

Intel x86 SIMD Intrinsics

• Data types of SSE registers: __mm128i, __mm128, _mm128d

holding 4 32-bit integers, 4 32-bit single precision floats, and 2

64-bit double precision floats, respectively

SSE: 8 128-bit registers. AVX2: 16 256-bit registers. AVX-512: 32 512-bit registers

• Intrinsics are C functions and procedures for inserting SSE

instructions into C code. Supported also in AMD CPUs

6

Use of Intel SIMD SSE Intrinsics

int x[4], y[4];

__m128i sum4=__mm_setzero_si128();

__m128i tempx=_mm_loadu_si128 (& x[0]) ;

__m128i tempy=_mm_loadu_si128 (& y[0])

__m128i sum4 = __mm_add_epi32(tempx, tempy);

Load data from memory

to a 128-bit register

Add 4 numbers

in parallel

int x[4] __attribute__((aligned(16)));

Arrays x and y may not be aligned with a 16-byte boundary in

memory. Better SIMD performance if aligned during allocation

AVX2 vectorization supports 8 number SIMD operations.

tempy

tempx

sum4

7

Related SSE 128-bit Intrinsics

__m128i _mm_setzero_si128() returns 128-bit zero vector

__m128i _mm_loadu_si128(__m128i

*p)

Load data stored at pointer p of memory

to a 128bit vector, returns this vector.

__m128i _mm_add_epi32(__m128i x,

__m128i y)

returns vector (x0+y0, x1+y1, x2+y2,

x3+y3) with 4 integers

 void _mm_storeu_si128(__m128i *p,

__m128i a)

stores content of 128-bit vector ”a” to

memory starting at pointer p

Compiler Optimization with SIMD vectorization

• Optimization level of gcc compiler

▪ gcc → -O0 (default, no optimizations)

▪ –O → -O1 (moderate optimization)

▪ -02 → More optimization, e.g. SIMD vectorization

▪ -03 → Aggressive optimization e.g. SIMD/loop unrolling

• Manual vectorization of code outperforms compiler optimization if

the compiler cannot recognize data parallelism
8

Running time on CSIL gcc gcc -O gcc –O2 gcc –O3

for (i=0; i<7780; i++)

 sum = sum+ a[i];

19μs 2.51μs 2.28μs 0.59μs

for (i=0;i <7780; i=i+4)

 Add a[i], a[i+1], a[i+2], a[i+3] with SIMD

8.9μs 0.54μs 0.50μs 0.49 μs

Graphics Processing Units (GPU)

• Generalization from SIMD

▪ Single Instruction Multiple Threads (SIMT)

• GPU is popular for gaming and graphic applications, and

now for AI/machine learning applications

• Key Market Players: NVIDA, AMD, Intel

Copyright © 2010, Elsevier
Inc. All rights Reserved

MIMD

• Supports multiple simultaneous instruction streams

operating on multiple data streams.

• Typically consist of a collection of fully independent

processing units or cores, each of which has its own

control unit and its own ALU.

• Types of MIMD systems

▪ Shared-memory systems

– Most popular ones use multicore processors.

▪ (multiple CPU’s or cores on a single chip)

▪ Distributed-memory systems

– Computer clusters are the most popular

Copyright © 2010, Elsevier
Inc. All rights Reserved

Shared Memory Systems

• Each processor can access

each memory location.

▪ Processors communicate

implicitly by accessing

shared data structures

• Example

Copyright © 2010, Elsevier
Inc. All rights Reserved

Distributed Memory Systems

• Clusters (most popular)

▪ A collection of commodity

systems.

▪ Connected by a commodity

interconnection network.

▪ Each node may contain

both CPU/GPUs

Copyright © 2010, Elsevier
Inc. All rights Reserved

Interconnection networks

• Two categories:

▪ Shared memory interconnects

▪ Distributed memory interconnects

▪ Shared memory interconnects: bus

– Parallel communication wires together with some hardware that

controls access to the bus.

– As the number of devices connected to the bus increases, contention

for shared bus use increases, and performance decreases.

Examples of distributed memory interconnects

(toroidal mesh)

Ring
A network of computers and

each node is a machine

How to measure network quality?

• Bandwidth of each link

▪ The rate at which a link can transmit data. E.g. 1GB/s.

• Bisection width of the network

▪ A measure of “number of simultaneous communications”

between two subnetworks within a network

▪ Typically divide a network into two equal halves by a

single line/plane or curve (or two node sets that differ by

at most 1 node in size)

– There are many ways to partition

– Each partitioning removes links that connect two halves

▪ Find the minimum one among all possible partitionings

– The minimum number of links that must be removed to partition

the network into two equal halves

16

Bisection Width and Bisection Bandwidth

bisection

cut

8 links, not a

bisection

cut

• Example of bisection width

Bisection bandwidth (different from bisection width)

▪ Add bandwidth of links that cut the network into two equal

halves (or two sets that differ by at most 1 node in size)

▪ Choose the minimum bandwidth sum as the answer after above

cutting for all possible ways of partitioning.

Bisection width 6Bisection width 1

More definitions on network performance

• Any time data is transmitted, we’re interested in how

long it will take for the data to reach its destination.

• Latency

▪ The time that elapses between the source’s beginning

to transmit the data and the destination’s starting to

receive the first byte.

• Startup cost The startup time required to handle a

message at the sending and receiving nodes

• Bandwidth

▪ The rate at which the destination receives data after it

has started to receive the first byte.

Message transmission time = α + m β

latency (seconds)

1/bandwidth (bytes per second)

length of message (bytes)

Network transmission cost

Typical bandwidth β: 100 MB ~

1GB per second

Typical latency/startup

cost α : Tens of

microseconds ~ 1

millisecond

Typical network for a cluster

• Example: 40 nodes/rack.

Few thousand nodes in a cluster

• 1 Gbps bandwidth in rack, 8 Gbps out of rack

• Node specs :

32+ cores, 64-256 GB RAM, 16 TB disks

Aggregation/core switch

Rack switch

Layered Network in Clustered Machines

• A layered example from Cisco: core, aggregation,

the edge or top-of-rack switch
• http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_3a.html

Cloud Computing with Amazon EC2

• On-demand elastic computing

• Allocate a Linux or windows cluster only when you need.

• Pay based on time usage of computing instance/storage

• Expandable or shrinkable

SHARED MEMORY

ARCHITECTURES WITH

CACHE COHERENCE

23

Memory Hierarchy and Performance

• Most programs have a high degree of locality in their accesses

▪ spatial locality: accessing things nearby previous accesses

▪ temporal locality: reusing an item that was previously accessed

• Memory hierarchy tries to exploit locality to improve average

on-chip

cache
registers

datapath

control

processor

Second

level

cache

(SRAM)

Main

memory

(DRAM)

Secondary

storage

(Disk)

Speed 1ns 10ns 60-100ns 0.1-10ms

Size KB MB GB TB

Uniprocessors in the Real World

• Have caches (small amounts of fast memory)

storing values of recently used or nearby data

–different memory ops can have different costs

Processor

Control

Datapath

PC

Registers

Arithmetic & Logic Unit

(ALU)

Memory
Input

Output

Bytes

Address

Write Data

ReadData

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

Fast Slow

• Cache is fast (expensive) memory which keeps copy of data;
it is hidden from software

▪ Simplest example: data at memory address xxxxxxx10 is
stored at cache location 10

Cache Basics

1/18/24

from Berkeley CS267 Lecture
Bulux/Demmel 25

• Cache hit: in-cache memory access—cheap
• Cache miss: non-cached memory access—expensive

• Need to access next, slower level of memory

Memory

Processor Cache Address Value

1001010 42

1001011 13

1001100 ‘actg’

1001101 ‘wait’

1001110 ‘seen’

1001111 29

Addr Value

xxxx00 ‘actg’

xxxx01 ‘wait’

xxxx10 42

xxxx11 29

arithmetic

control

registers

Cache Blocks (or called Cache Lines)

• Memory data is divided into blocks

▪ Every block has a tag as an identifier in cache

26

4000 4004 4008 4012 4016 4028

Tag 4000
32-Byte Data Block

Memory

• Write some bytes

▪ Write an integer @ 4012 → update the cache block from address 4000

to 4028

▪ May have to update memory block immediate (write-through protocol)

4032 4036

• When a program accesses some bytes, CPU checks its

corresponding block

▪ e.g. CPU reads an integer of 4 bytes from address 4012

▪ CPU checks if the cache block tagged with 4000 is in cache

▪ If not in cache (called cache miss), fetch the entire block of 32 bytes from

memory

Shared Memory Architectures with Cache
Coherence

• Memory is a performance bottleneck even with one processor

• Use caches to reduce bandwidth demands on main memory

• Each core has a local private cache holding data it has accessed
recently

• Only cache misses have to access the shared common memory

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

27

Shared Memory and Caches

• What if?

▪ Processors 1 and 2 read Memory[1000] (value 20)

28

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000

20

1000

1000 1000

20

0 1 2

Each cache of Processors 1 and 2 has a copy of memory[1000]

Shared Memory and Caches

• Now:

▪ Processor 0 writes Memory[1000] with 40

29

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

1000

1000 40

1000 40

Problem?
Cache data in Processor 2 is not coherent from Processor 1

even memory is updated

Keeping Multiple Caches Coherent

• Architect’s job: shared memory

=> keep cache values coherent

• Idea:

▪ When any processor has cache miss, fetch data

from main shared memory.

▪ When a processor writes, invalidate any cached

copies in other processors. The corresponding

data block in main memory will get updated.

– Assume write-through with immediate update of

entire cache line

• How to detect data block is modified and where

to invalidate? 30

Shared Memory with Snooping Caches

• Bus keeps track of what is written to memory and

invalidates entries cached in other processors.

• For example, now with cache coherence

▪ Processors 1 and 2 read Memory[1000]

▪ Processor 0 writes Memory[1000] with 40

31

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

Processor 0

Write

Invalidates

Other Copies

1000

1000 40

1000 40

32

Cache-Coherence Protocols

• Snoopy cache-coherence protocol

▪ Cache controller “snoops” all transactions on the bus,

considering memory bus as a broadcast medium

▪ Bus monitors a write transaction and triggers

invalidation in other caches

▪ Not scalable for a large number of processors

P0

$ $

Pn

Mem Mem

Memory bus
memory op from Pn

bus snoop

• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

• More scalable solution

with lookup directories

for larger systems. More

complex/overhead

Takeaway from shared memory architectures

• Read a number → cause caching of a data block

▪ P0: Read an integer at address 4000 → read/cache

a block from address 4000 to 4028

33

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028

Tag 32-Byte Data Block

Cache 0 Cache 1

Memory

• Write a number → invalidate a block in other caches

• Frequent invalidation of other caches is bad for

performance!

False Sharing: Cache Coherency Tracked by

Block

• Suppose block size is 32 bytes (i.e. cache line= 32 bytes)

• Suppose Processor 0 reads and writes variable X, Processor 1 reads

and writes variable Y

• X is at memory address 4000. Y is at 4012

• What will happen? P0 writes X → invalidate a block in Cache 1 that

holds Y for P1

34

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028

Tag 32-Byte Data Block

Cache 0 Cache 1

Memory

Block invalidation in a ping-pong manner between two caches

even though processors are accessing disjoint variables

False Sharing

▪ Shared data within the same cache line (cache block) is
modified by multiple processors.
▪ This updating occurs very frequently (for example, in a tight

loop).
▪ This effect is called false sharing

▪ It causes cache miss for every write, even they write to
different locations.

▪ How can you prevent it for a higher cache hit ratio?

▪ Let parallel iterations write to different cache blocks (as
much as possible)

– allocate data used by each processor contiguously

For i = 1 to 10000

 x[i]= 3

It is bad if x[0] is modified by Proc 0 and x[1] is modified by Proc 1
as x[0] and x[1] are in the same cache block most likely.

▪ Make use of private data for each thread as much as
possible

35

Summary of Parallel Architecture

• Important Concepts

▪ SIMD

▪ MIMD

– Shared memory machines

▪ Cache coherence, false sharing

– Distributed memory machines

– Interconnection network

▪ Topology, bisection width and bandwidth,

networking cost.

▪ Cluster computing and clouds

36

	Slide 1: Parallel Architectures
	Slide 2: Outline
	Slide 3: Flynn’s Taxonomy
	Slide 4: SIMD for Data Parallelism
	Slide 5: Intel x86 SIMD Intrinsics
	Slide 6: Use of Intel SIMD SSE Intrinsics
	Slide 7: Related SSE 128-bit Intrinsics
	Slide 8: Compiler Optimization with SIMD vectorization
	Slide 9: Graphics Processing Units (GPU)
	Slide 10: MIMD
	Slide 11: Shared Memory Systems
	Slide 12: Distributed Memory Systems
	Slide 13: Interconnection networks
	Slide 14: Examples of distributed memory interconnects
	Slide 15: How to measure network quality?
	Slide 16: Bisection Width and Bisection Bandwidth
	Slide 17: More definitions on network performance
	Slide 18
	Slide 19: Typical network for a cluster
	Slide 20: Layered Network in Clustered Machines
	Slide 21: Cloud Computing with Amazon EC2
	Slide 22: Shared Memory Architectures with Cache Coherence
	Slide 23: Memory Hierarchy and Performance
	Slide 24: Uniprocessors in the Real World
	Slide 25: Cache Basics
	Slide 26: Cache Blocks (or called Cache Lines)
	Slide 27: Shared Memory Architectures with Cache Coherence
	Slide 28: Shared Memory and Caches
	Slide 29: Shared Memory and Caches
	Slide 30: Keeping Multiple Caches Coherent
	Slide 31: Shared Memory with Snooping Caches
	Slide 32: Cache-Coherence Protocols
	Slide 33: Takeaway from shared memory architectures
	Slide 34: False Sharing: Cache Coherency Tracked by Block
	Slide 35: False Sharing
	Slide 36: Summary of Parallel Architecture

