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' Outline

« How to write parallel programs
= An abstract view with task graph model

= SPMD (Single-program multiple data) coding
style

 Performance evaluation
= Parallel time, speedup, efficiency
= What limits parallel performance

= Parallel/serial performance assessment with
FLOPS

 Parallel program design strategies
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’ How do we write parallel programs?

« Task parallelism by computation partitioning & mapping
= Divide code (computation) into a set of tasks
= Map tasks to parallel processing units (processor cores,

machines)
Lﬁ%@

« Data parallelism with data partitioning/mapping

= Divide data into a set of items. Computation for data items
Is partitioned accordingly

= For a distributed architecture, map data items to separate

machines
Data _—
D




' Shared vs. distributed memory programming

« Shared memory programming is easier
= Task partitioning and mapping are required

= Explicit data partitioning/mapping is not required because
of shared memory

Shared memory — holding data

7N\

Processor rocessor

7

program

* For a distributed architecture, map data items to separate machines
* More complex to manage distributed data naming and explicit
communication among tasks that run on separate machines 4



’ Model Parallelism using a Directed Acyclic Task
Graph

- A task is a basic computation unit
that runs a program fragment, Each vertex is a task

« A program consists of a set of
tasks.

= Program partitioning produces a
set of tasks. Tasks should not
be too smallto avoid excessive &
overhead

Each edge x->y represents task

dependence: Task x has to be executed

before y. Task x produces data used by y

« Task y cannot start execution until the
data produced by x 1s available in
local memory




Popular Graph Pattern of Parallelism

Parallel code structure:

sequential parallel |sequential | parallel |

- .




’ Task Scheduling and Impact
of Task Dependence Edges
« Scheduling maps tasks to processors and also

defines an order of execution at each processor
 Task execution ( a simplified model)

= A task waits to receive all data in parallel before it starts
its execution.

= As soon as the task completes its execution it sends the
output data to all successors in parallel or makes data
available through shared memory

 Dependence constraint for edge x>y

* Let ST(x) be the starting execution time of task x
and cost(x) is the execution time of x

= ST(x)+ cost(x) = ST(y)



' An example of Task Scheduling

[;{ l_al ] Schedule
™ y \ Proc O Proc 1
(y=x+33 |

[Z ]T3
y [ @\
QESTTE = P

w =(a;+ax+az)(a; +a,+a4) \

Task graph \@ >

* Dependence edges are enforced by

synchronization or message communication

* Scheduling can be done statically (fixed before running)

Or it can be derived dynamically during run-time .
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Gannt chart to represent a schedule

We can use a Gannt chart to
represent a schedule
Assume there 1s cost ¢
delay of sending a message
between two processors.
But overhead charged
processors 1s 0. Message
latency 1s 0 1f two tasks
communicated are in the
same processor
Computation cost 1s T for
cach task

o§

Left schedule can be expressed as

Ty | 1o | Ty | Ty
Proc Assign. | 0 | O 1 0
Start time 0 1 1 2




' What is a processor here?

* Processor here is a logical processing unit
= Textbook calls it a core for shared memory programming
= |t can execute one or a number of tasks.

= |n general, we treat it as a logical execution unit. At
runtime p logical units are executed in parallel by a fixed
number of physical machines/cores.

* In MPI programming or Linux programming
= |tis a process
= There is no data shared among processes

= Process communication is done by message
sending/receiving

* In OpenMP/Pthread programming
= |tis a thread. Memory is shared among threads
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' Estimate Parallel Time via Scheduling

* Processor assignment of tasks
determines where a task 1s Proc 0

Proc 1
executed.
* The execution order of tasks @
with each processor 1s further | D
determined by a schedule 12 @
 Parallel time = Completion \&
time of last task among all @
Processors @
* Parallel time = max( Schedule of a task graph

completion time of last task at
each processor).
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’ Overhead Paid in Shared-Memory and
Distributed-Memory Parallel Programming

* Shared memory architecture Proc 0 Proc 1

* Ensuring T3 1s executed after )\

T1 requires a synchronization o
whose cost cannot be fully v
overlapped with computation @

* Distributed memory architecture \/‘

* Sending a message from T1 14
to T3 requires Proc 0 to pay @
some start cost, even routing Schedule of a task graph
this message may be
overlapped with other

computation of Proc 0

=) (2
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' Style of Parallel Programming

 Express implicit parallelism with parallel operations in code

= Often assume shared data which may be implicitly distributed
by the system

= System assigns computation to multiple processing units
automatically

= Example: SIMD programming, OpenMP, MapReduce, Spark
- Explicitly write the role of each processing unit
= Data may be shared or distributed

= Code defines the behavior of each processing unit
— Access data if shared
— Allocate data locally and communicate if distributed
— Compute

= Example: MPI, Pthreads, CUDA
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’ Explicitly Define Role of Processing Units:
Coding Style

« SPMD - single program multiple data
= Write one program, works for different data streams

= Computation is distributed among processors. Code is
executed based on a predetermined schedule.

= Each processor executes the same program but operates
on different data based on processor identification.

 Master/slaves: One control process is called the master
= There are a number of slaves working for this master.
= These slaves can be coded using an SPMD style.

« MPMD - multiple programs for multiple data

= Write different programs for different processors handling
different data streams

= Flexible, but painful and unmanageable.
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Generic Code Structure of SPMD

* Processors are numbered as 0, 1, 2, ...

= Each processor node executes the same program with
a unique processor ID.

— Differentiate the role of programs by their IDs

= Assume two library functions (pseudo code)

— mynode() — returns processor ID of the program executed on
one processor.

— noproc() - returns # of processors used

« Example SPMD code: | Print
“hello”;

Execute in 4 processors. The screen is: | hello
hello
hello
hello 15




' Examples of SPMD code

SPMD code:

x=mynode();
If x > 0, then Print “hello from ” x.

Screen: | hello from 1
hello from 2
hello from 3

 Another sequential code example:
= Fori=0ton-1
x[i]= 37;
Task graph
a[0]=3*0 a[1]=3*1 a[n-1]=3*(n-1)

16




' Example: Task graph, schedule, and SPMD code

Task graph
a[0]=3*0 a[1]=3*1 a[n-1]=3*(n-1)
Schedule
Proc 0 Proc 1 Proc n-1
a[0]=3*0 l a[1]=3*1 l a[n-1]=3*(n-1)
SPMD code:

me=mynode();
a[me]=3*me;

Runtime parallel execution

Proc 0O Proc 1 Proc n-1

me=mynode();
a[me]=3*me;

me=mynode();
a[me]=3*me;

me=mynode(); e
a[me]=3*me;
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’ Example: Another schedule with p processors
and n=k*p

Task graph
a[0]=3"*0 a[1]=3*1 a[n-1]=3*(n-1)
Schedule Proc 0 Proc 1 Proc p-1
a[0]=3*0 a[k]=3*k .. a[ (kp-p]=3*(kp-p)
a[k+1]=3*(k+1)

a[1]=3*1

alk-1]=3*(k-1) |1} apok-11=3*(2k-1)

a[kp-1]=3*(kp-1)

me=mynode();

p=noproc();

first=me*k

SPMD code: | last=my first+k-1

for (1=first; 1<=last; 1++)
a[1]=3 >kl, 18




' Steps in writing SPMD code

« Step 1: Detect who | am
= my_rank= mynode(). p=noproc();

« Step 2: Find the scope of computation performed in this
processor based on my_rank and p values.

= For example, given n iterations in a sequential code
— Derive first iteration to handle
— Derive last iteration to handle

« Step 3: Perform computation under the derived scope.
Synchronize and communicate among tasks if needed.

* When processors do not share memory
* Use a message communication library
* Send (msg, destination). Receive(msg) or Receive(msg, src)
* When processors share memory, synchronize through shared memory

19



’ Example of SPMD code structure with
communication synchronization

« Example: add n numbers on p processors
= Ex.,,p=8,n=24

= Once each processor adds its values to private my sum,
they form a global sum by sending results to a designated
“master” core which adds the final result.

PO P1 P2 P3 P4 P5 P6 P7
14,3, 9,28, 51,1, 527, 250, 418, 651, 239

SN

my sum 8 19 7 7 3 4

my sum 95 19 7 15 7 13 12 14 20



’ SPMD code

my _sum 8 19

+19+7+15+7+13+12+14 =95

my sum= Add all numbers assigned to this processor
If ( I am the master) {

sum = my_sum;

for each of other processors do {
Receive a value
sum = sum + received value

h
} else

send my sum to the master
l 21



Sequential vs tree-structured parallel addition

Sequential summation:

7 steps
Master does all of the work to
S=8S+x,
accumulate results G x. 1x,
Xp X X3 X X5 Xg X7 Xg

QEONONORONDROND

Tree summation structure
for more parallelism.
What 1s the parallel time
of executing this graph
with p processors? 3 steps

Log (p)

22



' Processor Assignment 1n Tree Summation for

PM-AH i I N I BRI
dal allCl AUUItIULL

Processes: 0 1 2 3 4 5 6 7

When process communication is imnvolved,
what 1s the pattern of communication? 23



’gPMD code for a task schedule with irregular
pattern: inextensible with more processors

SPMD for 2 processors

Task graph T, int i, x, y, 2z, w, al[b];

[X=al+az ] i = mynode();
T, X X T if (i==0) then {
[y:x+a3 ] Z=X+y4 ] 3 x=a[1]+a[2];
y\; send(x, 1);
T y=x+a[3];

W =(al+a42+ asz)(a;+ar+aq) receive(z);

W=y *Z;
+
else{

Schedule receive(x) ;
z=x+a[4];
send(z,0) ;

} 24




’ Patterns of Graph Structure on Programming

Difficult to write code and
exploit parallelism for task
graphs with irregular structure

Goal: Write simple SPMD code

that scales well for a large

number of processors. Difficult
Strategies: ldentify regularity

of parallelism patterns

L1
L1l

DEONONONONIRCHC

——e——0—0

= 00—
——(—(O——

1V1a1 Easy/manageable More difficult/manageable



Fork-Join Parallelism

Easy to write parallel code

Parallel code structure:

sequential | parallel |sequential | parallel |

a—————_




' Coordination and Overhead

« Coordination is needed among parallel tasks

= Communication —one or more cores send their current
partial sums to another core.
— How to communicate?

= | oad balancing — share the work evenly among the
cores so that one is not heavily loaded.

= Synchronization — because each core works at its own
pace, make sure cores do not get too far ahead of the
rest.

« Pay attentions to overhead of coordination

= Not worthy to add a few numbers in parallel. Too much
overhead.

= Aggregation of small tasks is needed

27



What we’ll be doing

* Learning to write programs that are explicitly parallel with
different extensions to C.
= Message-Passing Interface (MPI)
= POSIX Threads (Pthreads)
= OpenMP
= GPU programming with Cuda

 Terminology:

= Concurrent computing — a program is one in which multiple tasks can be
in progress at any instant. These tasks can still run in one CPU.

= Parallel computing — a program is one in which multiple tasks cooperate
closely to solve a problem. These tasks often or periodically run on
multiple CPUs or machines in parallel.

= Distributed computing — a program may need to cooperate with other
programs to solve a problem. These programs/tasks typically run on
multiple machines without shared memory.They do not have to runin
parallel in solving a problem 28




' Concluding Remarks

« Task/data mapping is essential for writing parallel
programs.

= Model parallelism using a set of tasks
= Schedule tasks to a set of process units
= Write SPMD code

« Parallelism management involves coordination of
cores/machines

= Coordination does cost extra overhead

= Design goal is to let the benefits of parallel
processing outweigh the cost of overhead paid.

29



Evaluation of Parallel Performance

UCSB CS140, T. Yang
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' Performance Terminology: Speedup

* Number of processors = p
+ Sequential time of execution =T,

 Parallel time =T, e T :
Speedup S = —serial

T

B | | | | | | parallel

Perfect speedup

Actual speedup




Speedup Interpretation Tparallel = Teorial /P

- Linear speedup
Speedup proportionally increases as p increases

* Perfect linear speedup
‘Speedup =p

« Superlinear speedup
‘Speedup >p
°It is not possible in theory.
°It is possible in practice
-Data in sequential code does not fit into memory.
-Parallel code divides data into many machines and
they fit into memory.

Copyright © 2010, Elsevier

Inc. All rights Reserved
32



' Efficiency of a parallel program

T N

serial

T aralle
Speedup | " Teeria
F = = _/

P J arallel
P P p

Measure how well-utilized the processors are, compared to effort
wasted in communication and synchronization.

p I | 2 | 4 | 8 | 16
S

0] 19 | 36 | 65 | 10.8
E—S/p| 1.0 | 0.95 [ 0.90 | 0.81 | 0.68

Example:




' Speedup & efficiency with two task schedules?

0 1 0 1
T
T, T3
T4
Sequential time = 4
T=1 T =1
c=0 c=0.5

Parallel time= 3 Parallel time=4
Speedup = 4/3 Speedup = 1
Efficiency=2/3 Efficiency=1/2=50%

34



Speedup

16

14

Problem Size Impact on Speedup and Efficiency

—— Half size
—+— Original
—e— Double size

2 4 6 8 10 12 14
Processes

Original problem size (e.g.
measured by matrix size)
Half of original problem size

Double size

Efficiency

Efficiency often goes down as
more cores are used
Efficiency often increases
when increasing problem size

I | —+— Original

—— Half size

—e— Double size

2 4 6 8 10 12 14 16
Processes



' Impact of Limited Parallelism in a Program

 Suppose only part of an application can be
parallelized

« Amdahl’s law

= let x be the fraction of work done sequentially, so
(1-x) is fraction parallelizable

= p = number of processors
= Parallel time= (x + (1-x)/p) *Sequential time

Speedup(p) = Sequential time/Parallel time
< 1/(x + (1-x)/p)
<l/x

« Takeaway: Even if the parallel part speeds up perfectly %
performance 1s limited by the sequential part



' Amdahl Law: Limitation of Parallel Performance

* The possible speedup is limited by available parallelism
— regardless of the number of processors available.

X=1/9  1/[x+(1-x)/p]

16— H;ﬂdgjlp =9/[1+8/p]
p=4 3
12—
speedup g p=8 4 . 5
Amdahl’s
5 Law
- P=12 54
‘ | | ]
! pmf:;esmrs | 10 P= 1 6 6

Speedup(p) < 1/x=9



' Performance models and measurement in

— practice

« Evaluate and predict with a theoretical analysis
= Model execution with directed acyclic graph

= Model the latency / bandwidth for message
communication and disk IO

= Estimate parallel time and speedup.
= Predict the best and average performance.

 For time and speedup measurement of actual
execution:

= Measure execution time with a timer function in binary
code running

= Assess the cost of data transmission and I/O with
with a timer

38



' Model Performance in a Directed Acyclic

— Graph
t,= execution time on p processors

John Gilbert 240A %9



' Bound analysis for parallel performance

t, = execution time on p processors
t, = workload

P

Degree of parallelism -
Maximum number of
Independent tasks

40



' Bound analysis for parallel performance

t

0 = execution time on p processors

t, = total workload |¢ with equal weights

Degree of parallelism - Maximum
number of independent tasks in this
graph 5

t., = critical path length

length of longest path summing

computation cost in this path
9

41



' Bound analysis for parallel performance

t

= execution time on p processors

t, = total work t, = critical
path length

P

Minimum workload
ot >t,/p

e = 3\
Limit by critical

path length

Lot = to

\




' Maximum speed with p processors

Speedup = t,/t; £ degree of parallelism

Since t, 2t.,, Speedup = t,/t, = t,/ t.

Degree of parallelism=5

t/t. =16/9=1.778

Speedup < min(5,1.778)=1.778



' Estimate Time with Complexity Analysis

« Estimate cost of an sequential task (algorithm), given an input
problem size (e.g. The size of an input array)

« Often, computer sciences uses Big O notation to describe how
fast the run-time of an algorithm grows as problem size grows

« Examples of big-O categories with input size N

C constant O(1)
log N logarithmic O(log N)
_ This course
N linear O(N) does not use
N? quadratic O(N?) big-O but
3 . 3 counts main
N cubic O(N*) fask cost

2N exponential O(2N) a4



' Cost Analysis with Operation Counting

Analyze task cost by counting main arithmetic operations & space units

= Ignore less significant terms in cost expression
= Ignore loop overhead 1n algorithm implementation
« Example
for (1=1to N ) { a[i]= 2*1} -2 N multiplications

y=2%*x; for (1=1to N ) { a[i] = a[1]+ 1*b[y] }

= 2N+1 addition/multiplications - 2N
for (1=Ito N ) { a[i] = 2*1 } N

for(1.=1 toN) { Total N4+ 2N,
X=1%2; which is still N?
for(=1toN) {a[i]=a[j]+x} N2+N




’ How to measure sequential and parallel
time in code execution 6
9

« Select a program segment of interest ¥
= Setup startup time NS
= Measure finish time
= Report the time difference
 What timing function to use?
= CPU time (e.g. as reported by Linux clock() call).
— It only includes CPU time of a single process.

— It does not work if your parallel program involves multiple
processes.

= Wall clock time
— Suitable for a parallel program with multiple processes.

— But impacted by other shared users when a system is not
dedicated.

46



' Performance assessment with FLOPS

« How to assess if parallel/serial code is fully optimized,
taking advantages of hardware

= Measure quality of implementation in terms of FLOPS

« FLOPS number (Megaflops, gigaflops or teraflops)
= Core computation count / time spent
* Only count core arithmetic operations

« Example: Matrix-matrix multiplication
» Operation count = ~2 n*3 with matrix dimension n

* 3 GFLOPS - 3 billion useful floating operations performed per second

47
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hy care about serial performance in

parallel computing?

Matrix Multiply Runtime

131X~98';}-g a
~single core

 Better &

10" 10" 10° 10° 10*
Size of Matrix (n)

x: Matrix size
y: Running time
Both x and y axes are log-scale

From Berkeley’s CS267 Lecture by A Buluc and J. Demmel

* Parallelizing slow serial
code only produces slow parallel
code

* Linear speedup 1s not
necessarily fast code

* Asan example, 10x
optimization for serial matrix
multiply 1s possible with

* SIMD vectorization

* Blocked computation for
better cache utilization

* Or by using optimized |
library functions

8 48



’ Revisit: Steps on Parallel Program Design

Based on Foster’s Methodology
1. Partitioning: divide the computation to be performed
and the data operated on by the computation into
small tasks.

The focus here should be on identifying tasks that can
be executed in parallel.

Tasks

Computation ) >

E —

49



' Steps 2&3: Task dependence and aggregation

Step 2: Task dependence & ommunication O O
= ]dentify dependence among tasks \ >/< \‘

= Determine inter-task communication

Step 3: Task aggregation

Combine small tasks and communications i1dentified in the first
step nto larger tasks.
= Reduce communication overhead > Coarse grain tasks

=  May reduce parallelism sometime

Q @

e




' Step 4: Mapping/Scheduling

« Assign the composite tasks identified in the previous step
to processes/threads. Distribute data if needed

This should be done so that communication is minimized,
and each process/thread gets even workload.

« Develop a schedule for task execution

Tasks

)

51



’ Optimization for Less Communication and Faster

Task graph

DS

Schedule 1

Proq

| @\®\

Mapping 1
Proct7 [Proc2

Pro

Which mapping is better?

Mapping 2

1
T

-

VaVa)
\L

P

o=
»

Schedule 2

Proc

#2

Pro

CJ

e
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' Concluding Remarks

« Parallel hardware
= Shared memory and distributed memory architectures
= Network topology for interconnect
« Parallel software with SPMD programs
* Performance
= Speedup/Efficiency. Amdahl’s law. Scalability
- Parallel Program Design
= Partitioning-->dependence ->mapping/scheduling

Class Update: Exercise 1 due Wed.
Expanse account: 1) Create an ACCESS account in access-c1.0rg.
2) Inform your account name by filling a Google sheet posted in Piazza.
3) After CPU allocation addition to your account, you can login to the
Expanse cluster

53
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