Parallel Architectures

UCSB CS140, T. Yang



' Outline

« Parallel architectures for high performance
computing
= SIMD
= Cluster computing and cloud

= Shared memory architecture with cache
coherence

* Reference

= Chapter 2 of An Introduction to Parallel
Programming" by Peter Pacheco, 2011, Morgan
Kaufmann Publishers

a|gng Jsydey) #



Flynn’s Taxonomy

A\23

e\)“‘a“(\
SISD
Single instruction stream
Single data stream

(SIMD)
Single instruction stream
Multiple data stream

MISD
Multiple instruction stream
Single data stream

(MIMD)
Multiple instruction stream
Multiple data stream

Copyright © 2010, Elsevier
Inc. All rights Reserved




' SIMD for Data Parallelism

- Parallelism achieved by dividing data among processors.
= Applies the same instruction to multiple data items.

control unit — ndata_it@m;
) n ALUs

/

x[1] x[2] x[n]
ALU,  ALU, ALU,

for (1=0; 1 <n; 1++)

x[1] +=y[1];
* Drawbacks

= All ALUs are required to execute the same instruction
simultaneously, or remain idle.

= Efficient for large data parallel problems, but not flexible for more
complex parallel problems.



Intel x86 SIMD Intrinsics

* Intrinsics are C functions and procedures for inserting SSE
instructions into C code. Supported also in AMD CPUs

* Data types of SSE registers: mml281, mml28, mml28d

holding 4 32-bit integers, 4 32-bit single precision floats, and 2
64-bit double precision floats, respectively

SSE and AVX-128 types

AVX-256 types

- 1x 128-bit doublequadword

8x float

SSE: 8 128-bit registers. AVX2: 16 256-bit registers. AVX-512: 32 512-bit registers



Use of Intel SIMD SSE Intrinsics

__ml28i tempx=_mm_loadu_sil28 (& x[0]) ;
__ml28i tempy=_mm_loadu sil28 (& y[0])
_ ml28isum4 = mm_add_epi32(tempx, temp

A /UGG Ul 11 V111 111\/111\.}1]

int x[4], y[4]; / to a || 28-bit register
_ ml281 sum4=_mm setzero sil28();

Add 4 numbers
/ in parallel
Y)s

teme Source 1 X3 X2 X1 X0
tempy Source 2 Y3 Y2 Y1 YO0
sum4  Destination X3 OP Y3 X2 0P Y2 X1 OP Y1 X0 OP YO0

Arrays X and y may not be aligned with a 16-byte boundary 1n
memory. Better SIMD performance if aligned during allocation

int x[4] __ attribute _ ((aligned(16)));

AVX2 vectorization supports 8 number SIMD operations.

6



Related SSE 128-bit Intrinsics

~ _m128i _mm_setzero si128() returns 128-bit zero vector
~ _m128i _mm_loadu_si128( __m128i Load data stored at pointer p of memory
*p) to a 128bit vector, returns this vector.

~ _m128i _mm_add_epi32( __m128i x, returns vector (Xo+Yyo, X1+Y4, XotYo,

~_m128iy) X3tY3) with 4 integers
void _mm_storeu_si128(  m128i *p, | stores content of 128-bit vector "a” to
~_m128ia) memory starting at pointer p
Source - X3 X2 X1 X0
Source 2 Y3 Y2 Y1 Y0

Destination X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP YO




Compiler Optimization with SIMD vectorization

Running time on CSIL gce gec -0 geec—-02  gee-0O3

for (1=0; 1<7780; 1++) 19us  2.51us  2.28us 0.59us
sum = sum+ a[i];

for (1=0;1 <7780; 1=11+4) 8.9us 0.54us 0.50us 0.49 ps

Add a[i], a[i+1], a[i+2], a[i+3] with SIMD

* Optimization level of gcc compiler
= gcc - -00 (default, no optimizations)
= —O - -0l (moderate optimization)
= -02 > More optimization, e.g. SIMD vectorization
= -03 - Aggressive optimization e.g. SIMD/loop unrolling

e Manual vectorization of code outperforms compiler optimization if

the compiler cannot recognize data parallelism .



Graphics Processing Units (GPU)

Generalization from SIMD
= Single Instruction Multiple Threads (SIMT)

GPU is popular for gaming and graphic applications, and
now for Al/machine learning applications

Key Market Players: NVIDA, AMD, Intel




MIMD

« Supports multiple simultaneous instruction streams
operating on multiple data streams.

« Typically consist of a collection of fully independent
processing units or cores, each of which has its own
control unit and its own ALU.

 Types of MIMD systems

= Shared-memory systems

— Most popular ones use multicore processors.
= (multiple CPU’s or cores on a single chip)

= Distributed-memory systems
— Computer clusters are the most popular

Copyright © 2010, Elsevier
Inc. All rights Reserved



Shared Memory Systems

CPU

|

Each processor can access
each memory location.

= Processors communicate
implicitly by accessing
shared data structures

Interconnect

|

Memory

Intel Core i7 Block Diagram

Example

Core0 Core 1 Core 2 Core3
32 KB I&D 32 KB I&D 32KB I&D 32 KB I&D
L1 Caches L1 Caches L1 Caches L1 Caches

256 KB 256 KB 256 KB 256 KB
L2 Cache L2 Cache L2 Cache L2 Cache

8 MB
L3 Cache
DDR3 Memory QuickPath
Controllers Interconnect
A A F N A A
v v v A 4 v
3x8B @ 1.33GT/s 4x20b @ 6.4 GT/s



Distributed Memory Systems

« Clusters (most popular)

CPU

= A collection of commodity

CPU

Memory

Memory

systems.

CPU

Memory

CPU

= Connected by a commodity

Memor

Interconnect

Interconnection network.

= Each node may contain
both CPU/GPUs




Interconnection networks

 Two categories:
= Shared memory interconnects
= Distributed memory interconnects

= Shared memory interconnects: bus

— Parallel communication wires together with some hardware that
controls access to the bus.

— As the number of devices connected to the bus increases, contention
for shared bus use increases, and performance decreases.

Processor

Processor

Processor

Processor

Cache

Cache

Cache

Cache

Memory Memory

Memory

Memory

Bus



' Examples of distributed memory interconnects

OO0 GG OO0
%-—O—O—O— o e ie e S 5d )
%}—O—CB-—O— (CE 43 \5 4{% ST 5
‘A?_Q‘{B’—Q— &‘5‘6%) o=Te

2D mesh 2D torus 3D mesh

(toroidal mesh)

A network of computers and

Rin . .
& each node is a machine




How to measure network quality?
Bandwidth of each lin|

= The rate at which a link can transmit data. E.g. 1GB/s.
Bisection width of the network

= A measure of “number of simultaneous communications”
between two subnetworks within a network

= Typically divide a network into two equal halves by a

single line/plane or curve (or two node sets that differ by
at most 1 node in size)

— There are many ways to partition
— Each partitioning removes links that connect two halves
* Find the minimum one among all possible partitionings

— The minimum number of links that must be removed to partition
the network into two equal halves



' Bisection Width and Bisection Bandwidth

« Example of bisection width (
Bisection width 1 Bisection width 6 S
® O
® e Olinks,nota
' ' ==| = 'bisection
bisection ® s
cut [
O | ®
® O
® O

Bisection bandwidth (different from bisection width)
* Add bandwidth of links that cut the network into two equal
halves (or two sets that differ by at most 1 node in size)
* Choose the minimum bandwidth sum as the answer after above
cutting for all possible ways of partitioning. N



' More definitions on network performance

 Any time data is transmitted, we’re interested in how
long it will take for the data to reach its destination.

 Latency

= The time that elapses between the source’s beginning
to transmit the data and the destination’s starting to
receive the first byte.

« Startup cost The startup time required to handle a
message at the sending and receiving nodes

« Bandwidth (—— )

= The rate at which the destination receives data after it
has started to receive the first byte.



' Network transmission cost

Typical latency/startup

Message transmission time=o+ m 8
cost o : Tens of
microseconds ~ 1

latency (seconds) millisecond

length of message (bytes)

1/bandwidth (bytes per second)

Typical bandwidth B: 100 MB ~
1GB per second



Typical network for a cluster

Aggregation/core switch
<+—» 8 gigabit
<—» 1 gigabit
Rack switch

Node
-—-.
@

« Example: 40 nodes/rack.
Few thousand nodes in a cluster
* 1 Gbps bandwidth in rack, 8 Gbps out of rack

* Node specs .
32+ cores, 64-256 GB RAM, 16 TB disks




Layered Network in Clustered Machines

-~ =10 Gigabit Ethernet
'~ Gigabit Ethernet

Scales to 16

AN .l Access Nodes

4" Ly S — \\>‘ // - Up to 336 Servers Per Node
= %ﬁ-‘-f*ﬁ-@aé ) o
i fae e e GG TS ae :l'ﬁ e

* A layered example from Cisco: core, aggregation,
the edge or top-of-rack switch

http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DClnfra_3a.html



Cloud Computing with Amazon EC2

 On-demand elastic computing
e Allocate a Linux or windows cluster only when you need.
* Pay based on time usage of computing instance/storage
« Expandable or shrinkable

Clients

N T«

Ay

——» Internet —_—

=0 \ " Cloud AMI Server N
WWWWWWWW e F‘

Amazon EC2 Cluster

_—

E‘i Cloud AMI Server 1

=" | Cloud AMI Server 2

e

— - Amazon 53
Cloud Storage




nnnnnnnnnnnn

MMMMMM

SHARED MEMORY
ARCHITECTURES WITH
CACHE COHERENCE



Memory Hierarchy and Performance

« Most programs have a high degree of locality in their accesses
= spatial locality: accessing things nearby previous accesses
= temporal locality: reusing an item that was previously accessed

« Memory hierarchy tries to exploit locality to improve average

Speed

Size

23



Uniprocessors in the Real World

 Have caches (small amounts of fast memory)
storing values of recently used or nearby data

—different memory ops can have different costs

Processor Memory Input
Control
- - Address i
. a Program
Datapath S J
| PC || > Bytes
Write Da
Registers
Arithmeticl&EogiclUnit Data
m ReadData A \ Output
g J \ )
Fast ' Slow Y

Processor-Memory Interface I/O-Memory Interfaces



Cache Basics

« (Cache is fast (expensive) memory which keeps copy of data;
it is hidden from software

= Simplest example: data at memory address xxxxxxx10 is
stored at cache location 10

control

Arithmetic

registers

* (Cache hit: in-cache memory access—cheap
* (Cache miss: non-cached memory access—expensive
* Need to access next, slower level of memory

from Berkeley CS267 Lecture
Bulux/Demmel  418/24 25



Cache Blocks (or called Cache Lines)

 Memory data is divided into blocks
= Every block has a tag as an identifier in cache Memory

-

K
4000 | 4004 | 4008 [ 4012 | 4016 | 4028 I|| 4032 || 4036

Tag 4000
32-Byte Data Block
« When a program accesses some bytes, CPU checks its

corresponding block

= e.g. CPUreads an integer of 4 bytes from address 4012

= CPU checks if the cache block tagged with 4000 is in cache

= |[f not in cache (called cache miss), fetch the entire block of 32 bytes from

memory
 Write some bytes

= Write an integer @ 4012 - update the cache block from address 4000
to 4028

= May have to update memory block immediate (write-through protocdf)



Shared Memory Architectures with Cache
Coherence

Memory is a performance bottleneck even with one processor
Use caches to reduce bandwidth demands on main memory

Each core has a local private cache holding data it has accessed

recently

Only cache misses have to access the shared common memory

Processor

Processor

A
A

A
y

A
Y

Cache

Cache

A

y

Y

Processor

A
Y

Cache

A

Y

Interconnection Network

Y

Y

Memory

1/0

27



Shared Memory and Caches

« What if?
= Processors 1 and 2 read Memory[1000] (value 20)

Processor() Processorl Process0r2

h ) 1000 ) 1000

Y Y Y

Cache 1000 1e 1000 1e

A A A

Y Y Y

Interconnection Network

A A

Y Y

Memory 2(P() 1O

Each cache of Processors 1 and 2 has a copy of memory[1000]

28



Shared Memory and Caches

* Now:
= Processor 0 writes Memory[1000] with 40

1000 Processor () Processor | Processor)

A A A
Y Y

1000 49 | 100020 1000 20

A A

Y Y Y

Interconnection Network

A A

A\ 4 Y

1000 40 1o

Problem?

Cache data 1in Processor 2 1s not coherent from Processor 1
. 29
even memory 1s updated




' Keeping Multiple Caches Coherent

« Architect’s job: shared memory
=> keep cache values coherent

e |dea:

= When any processor has cache miss, fetch data
from main shared memory.

= WWhen a processor writes, invalidate any cached
copies in other processors. The corresponding
data block in main memory will get updated.

— Assume write-through with immediate update of
entire cache line

* How to detect data block is modified and where
to invalidate? 30




Shared Memory with Snooping Caches

 Bus keeps track of what is written to memory and
invalidates entries cached in other processors.

 For example, now with cache coherence
= Processors 1 and 2 read Memory[1000]
= Processor 0 writes Memory[1000] with 40

1000 | Processor() Processor | Processor?) Processor 0
{ } i Write
1000 40 | 100020 100020 | Invalidates
! ! i Other Copies
Interconnection Network

1000 40 1o

31



Cache-Coherence Protocols

» Snoopy cache-coherence protocol

= Cache controller “snoops” all transactions on the bus,

considering memory bus as a broadcast medium

= Bus monitors a write transaction and triggers
iInvalidation in other caches @

[y b L
Memory bus#Lp—%

memory op from Pn

Mem

= Not scalable for a large number of processors

More scalable solution
with lookup directories
for larger systems. More
complex/overhead

® e ®

Cache Cache

Interconnection Network

Memory

-l TTJ T T

—| Directory

y
presence bits dirty bit

Mem

32



’ Takeaway from shared memory architectures

Processor 0 Processor 1
Cache O CaChe 1
4000 4000 [ 4004 | 4008 [ 4012 ] 4016 1 4028

Tag T 32-Byte Data Block

Mémory

 Read a number - cause caching of a data block

= P0O: Read an integer at address 4000 - read/cache
a block from address 4000 to 4028

 Write a number - invalidate a block in other caches

 Frequent invalidation of other caches is bad for
performance!

33



False Sharing: Cache Coherency Tracked by
Block

Processor 0

Processor 1

\ /
Cache 0 Cache 1
\ —
4000 4000 [ 4004 | 4008 [ 4012 ] 4016 ] 4028
Tag 1 32-Byte Data Block

Memory

Suppose block size is 32 bytes (i.e. cache line= 32 bytes)

Suppose Processor 0 reads and writes variable X, Processor 1 reads
and writes variable Y

X is at memory address 4000. Y is at4012

What will happen? PO writes X = invalidate a block in Cache 1 that

holds Y for P1

Block invalidation in a ping-pong manner between two caches
even though processors are accessing disjoint variables

34



False Sharing

» Shared data within the same cache line (cache block) is
modified by multiple processors.

= This updating occurs very frequently (for example, in a tight
loop).

= This effect is called false sharing

= [t causes cache miss for every write, even they write to
different locations.

= How can you prevent it for a higher cache hit ratio?
= |et parallel iterations write to different cache blocks (as
much as possible)
— allocate data used by each processor contiguously
Fori=1to 10000
X[i]= 3
It is bad if x[0] is modified by Proc 0 and x[1] is modified by Proc 1
as x[0] and x[1] are in the same cache block most likely.

= Make use of private data for each thread as much as
possible

35



' Summary of Parallel Architecture

* Important Concepts
= SIMD
= MIMD
— Shared memory machines
= Cache coherence, false sharing
— Distributed memory machines
— Interconnection network

» Topology, bisection width and bandwidth,
networking cost.

= Cluster computing and clouds

36



	Slide 1: Parallel Architectures
	Slide 2: Outline
	Slide 3: Flynn’s Taxonomy
	Slide 4: SIMD for Data Parallelism
	Slide 5: Intel x86 SIMD Intrinsics
	Slide 6: Use of Intel SIMD SSE Intrinsics
	Slide 7: Related SSE 128-bit Intrinsics
	Slide 8: Compiler Optimization with SIMD vectorization
	Slide 9: Graphics Processing Units (GPU)
	Slide 10: MIMD
	Slide 11: Shared Memory Systems
	Slide 12: Distributed Memory Systems
	Slide 13: Interconnection networks
	Slide 14: Examples of distributed memory interconnects
	Slide 15: How to measure network quality?
	Slide 16: Bisection Width  and  Bisection Bandwidth
	Slide 17: More definitions on network performance
	Slide 18
	Slide 19: Typical  network for a cluster
	Slide 20: Layered Network in Clustered Machines
	Slide 21: Cloud Computing with Amazon EC2
	Slide 22: Shared Memory Architectures with Cache Coherence
	Slide 23: Memory Hierarchy and Performance
	Slide 24: Uniprocessors in the Real World
	Slide 25: Cache Basics
	Slide 26: Cache Blocks (or called Cache Lines) 
	Slide 27: Shared Memory Architectures with Cache Coherence
	Slide 28: Shared Memory and Caches
	Slide 29: Shared Memory and Caches
	Slide 30: Keeping Multiple Caches Coherent
	Slide 31: Shared Memory with Snooping Caches
	Slide 32:  Cache-Coherence Protocols
	Slide 33: Takeaway from shared memory architectures
	Slide 34: False Sharing: Cache Coherency Tracked by Block
	Slide 35: False Sharing
	Slide 36: Summary of Parallel Architecture

