
Parallel Software and Performance

UCSB CS140, T. Yang

Outline

• How to write parallel programs

▪ An abstract view with task graph model

▪ SPMD (Single-program multiple data) coding
style

• Performance evaluation

▪ Parallel time, speedup, efficiency

▪ What limits parallel performance

▪ Parallel/serial performance assessment with
FLOPS

• Parallel program design strategies

#
 C

h
a

p
te

r S
u

b
title

2

How do we write parallel programs?

• Task parallelism by computation partitioning & mapping

▪ Divide code (computation) into a set of tasks

▪ Map tasks to parallel processing units (processor cores,

machines)

• Data parallelism with data partitioning/mapping

▪ Divide data into a set of items. Computation for data items

is partitioned accordingly

▪ For a distributed architecture, map data items to separate

machines

program

processors
processors

processors

processors
processors

processors

Data

Shared vs. distributed memory programming

• Shared memory programming is easier

▪ Task partitioning and mapping are required

▪ Explicit data partitioning/mapping is not required because

of shared memory

Shared memory – holding data

processor processor processor

program

4

• For a distributed architecture, map data items to separate machines

• More complex to manage distributed data naming and explicit

communication among tasks that run on separate machines

Model Parallelism using a Directed Acyclic Task

Graph
• A task is a basic computation unit

that runs a program fragment,

• A program consists of a set of

tasks.

▪ Program partitioning produces a

set of tasks. Tasks should not

be too small to avoid excessive

overhead

Each edge x->y represents task

dependence: Task x has to be executed

before y. Task x produces data used by y

• Task y cannot start execution until the

data produced by x is available in

local memory

x

y

Each vertex is a task

5

Parallel code structure:

Popular Graph Pattern of Parallelism

Fork-join parallelism

6

Task Scheduling and Impact

of Task Dependence Edges

• Scheduling maps tasks to processors and also

defines an order of execution at each processor

• Task execution (a simplified model)

▪ A task waits to receive all data in parallel before it starts

its execution.

▪ As soon as the task completes its execution it sends the

output data to all successors in parallel or makes data

available through shared memory

• Dependence constraint for edge x→y

▪ Let ST(x) be the starting execution time of task x

and cost(x) is the execution time of x

▪ ST(x)+ cost(x) ≥ ST(y)
7

An example of Task Scheduling

T1

T4

T2 T3

Proc 0 Proc 1

Task graph

Schedule

• Dependence edges are enforced by

synchronization or message communication

• Scheduling can be done statically (fixed before running)

Or it can be derived dynamically during run-time

T1

T2
T3

T4

8

Gannt chart to represent a schedule

• We can use a Gannt chart to

represent a schedule

• Assume there is cost c

delay of sending a message

between two processors.

But overhead charged

processors is 0. Message

latency is 0 if two tasks

communicated are in the

same processor

• Computation cost is 𝝉 for

each task

c

c
c

c

Left schedule can be expressed as

What is a processor here?

• Processor here is a logical processing unit

▪ Textbook calls it a core for shared memory programming

▪ It can execute one or a number of tasks.

▪ In general, we treat it as a logical execution unit. At

runtime p logical units are executed in parallel by a fixed

number of physical machines/cores.

• In MPI programming or Linux programming

▪ It is a process

▪ There is no data shared among processes

▪ Process communication is done by message

sending/receiving

• In OpenMP/Pthread programming

▪ It is a thread. Memory is shared among threads
10

Estimate Parallel Time via Scheduling

T1

T4

T2 T3

Proc 0 Proc 1

Schedule of a task graph

• Processor assignment of tasks

determines where a task is

executed.

• The execution order of tasks

with each processor is further

determined by a schedule

• Parallel time = Completion

time of last task among all

processors

• Parallel time = max(

completion time of last task at

each processor).

T5

11

Overhead Paid in Shared-Memory and

Distributed-Memory Parallel Programming

T1

T4

T2 T3

Proc 0 Proc 1

Schedule of a task graph

• Shared memory architecture

▪ Ensuring T3 is executed after

T1 requires a synchronization

whose cost cannot be fully

overlapped with computation

T5

• Distributed memory architecture

▪ Sending a message from T1

to T3 requires Proc 0 to pay

some start cost, even routing

this message may be

overlapped with other

computation of Proc 0

12

Style of Parallel Programming

• Express implicit parallelism with parallel operations in code

▪ Often assume shared data which may be implicitly distributed

by the system

▪ System assigns computation to multiple processing units

automatically

▪ Example: SIMD programming, OpenMP, MapReduce, Spark

• Explicitly write the role of each processing unit

▪ Data may be shared or distributed

▪ Code defines the behavior of each processing unit

– Access data if shared

– Allocate data locally and communicate if distributed

– Compute

▪ Example: MPI, Pthreads, CUDA

13

Explicitly Define Role of Processing Units:

Coding Style
• SPMD – single program multiple data

▪ Write one program, works for different data streams

▪ Computation is distributed among processors. Code is

executed based on a predetermined schedule.

▪ Each processor executes the same program but operates

on different data based on processor identification.

• Master/slaves: One control process is called the master

▪ There are a number of slaves working for this master.

▪ These slaves can be coded using an SPMD style.

• MPMD – multiple programs for multiple data

▪ Write different programs for different processors handling

different data streams

▪ Flexible, but painful and unmanageable.
14

Generic Code Structure of SPMD

• Processors are numbered as 0, 1, 2, …

▪ Each processor node executes the same program with

a unique processor ID.

– Differentiate the role of programs by their IDs

▪ Assume two library functions (pseudo code)

– mynode() – returns processor ID of the program executed on

one processor.

– noproc() - returns # of processors used

• Example

15

Examples of SPMD code

• Another sequential code example:

▪ For i = 0 to n-1

 x[i]= 3*i;

 Task graph

a[0]=3*0 a[1]=3*1 a[n-1]=3*(n-1)…
16

Proc 0 Proc 1

Runtime parallel execution

Proc n-1

…

Example: Task graph, schedule, and SPMD code

Task graph

SPMD code:

me=mynode();

a[me]=3*me;

a[0]=3*0 a[1]=3*1 a[n-1]=3*(n-1)…

Proc 0 Proc 1
Schedule

a[0]=3*0 a[1]=3*1 a[n-1]=3*(n-1)

Proc n-1

…

me=mynode();

a[me]=3*me;
me=mynode();

a[me]=3*me;

me=mynode();

a[me]=3*me;
17

me=mynode();

p=noproc();

first=me*k

last = my_first+k-1

for (i=first; i<=last; i++)

 a[i]=3*i;

Example: Another schedule with p processors

and n=k*p
Task graph

a[0]=3*0 a[1]=3*1 a[n-1]=3*(n-1)…

Proc 0 Proc 1Schedule

a[0]=3*0

a[1]=3*1

a[kp-1]=3*(kp-1)

Proc p-1

…

a[k-1]=3*(k-1)

a[k]=3*k

a[k+1]=3*(k+1)

…

a[2k-1]=3*(2k-1)

a[(kp-p]=3*(kp-p)

… …

SPMD code:

18

Steps in writing SPMD code

• Step 1: Detect who I am

▪ my_rank= mynode(). p=noproc();

• Step 2: Find the scope of computation performed in this

processor based on my_rank and p values.

▪ For example, given n iterations in a sequential code

– Derive first iteration to handle

– Derive last iteration to handle

• Step 3: Perform computation under the derived scope.

Synchronize and communicate among tasks if needed.

19

• When processors do not share memory

• Use a message communication library

• Send (msg, destination). Receive(msg) or Receive(msg, src)

• When processors share memory, synchronize through shared memory

Example of SPMD code structure with

communication synchronization

• Example: add n numbers on p processors

▪ Ex., p=8, n = 24

▪ Once each processor adds its values to private my_sum,

they form a global sum by sending results to a designated

“master” core which adds the final result.

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

P0 P1 P2 P3 P4 P5 P6 P7

0 1 2 3 4 5 6 7

my_sum 8 19 7 15 7 13 12 14

0 1 2 3 4 5 6 7

my_sum 95 19 7 15 7 13 12 14
20

SPMD code

my_sum= Add all numbers assigned to this processor

If (I am the master) {

 sum = my_sum;

 for each of other processors do {

 Receive a value

 sum = sum + received value

 }

} else {

 send my_sum to the master

}

0 1 2 3 4 5 6 7

my_sum 8 19 7 15 7 13 12 14

8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95

21

Sequential vs tree-structured parallel addition

Tree summation structure

for more parallelism.

 What is the parallel time

of executing this graph

with p processors?

Log (p)
22

Sequential summation:

Master does all of the work to

accumulate results

Processor Assignment in Tree Summation for

Parallel Addition

Processes: 0 1 2 3 4 5 6 7

When process communication is involved,

what is the pattern of communication? 23

SPMD code for a task schedule with irregular

pattern: inextensible with more processors

T1

T2 T3

T4

Schedule

Task graph
SPMD for 2 processors

24

Goal: Write simple SPMD code
that scales well for a large
number of processors.
Strategies: Identify regularity
of parallelism patterns

Patterns of Graph Structure on Programming

Difficult to write code and
exploit parallelism for task
graphs with irregular structure

Difficult

Trivial More difficult/manageable Easy/manageable

Parallel code structure:

Fork-Join Parallelism

Easy to write parallel code

26

Coordination and Overhead

• Coordination is needed among parallel tasks

▪ Communication – one or more cores send their current

partial sums to another core.

– How to communicate?

▪ Load balancing – share the work evenly among the

cores so that one is not heavily loaded.

▪ Synchronization – because each core works at its own

pace, make sure cores do not get too far ahead of the

rest.

• Pay attentions to overhead of coordination

▪ Not worthy to add a few numbers in parallel. Too much

overhead.

▪ Aggregation of small tasks is needed
27

What we’ll be doing

• Learning to write programs that are explicitly parallel with

different extensions to C.

▪ Message-Passing Interface (MPI)

▪ POSIX Threads (Pthreads)

▪ OpenMP

▪ GPU programming with Cuda

• Terminology:

▪ Concurrent computing – a program is one in which multiple tasks can be

in progress at any instant. These tasks can still run in one CPU.

▪ Parallel computing – a program is one in which multiple tasks cooperate

closely to solve a problem. These tasks often or periodically run on

multiple CPUs or machines in parallel.

▪ Distributed computing – a program may need to cooperate with other

programs to solve a problem. These programs/tasks typically run on

multiple machines without shared memory.They do not have to run in

parallel in solving a problem 28

Concluding Remarks

• Task/data mapping is essential for writing parallel

programs.

▪ Model parallelism using a set of tasks

▪ Schedule tasks to a set of process units

▪ Write SPMD code

• Parallelism management involves coordination of

cores/machines

▪ Coordination does cost extra overhead

▪ Design goal is to let the benefits of parallel

processing outweigh the cost of overhead paid.

29

Evaluation of Parallel Performance

UCSB CS140, T. Yang

30

Performance Terminology: Speedup

• Number of processors = p

• Sequential time of execution = Tserial

• Parallel time = Tparallel Tserial

Tparallel

S =

Perfect speedup

Actual speedup

Speedup

31

Speedup Interpretation

Copyright © 2010, Elsevier
Inc. All rights Reserved

• Linear speedup
•Speedup proportionally increases as p increases

• Perfect linear speedup

•Speedup =p

• Superlinear speedup
•Speedup >p
•It is not possible in theory.
•It is possible in practice

•Data in sequential code does not fit into memory.
•Parallel code divides data into many machines and
they fit into memory.

Tparallel = Tserial / p

32

Efficiency of a parallel program

E =

Tserial

TparallelSpeedup

p
=

p
=

Tserial

p Tparallel.

Measure how well-utilized the processors are, compared to effort

wasted in communication and synchronization.

Example:

Speedup & efficiency with two task schedules?

Parallel time= 4

Speedup = 1

Efficiency=1/2=50%

Sequential time = 4

Parallel time= 3

Speedup = 4/3

Efficiency=2/3
34

Problem Size Impact on Speedup and Efficiency

• Original problem size (e.g.

measured by matrix size)

• Half of original problem size

• Double size

• Efficiency often goes down as

more cores are used

• Efficiency often increases

when increasing problem size

36

Impact of Limited Parallelism in a Program

• Suppose only part of an application can be

parallelized

• Amdahl’s law

▪ let x be the fraction of work done sequentially, so

(1-x) is fraction parallelizable

▪ p = number of processors

▪ Parallel time= (x + (1-x)/p) *Sequential time

Speedup(p) = Sequential time/Parallel time

 ≤ 1/(x + (1-x)/p)

 <1/x

• Takeaway: Even if the parallel part speeds up perfectly
performance is limited by the sequential part

Amdahl Law: Limitation of Parallel Performance

• The possible speedup is limited by available parallelism

— regardless of the number of processors available.

X=1/9 1/[x+(1-x)/p]

=9/[1+8/p]

p=4 3

p=8 4.5

P=12 5.4

P=16 6

Speedup(p) < 1/x=9

Performance models and measurement in

practice

• Evaluate and predict with a theoretical analysis

▪ Model execution with directed acyclic graph

▪ Model the latency / bandwidth for message

communication and disk IO

▪ Estimate parallel time and speedup.

▪ Predict the best and average performance.

• For time and speedup measurement of actual

execution:

▪ Measure execution time with a timer function in binary

code running

▪ Assess the cost of data transmission and I/O with

with a timer
38

tp= execution time on p processors

Model Performance in a Directed Acyclic

Graph

John Gilbert 240A 39

tp = execution time on p processors

t1 = workload

Bound analysis for parallel performance

Degree of parallelism –
Maximum number of
Independent tasks

40

tp = execution time on p processors

t1 = total workload

t∞ = critical path length
length of longest path summing
computation cost in this path

Bound analysis for parallel performance

Degree of parallelism – Maximum
number of independent tasks in this
graph

16 with equal weights

5

9

41

tp = execution time on p processors

t1 = total work t∞ = critical
path length

Minimum workload
∙tp ≥t1/p

Limit by critical
path length
∙tp ≥ t∞

Bound analysis for parallel performance

Maximum speed with p processors

Degree of parallelism=5

t1/ t∞ = 16/9=1.778

Speedup ≤ min(5,1.778)=1.778

Speedup = t1/tP ≤ degree of parallelism

Since tp ≥ t∞, Speedup = t1/tP ≤ t1/ t∞

• Estimate cost of an sequential task (algorithm), given an input

problem size (e.g. The size of an input array)

• Often, computer sciences uses Big O notation to describe how

fast the run-time of an algorithm grows as problem size grows

• Examples of big-O categories with input size N

Estimate Time with Complexity Analysis

c constant O(1)

log N logarithmic O(log N)

N linear O(N)

𝑁2 quadratic O(𝑁2)

𝑁3 cubic O(𝑁3)

2𝑁 exponential O(2𝑁) 44

This course

does not use

big-O but

counts main

task cost

Cost Analysis with Operation Counting

Analyze task cost by counting main arithmetic operations & space units

▪ Ignore less significant terms in cost expression

▪ Ignore loop overhead in algorithm implementation

• Example

45

for (i=1to N) { a[i] = 2*i } → N multiplications

for (i=1to N) { a[i] = 2*i } 𝑵

 for (i=1 to N) {

 x=i*2;

 for (j=1 to N) { a[i] = a[j] + x } 𝑵𝟐 + N

 }

y=2*x; for (i=1to N) { a[i] = a[i]+ i*b[y] }

 → 2N+1 addition/multiplications → 2N

Total 𝑁2 + 2N,

which is still 𝑁2

How to measure sequential and parallel

time in code execution
• Select a program segment of interest

▪ Setup startup time

▪ Measure finish time

▪ Report the time difference

• What timing function to use?

▪ CPU time (e.g. as reported by Linux clock() call).

– It only includes CPU time of a single process.

– It does not work if your parallel program involves multiple

processes.

▪ Wall clock time

– Suitable for a parallel program with multiple processes.

– But impacted by other shared users when a system is not

dedicated.
46

47

Performance assessment with FLOPS

• How to assess if parallel/serial code is fully optimized,

taking advantages of hardware

▪ Measure quality of implementation in terms of FLOPS

• FLOPS number (Megaflops, gigaflops or teraflops)

= Core computation count / time spent

• Only count core arithmetic operations

• Example: Matrix-matrix multiplication

• Operation count = ~2 n^3 with matrix dimension n

• 3 GFLOPS → 3 billion useful floating operations performed per second

Why care about serial performance in

parallel computing?

131x using a

single core

x: Matrix size

y: Running time

Both x and y axes are log-scale

• Parallelizing slow serial

code only produces slow parallel

code

• Linear speedup is not

necessarily fast code

• As an example, 10x

optimization for serial matrix

multiply is possible with

• SIMD vectorization

• Blocked computation for

better cache utilization

• Or by using optimized

library functions

Better

Matrix Multiply Runtime

48
From Berkeley’s CS267 Lecture by A Buluc and J. Demmel

48

Revisit: Steps on Parallel Program Design

1. Partitioning: divide the computation to be performed

and the data operated on by the computation into

small tasks.

The focus here should be on identifying tasks that can

be executed in parallel.

Data

Computation
Tasks

Based on Foster’s Methodology

49

Steps 2&3: Task dependence and aggregation

▪ Identify dependence among tasks

▪ Determine inter-task communication

Step 2: Task dependence & ommunication

Step 3: Task aggregation

Combine small tasks and communications identified in the first

step into larger tasks.

▪ Reduce communication overhead →Coarse grain tasks

▪ May reduce parallelism sometime

Step 4: Mapping/Scheduling

• Assign the composite tasks identified in the previous step

to processes/threads. Distribute data if needed

This should be done so that communication is minimized,

and each process/thread gets even workload.

• Develop a schedule for task execution

Tasks
Proc

Proc

51

Data

Optimization for Less Communication and Faster

Schedule on Distributed Memory Architecture

T1 T2

T3 T4

Task graph

T1 T2

T3 T4

Mapping 1

Proc 1 Proc 2

T1 T2

T3 T4

Proc 1

Proc 2

Mapping 2

Which mapping is better? #2

T1 T3

T2 T4

Proc 1

Proc 2

Schedule 1

T1 T2

T3 T4

Proc 1

Proc 2

Schedule 2

52

Concluding Remarks

• Parallel hardware

▪ Shared memory and distributed memory architectures

▪ Network topology for interconnect

• Parallel software with SPMD programs

• Performance

▪ Speedup/Efficiency. Amdahl’s law. Scalability

• Parallel Program Design

▪ Partitioning-->dependence →mapping/scheduling

Class Update: Exercise 1 due Wed.

Expanse account: 1) Create an ACCESS account in access-ci.org.

 2) Inform your account name by filling a Google sheet posted in Piazza.

 3) After CPU allocation addition to your account, you can login to the

Expanse cluster
53

	Slide 1: Parallel Software and Performance
	Slide 2: Outline
	Slide 3: How do we write parallel programs?
	Slide 4: Shared vs. distributed memory programming
	Slide 5: Model Parallelism using a Directed Acyclic Task Graph
	Slide 6: Popular Graph Pattern of Parallelism
	Slide 7: Task Scheduling and Impact of Task Dependence Edges
	Slide 8: An example of Task Scheduling
	Slide 9: Gannt chart to represent a schedule
	Slide 10: What is a processor here?
	Slide 11: Estimate Parallel Time via Scheduling
	Slide 12: Overhead Paid in Shared-Memory and Distributed-Memory Parallel Programming
	Slide 13: Style of Parallel Programming
	Slide 14: Explicitly Define Role of Processing Units: Coding Style
	Slide 15: Generic Code Structure of SPMD
	Slide 16: Examples of SPMD code
	Slide 17: Example: Task graph, schedule, and SPMD code
	Slide 18: Example: Another schedule with p processors and n=k*p
	Slide 19: Steps in writing SPMD code
	Slide 20: Example of SPMD code structure with communication synchronization
	Slide 21: SPMD code
	Slide 22
	Slide 23
	Slide 24: SPMD code for a task schedule with irregular pattern: inextensible with more processors
	Slide 25: Patterns of Graph Structure on Programming
	Slide 26: Fork-Join Parallelism
	Slide 27: Coordination and Overhead
	Slide 28: What we’ll be doing
	Slide 29: Concluding Remarks
	Slide 30: Evaluation of Parallel Performance
	Slide 31: Performance Terminology: Speedup
	Slide 32: Speedup Interpretation
	Slide 33: Efficiency of a parallel program
	Slide 34: Speedup & efficiency with two task schedules?
	Slide 35: Problem Size Impact on Speedup and Efficiency
	Slide 36: Impact of Limited Parallelism in a Program
	Slide 37: Amdahl Law: Limitation of Parallel Performance
	Slide 38: Performance models and measurement in practice
	Slide 39: Model Performance in a Directed Acyclic Graph
	Slide 40: Bound analysis for parallel performance
	Slide 41: Bound analysis for parallel performance
	Slide 42: Bound analysis for parallel performance
	Slide 43: Maximum speed with p processors
	Slide 44: Estimate Time with Complexity Analysis
	Slide 45: Cost Analysis with Operation Counting
	Slide 46: How to measure sequential and parallel time in code execution
	Slide 47: Performance assessment with FLOPS
	Slide 48: Why care about serial performance in parallel computing?
	Slide 49: Revisit: Steps on Parallel Program Design
	Slide 50: Steps 2&3: Task dependence and aggregation
	Slide 51: Step 4: Mapping/Scheduling
	Slide 52: Optimization for Less Communication and Faster Schedule on Distributed Memory Architecture
	Slide 53: Concluding Remarks

