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Outline

• How to write parallel programs

▪ An abstract view with task graph model

▪ SPMD (Single-program multiple data) coding 
style

• Performance evaluation

▪ Parallel time, speedup, efficiency

▪ What limits parallel performance

▪ Parallel/serial performance assessment with 
FLOPS

• Parallel program design strategies
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How do we write parallel programs?

• Task parallelism by computation partitioning & mapping

▪ Divide code (computation) into a set of tasks

▪ Map tasks to parallel processing units (processor cores, 

machines)

• Data parallelism with data partitioning/mapping

▪ Divide data into a set of items. Computation for data items 

is partitioned accordingly

▪ For a distributed architecture, map data items to separate 

machines

program

processors
processors

processors

processors
processors

processors

Data



Shared vs. distributed memory programming

• Shared memory programming is easier 

▪ Task partitioning and mapping are required

▪ Explicit data partitioning/mapping is not required because 

of shared memory

Shared memory – holding data

processor processor processor

program
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• For a distributed architecture, map data items to separate machines

• More complex to manage distributed data naming and explicit 

communication among tasks that run on separate machines



Model Parallelism using a Directed Acyclic Task 

Graph
• A task is a basic computation unit 

that runs a program fragment, 

• A program consists of a set  of 

tasks.

▪ Program partitioning produces a 

set of tasks. Tasks should not 

be  too small to  avoid excessive 

overhead

Each edge x->y represents  task 

dependence: Task x has to be executed 

before y. Task x produces data used by y

• Task y cannot  start execution until the 

data produced by x is available in 

local memory

x

y

Each vertex is a task
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Parallel code structure:

Popular Graph Pattern of Parallelism

Fork-join parallelism
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Task Scheduling and Impact 

of Task Dependence Edges

• Scheduling maps tasks to processors and also 

defines an order of execution at each processor

• Task execution ( a simplified model)

▪  A task waits to receive all data in parallel before it starts 

its execution. 

▪  As soon as the task completes its execution it sends the 

output data to all  successors in parallel or makes data 

available through shared memory

• Dependence constraint for edge x→y

▪ Let ST(x) be the starting execution time of task x 

and cost(x) is the execution time of x

▪ ST(x)+ cost(x) ≥ ST(y)
7



An example of Task Scheduling 

T1

T4

T2 T3

Proc 0 Proc 1

Task graph

Schedule

• Dependence edges are enforced by 

synchronization or message communication

• Scheduling can be done statically (fixed before running)

Or it can be derived dynamically during run-time

T1

T2
T3

T4
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Gannt chart to represent a schedule

• We can use a Gannt chart to 

represent a schedule

• Assume there is cost  c 

delay of sending a message 

between two processors. 

But overhead charged 

processors is 0. Message 

latency is 0 if two tasks 

communicated are in the 

same processor

• Computation cost is 𝝉 for 

each task

c

c
c

c

Left schedule can be expressed as



What is a processor here?

• Processor here is a logical processing unit

▪ Textbook calls it a core for shared memory programming

▪ It can execute one or a number of tasks.

▪ In general, we treat it as a logical execution unit. At 

runtime p logical units are executed in parallel by a fixed 

number of physical machines/cores.

• In MPI programming or Linux programming

▪ It is a process

▪ There is no data shared among processes

▪ Process communication is done by message 

sending/receiving

• In OpenMP/Pthread programming

▪ It is a thread. Memory is shared among threads
10



Estimate Parallel Time via Scheduling

T1

T4

T2 T3

Proc 0 Proc 1

Schedule of a task graph

• Processor assignment of tasks 

determines where a task is 

executed.

• The execution order of tasks 

with each processor is further 

determined by a schedule

• Parallel time =  Completion 

time of last task among all 

processors

• Parallel time = max( 

completion time of last task at 

each processor).

T5
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Overhead Paid in Shared-Memory and 

Distributed-Memory Parallel Programming

T1

T4

T2 T3

Proc 0 Proc 1

Schedule of a task graph

• Shared memory architecture

▪ Ensuring T3 is executed after 

T1 requires a synchronization 

whose cost cannot be fully 

overlapped with computation

T5

• Distributed memory architecture

▪ Sending a message from T1 

to T3 requires Proc 0 to pay 

some start cost, even routing 

this message may be 

overlapped with other 

computation of Proc 0

12



Style of Parallel Programming

• Express implicit parallelism with parallel operations in code

▪ Often assume shared data which may be implicitly distributed 

by the system

▪ System assigns computation to multiple processing units 

automatically

▪ Example: SIMD programming, OpenMP, MapReduce, Spark  

•  Explicitly write the role of each processing unit

▪ Data may be shared or distributed

▪ Code defines the behavior of   each processing unit   

– Access  data if shared

– Allocate  data locally and communicate  if distributed 

– Compute

▪ Example: MPI, Pthreads, CUDA 

13



Explicitly Define Role of Processing Units:

Coding Style
• SPMD – single program multiple data

▪ Write one program, works for different data streams

▪ Computation is distributed among processors. Code is 

executed based on a predetermined  schedule.

▪ Each   processor executes the same program but operates 

on different data based on processor identification.

• Master/slaves: One control process is called the master

▪ There are a number of slaves working for this master.

▪ These slaves can be coded using an  SPMD style.

• MPMD – multiple programs for multiple data

▪ Write different programs for different processors handling 

different data streams

▪ Flexible, but painful and unmanageable.
14



Generic Code Structure of SPMD

• Processors are numbered as 0, 1, 2, …

▪ Each processor node executes the same program with 

a unique processor ID.

–  Differentiate  the role of programs by their IDs

▪ Assume two library functions (pseudo code)

– mynode() – returns processor ID of the program executed on 

one processor.

– noproc()  - returns # of processors used

• Example

15



Examples of SPMD code

• Another sequential code example:

▪ For i = 0 to n-1

            x[i]= 3*i;

           Task graph

a[0]=3*0 a[1]=3*1 a[n-1]=3*(n-1)…
16



Proc 0 Proc 1

Runtime parallel execution

Proc n-1

…

Example: Task graph, schedule, and SPMD code

Task graph

SPMD code:

me=mynode();

a[me]=3*me;

       

a[0]=3*0 a[1]=3*1 a[n-1]=3*(n-1)…

Proc 0 Proc 1
Schedule

a[0]=3*0 a[1]=3*1 a[n-1]=3*(n-1)

Proc n-1

…

me=mynode();

a[me]=3*me;
me=mynode();

a[me]=3*me;

me=mynode();

a[me]=3*me;
17



me=mynode();

p=noproc();

first=me*k

last = my_first+k-1

for (i=first; i<=last; i++)

 a[i]=3*i;

       

Example: Another schedule with p processors 

and  n=k*p
Task graph

a[0]=3*0 a[1]=3*1 a[n-1]=3*(n-1)…

Proc 0 Proc 1Schedule

a[0]=3*0

a[1]=3*1

a[kp-1]=3*(kp-1)

Proc p-1

…

a[k-1]=3*(k-1)

a[k]=3*k

a[k+1]=3*(k+1)

…

a[2k-1]=3*(2k-1)

a[(kp-p]=3*(kp-p)

… …

SPMD code:

18



Steps in writing SPMD code

• Step 1: Detect who I am

▪  my_rank= mynode().   p=noproc();

• Step 2: Find the scope of computation performed in this 

processor based on my_rank and p values.

▪ For example, given n iterations in a sequential code

– Derive  first iteration to handle

– Derive last iteration to handle

• Step 3: Perform computation under the derived scope. 

Synchronize and communicate among tasks if needed.

19

• When processors do not share memory

• Use a message communication library   

• Send (msg, destination). Receive(msg) or Receive(msg, src)

• When processors share memory, synchronize through shared memory  



Example of SPMD code structure with 

communication synchronization

• Example:  add n numbers on p processors

▪ Ex., p=8, n = 24

▪ Once each processor adds its values to private my_sum, 

they form a global sum by sending results to a designated 

“master” core which adds the final result.

1,4,3,   9,2,8,    5,1,1,   5,2,7,   2,5,0,   4,1,8,   6,5,1,   2,3,9

P0         P1         P2       P3          P4      P5       P6        P7

0 1 2 3 4 5 6 7

my_sum 8 19 7 15 7 13 12 14

0 1 2 3 4 5 6 7

my_sum 95 19 7 15 7 13 12 14
20



SPMD code

my_sum= Add all numbers assigned to this processor

If ( I am the master) {

 sum = my_sum;

 for  each of other processors do {

  Receive a value

  sum   = sum + received value

 }

} else {

 send my_sum to the master

}

0 1 2 3 4 5 6 7

my_sum 8 19 7 15 7 13 12 14

8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95

21



Sequential vs tree-structured parallel addition

Tree summation structure 

for more parallelism.

 What is the parallel time 

of executing this graph 

with p processors?

Log (p)
22

Sequential summation: 

Master does all of the work to 

accumulate results



Processor Assignment in Tree Summation for 

Parallel Addition

Processes: 0 1 2 3 4 5 6 7

When process communication is involved, 

what is the pattern of communication? 23



SPMD code for a task schedule with irregular 

pattern: inextensible with more processors

T1

T2 T3

T4

Schedule

Task graph
SPMD for 2 processors

24



Goal: Write simple SPMD code 
that scales well for a large 
number of processors.
Strategies: Identify regularity 
of parallelism patterns

Patterns of Graph Structure on Programming

Difficult to write code and 
exploit parallelism for task 
graphs with irregular structure

Difficult

Trivial More difficult/manageable  Easy/manageable  



Parallel code structure:

Fork-Join Parallelism

Easy to write parallel code

26



Coordination and Overhead

• Coordination is needed among parallel tasks

▪ Communication – one or more cores send their current 

partial sums to another core.

– How to communicate?

▪ Load balancing – share the work evenly among the 

cores so that one is not heavily loaded.

▪ Synchronization – because each core works at its own 

pace, make sure cores do not get too far ahead of the 

rest.

• Pay attentions to overhead of coordination

▪ Not worthy to add a few numbers in parallel. Too much 

overhead. 

▪ Aggregation of small tasks is needed
27



What we’ll be doing

• Learning to write programs that are explicitly parallel with 

different extensions to C.

▪ Message-Passing Interface (MPI)

▪ POSIX Threads (Pthreads)

▪ OpenMP

▪ GPU programming with Cuda

• Terminology:

▪ Concurrent computing – a program is one in which multiple tasks can be 

in progress at any instant. These tasks can still run in one CPU.

▪ Parallel computing – a program is one in which multiple tasks cooperate 

closely to solve a problem. These tasks often or periodically run on 

multiple CPUs or machines in parallel.

▪ Distributed computing – a program may need to  cooperate with other 

programs to solve a problem. These programs/tasks typically run on 

multiple machines without shared memory.They do not have to  run in 

parallel in solving a problem 28



Concluding Remarks

• Task/data mapping is essential for writing parallel 

programs.

▪ Model parallelism using a set of tasks

▪ Schedule tasks to a set of process units

▪ Write SPMD code 

• Parallelism management involves coordination of  

cores/machines

▪ Coordination does cost extra overhead

▪ Design goal is to let  the benefits of parallel 

processing  outweigh the cost of  overhead paid.

29



Evaluation of Parallel Performance

UCSB CS140, T. Yang
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Performance Terminology: Speedup 

• Number of processors = p

• Sequential time of execution = Tserial

• Parallel time = Tparallel Tserial 

Tparallel

S = 

Perfect speedup

Actual speedup

Speedup 

31



Speedup Interpretation

Copyright © 2010, Elsevier 
Inc. All rights Reserved

• Linear speedup
•Speedup  proportionally increases as p increases

• Perfect linear speedup

•Speedup =p

• Superlinear speedup
•Speedup >p
•It is not possible in theory.
•It is possible in practice 

•Data in sequential code does not fit into memory.
•Parallel code divides data into many machines and 
they fit into memory.

Tparallel = Tserial / p

32



Efficiency of a parallel program

E = 

Tserial 

TparallelSpeedup 

p 
= 

p 
= 

Tserial 

p  Tparallel.

Measure how well-utilized the processors are,  compared to effort  

wasted in  communication and synchronization.

Example:



Speedup & efficiency  with two task schedules?

Parallel time= 4

Speedup = 1

Efficiency=1/2=50%

Sequential time = 4

Parallel time= 3

Speedup = 4/3

Efficiency=2/3
34



Problem Size Impact on Speedup and Efficiency

• Original problem size (e.g. 

measured by matrix size)

• Half of original problem size

• Double size

• Efficiency often goes down as 

more cores are used

• Efficiency often increases 

when increasing problem size
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Impact of Limited Parallelism in a Program

• Suppose only part of an application can be 

parallelized

• Amdahl’s law

▪ let x be the fraction of work done sequentially, so                                

(1-x) is fraction parallelizable

▪ p = number of processors

▪ Parallel time= (x  + (1-x)/p) *Sequential time

Speedup(p) = Sequential time/Parallel time

                   ≤ 1/(x + (1-x)/p) 

                   <1/x

• Takeaway: Even if the parallel part speeds up perfectly           
performance is limited by the sequential part



Amdahl Law: Limitation of Parallel Performance

• The possible speedup is limited by available parallelism 

— regardless of the number of processors available.

X=1/9 1/[x+(1-x)/p]

=9/[1+8/p]

p=4 3

p=8 4.5

P=12 5.4

P=16 6

Speedup(p) < 1/x=9



Performance models and measurement in 

practice

• Evaluate and predict with a theoretical analysis

▪ Model execution with directed acyclic graph

▪ Model the latency / bandwidth for message 

communication and disk IO

▪ Estimate parallel time and speedup.

▪ Predict the best and average performance.

• For  time and speedup measurement of actual 

execution:

▪ Measure execution time with a timer function in binary 

code running

▪ Assess the cost of  data transmission and I/O  with 

with a timer 
38



tp= execution time on p processors

Model Performance in a Directed Acyclic 

Graph

John Gilbert 240A 39



tp = execution time on p processors

t1 = workload

Bound analysis for parallel performance

Degree of parallelism – 
Maximum number of 
Independent tasks

40



tp = execution time on p processors

t1 = total workload

t∞ = critical path length
length of longest path summing
computation cost in this path

Bound analysis for parallel performance

Degree of parallelism –  Maximum 
number of independent tasks in this 
graph

16 with equal weights

5

9

41



tp = execution time on p processors

t1 = total work t∞ = critical 
path length

Minimum workload
∙tp ≥t1/p

Limit by critical 
path length
∙tp ≥ t∞

Bound analysis for parallel performance



Maximum speed with p processors

Degree of parallelism=5

t1/ t∞ = 16/9=1.778

Speedup ≤ min(5,1.778)=1.778

             

Speedup = t1/tP ≤  degree of parallelism

Since  tp ≥ t∞,  Speedup = t1/tP ≤ t1/ t∞ 

             



• Estimate  cost of an sequential  task (algorithm), given an   input 

problem size (e.g.   The size of an input array)

• Often, computer sciences uses  Big O notation to describe how 

fast the run-time of an algorithm grows as problem size grows

• Examples of big-O  categories with input size N

Estimate Time with  Complexity Analysis

c              constant                 O(1)

log N        logarithmic            O( log N )

N              linear                     O(N )

𝑁2             quadratic               O(𝑁2)

𝑁3             cubic                      O(𝑁3)

2𝑁              exponential           O(2𝑁) 44

This course 

does not use 

big-O but 

counts main 

task cost  



Cost Analysis with Operation Counting

Analyze task cost by counting main arithmetic operations & space units

▪ Ignore less significant terms in cost expression

▪ Ignore loop overhead in algorithm implementation

• Example

45

for ( i=1to N ) {  a[i] =  2*i }   → N multiplications

for ( i=1to N ) {  a[i] =  2*i } 𝑵 

       for ( i=1 to N ) {  

           x=i*2;                             

           for ( j=1 to N ) { a[i] = a[j] + x }       𝑵𝟐 + N 

       }                                                      

y=2*x; for ( i=1to N ) {  a[i] =  a[i]+ i*b[y] } 

   → 2N+1  addition/multiplications              → 2N

Total 𝑁2 + 2N,  

which is still 𝑁2 



How to measure sequential and parallel 

time in code execution
• Select a program segment of interest

▪ Setup startup time

▪ Measure finish time

▪ Report the time difference

• What timing function to use?

▪ CPU time (e.g. as reported by Linux clock() call). 

– It only includes CPU time of a single process.

– It does not work if your parallel program involves multiple 

processes.

▪ Wall clock time

– Suitable for a parallel program with multiple processes.

– But impacted by other shared users when a system is not 

dedicated.
46
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Performance assessment with FLOPS

• How to assess if parallel/serial code is fully optimized, 

taking advantages of  hardware 

▪ Measure quality of implementation in terms of FLOPS  

• FLOPS number (Megaflops, gigaflops or teraflops)

= Core computation count / time spent

•  Only count core arithmetic operations 

• Example: Matrix-matrix multiplication 

• Operation count = ~2 n^3 with matrix dimension n

• 3 GFLOPS → 3 billion useful floating operations performed per second 



Why care about serial performance in 

parallel computing?

131x using a 

single core

x: Matrix size

y: Running time

Both x and y axes are log-scale

• Parallelizing slow serial

code only produces slow parallel 

code 

• Linear speedup is not 

necessarily fast code

• As an example, 10x 

optimization for serial matrix 

multiply is possible with

• SIMD vectorization

• Blocked computation for 

better cache utilization

• Or by using optimized 

library functions

Better 

Matrix Multiply Runtime

48
From Berkeley’s CS267 Lecture by A Buluc and J. Demmel
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Revisit: Steps on Parallel Program Design

1. Partitioning: divide the computation to be performed 

and the data operated on by the computation into 

small tasks. 

The focus here should be on identifying tasks that can 

be executed in parallel.

Data

Computation
Tasks

Based on Foster’s Methodology 

49



Steps 2&3:  Task dependence and aggregation

▪ Identify dependence among tasks 

▪ Determine inter-task communication

Step 2: Task dependence & ommunication 

Step 3: Task aggregation

Combine small tasks and communications identified in the first 

step into larger tasks. 

▪ Reduce communication overhead →Coarse grain tasks

▪ May reduce parallelism sometime



Step 4: Mapping/Scheduling

• Assign the composite tasks identified in the previous step 

to processes/threads. Distribute data if needed

This should be done so that communication is minimized, 

and each process/thread gets even workload.

• Develop a schedule for  task execution

Tasks
Proc

Proc

51
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Optimization for Less Communication and Faster 

Schedule on Distributed Memory Architecture

T1 T2

T3 T4

Task graph

T1 T2

T3 T4

Mapping 1

Proc 1 Proc 2

T1 T2

T3 T4

Proc 1

Proc 2

Mapping 2

Which mapping is better? #2

T1 T3

T2 T4

Proc 1

Proc 2

Schedule 1

T1 T2

T3 T4

Proc 1

Proc 2

Schedule 2

52



Concluding Remarks

• Parallel hardware

▪ Shared memory and distributed memory architectures

▪ Network topology for interconnect

• Parallel software with SPMD programs

• Performance

▪ Speedup/Efficiency. Amdahl’s law. Scalability

• Parallel Program Design

▪  Partitioning-->dependence →mapping/scheduling  

Class Update: Exercise 1  due Wed.

Expanse account: 1) Create an ACCESS account in access-ci.org. 

   2) Inform your account name by filling a Google sheet posted in Piazza. 

   3) After CPU allocation addition to your account, you can login to the 

Expanse cluster  
53
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