V.

Parallel Scientific Computing
Algorithms

C3S140 Tao Yang, UCSB

' Scientific Computing Algorithms

« Basic operations:

* Vector-vector multiplication

« Matrix vector multiplication

« Matrix-matrix multiplication
« Solving linear systems of equations
« Solving non-linear systems

 Finite-difference methods for solving ordinary differential
equations (ODEs)

 Finite-difference for partial differential equations PDEs

Matrix/vecor
multiplication

Convert ;

’golving Linear System of Equations

Direct methods: Gaussian Elimination
*Step 1: Forward elimination

(1) 4xy —9z9+ 223 = 2
(2) 2x; —4x9+423 = 3
(3) —z14+2x9+4+223 = 1
(2)-(1)*2 05z2+3z3 = 2 (4)
B —le s = 3 ()
(5)-(4)*-3 oy = 3

4x1 — 929 + 223 =

%332 +3x3 =

oot N DO

45(33 =

' Solving Linear System of Equations: GE

Step 2: Backward substitution

4r1 — 9o + 223 = 2
%232 +3r3 = 2
drs = %
_ 5
L3 —]
> To _ 2—5:83 _

N[

L 24910 —2x3
X1 — i 3 —

Q0

' Gaussian Elimination in a Matrix Form

« Use an augmented matrix to express elimination
process for solving Ax = b in a form of (A | b)

(1) 4xqy — 929 +223 = 2

(2) 2xy—4xo+4x3 = 3

(3) —x1+2x9+2x3 = 1
4 -9 2 2\ (2)=(2)—(1)*2 (4 -9 2 2\

(3)=(3)—(1)x— .
(Ab)= —4 4 3 — 0.5 3 2
SRV &2 1y
4 -9 2 2

' Gaussian Elimination Algorithm

e Forward elimination | For k=1ton —1

For:=k+1ton
/ Qi — aik/ ALk
Use Row k to modify For j=k+1ton+1
endfor
endfor
endfor

4 -9 2 2\ (2)=(2)—(1)*2 /4 -9

<<2 44 g | @@z '
1 2 2 1) \OC—Tl

ot QO (N
AV [CUR N\ (N

' Gaussian Elimination Algorithm

Step 2: Backward substitution

For:=ntol 4y — 9x9 + 223 = 2
For j=7:1+1ton %372_'_3373 — 9
xi:xi—ai’j*xj; 5
4 = 5
Endfor 3 2
T = Tifa;;
Endfor
I3 = g
ry = =g

[\

_ 24920 —2x3 _ 3
T1 = el

Complexity of Gaussian Elimination

For k — Lton— 1 Each division, multiplication, subtraction counts

Fori=Fk+1ton one time unit w. Ignore loop overhead.

Qi = Qi [Akk; #Operations in forward elimination:
For j=k+1ton+1

Aj5 = Qi — Qg * Ay

n—1 n n
endfor Z Z (1—|— Z 2+2)w

endfor k=11i=k+1 j=k+1
endfor
n—1 n n—1 2%3
Fori=ntol = Z Z (2(n—k)+3)w =~ 2w Z(n—k)Qz?w
For j =i+ 1ton h=li=k+l h=1
Ti = Ti — Qjj * Tj; #Operations in backward substitution:
Endfor n n n ,
1+ 2w ~ 2w n—=k)~n‘w
v = i/ 20 2 peme))
Endfor 93

Total space: ~ n? double-precision numbers. s

artitioning for Parallel Gaussian Elimination

Focus on forward
elimination which 1s
dominating the cost

Computation partitioning:

Fork=1ton—1

For:=k+1ton

T Qi = Qi /ag
For j=k+1ton+1
iy = Q45 — Ak * Ak
EndFor

Another option:

Fork=1ton—1
For:=k+1ton
aik:aik/akk§
For j=k+1ton+1

Qi5 = Qg5 — Qif * Afj;

endfor

endfor
endfor

Row-Oriented Parallel Gaussian Elimination

Focus on forward

elimination which 1s

dominating the cost

Computation partitioning:

Task graph:

Fork=1ton—1
For:=k+1ton

T 0 a = ag/aky
For j=k+1ton+1
iy = Q45 — Ak * Ak
EndFor
k=1 T,i . Read rows Ay, A;
<2 Write row A;
k=3

k=n-1

10

'Strategies for Mapping and Scheduling

« Option 1: Directly map tasks to p processes (threads)
« Option 2:

= Step 1. Assume there are enough parallelism.

— Cluster tasks to reduce unnecessary
communication/synchronization

— If needed, assign data ownership (e.g. owner-compute rule)
= Step 2. Map clusters to p processes (threads)

16 tasks 4 clusters
7999 UG
O O O O OIRICIRICIRI®
Vol :> Ity
O O O O OIRICIRICIRI®

Clustering

11

’ Map to Parallel Processes, Decide data
whershi n h le Task

Step 1: map to n-1 clusters while preserving parallelism

Update A, Update A, * Identify write patterns

3 4 .
2y T, «1 * Cluster vertically to reduce
“\"\“t:-‘_______ 4“ communication
T ‘T4 k=2
2 5 2
- . .
F\"?l" <3 e Assign data ownership
3 3

Cluster 1 owns 1-th row

n_1 k:n—1

T ,3 . Read rows A, A;
Write row A; 12

’ Map to p Parallel Processes, Decide data
whershi n h le Task

Step 2: Assign n-1 clusters (virtual processes) to p processes

Mapping options? Cyclic or block mapping

2 3 4 n
Tl ™ T T k=1
= ..h_l
T 4
2 T2 2 k=2 . .
AN Cyclic for load balancing
4 * n k=3
T3 T3
Cost of Cluster 1 increases
R as 1 Increases.
\j,,
n-1 k=n-1

2 processes

Parallel Algorithm for Gaussian Elimination

Fork=1ton-—1
For:=k+1ton

T: ik = ai/akk
For j=k+1ton+1
az'j = az-j — Qi * akj
EndFor

T,ﬁ . Read rows Ag, A;
Write row A;

2 3 4 n
T T, T, T, 1
N —,
i
T2 T; 2 k=
LT
\t\ - n k=3
T3 T3
N
\1{,,
n_‘l k:l‘l—1

Parallelism:

Tasks TfH T,f+2 ... Iy" are independent.

Parallel Algorithm(Basic idea)

For k=1ton—1
Do T, TF*2 ... T} in parallel

o1 p processors.

Parallel Algorithm:
Proc 0 broadcasts Row 1
For k=1ton—1
Do T,f“ ... 17" In parallel
(T} — proc_map(i)).
Broadcast row k& + 1.

endfor ,

Solving linear system Ax=b in practice

e Large dimension size n
e A 1s sparse matrix

Assume matrix
dimension size n=
1 billion

How long does it
take with O(n?)
algorithm?

Too expensive

hz = 3105536

Example of sparse matrix for
social network applications

16

ol

¥

+
v to Qso.g.‘.

4

ety

* #

“
- - “
. '*:‘Q .!

* By
E K 1AA
a3
il A F

2 3 4 5
nz = 2287944

17
w10

’ |terative Methods for Linear System
Solving

 More effective for sparse matrices
« Start from an initial guess of solutions

* Derive an update of solutions using
equations

Utilize new solutions as soon as they are available.

(1) 6z1—2z2+2z3 = 11 |:> r1 = % — %(2x9 + 5(:3)
2) =2z e+ 2 = 8
(3) x14+2x2—5z3 = -1 . X
Trsy = 5 —5(231 + 2:(32)
:> a:gkﬂ) = (11— (—Q:Cgk) - xgk)))
2 = 15— (22" + 228y

2
2 = L1 — (@ 22)

18

terative Methods for Linear System

Solving
Initial Approximation: 1 =0,z = 0,23 =0
Iter | O 1 2 3 4 EE 8
x1 |0 1.833 2.038 2.08 2.004 --- 2.000
xo |0 0714 1.181 1.053 1.001 --- 1.000
xz3 |0 0.2 082 1.080 1.038 --- 1.000

« Derive an update of solutions using equations

AV = a1 (=208 +25Y) Stop when || 2D — 70 || < 107
oY = 15— (—221" + 248V

k1 k k
= (-1 (21 + 204")) Need to define norm || #+1) — z(k) ||,

19

’Hacobi Method for Linear System
Solving in a Matrix Notation

* Represent iteartive computation in a matrix notation

[_ k

($1\ 0%—% /561\ /16—1\
9 = %O—% 9 + %

\ 23 / 55 0 [\as) S\ 5)

Matrix nototation:

General iterative method: e = + 1 %k

Assign an initial value to Z(©)
k=0
Do

R+ — 4 72(6) 4 g
until || 2D — 200 ||< ¢

20

’ Definition: Norm of a Vector

Given x = (z1,x2, - xp):
lz =) |
i=1
|2 llo= /3 | i |
| z ||co= mazx | x; | r=(-1,1,2)
Example |z 1= 4

21

’ Iterative Methods for Linear System Solving:
Jacobi method vs. Gauss Seidel method

» (Gauss Seidel uses updated solutions ASAP

— Jacobi method. Matrix nototation:
AT = Fa-(-2ak+af)) ¢ TATHX
xéﬂ = %(5—(—2x’f+2x'§))

w3 = L(-1— (af + 225))

— Gauss-Seidel method.
:c’f“ — l(11 — (—256’5 — x’g))

(5 — (=221 + 22%))
(1_(k+1—|—2l’k+1))

332 —

#
'
ot
01"_‘ 3|

CBB —

22
22

Example with Gauss-Sidel

— Gauss-Seidel method.

k+1 1
Ty = (11 — (=225 + x%))

k+1 1 k+1
X9 = (65— (=227 + 2x5))

k41 1 k—l—l k41
A = (o1 (@ 4 228))

e=10"4
0 1 2 3 4 5

1 0 1.833 2.069 1.998 1.999 2.000
ro 0 1.238 1.002 0.995 1.000 1.000
rg 0 1.062 1.015 0.998 1.000 1.000

It converges faster than Jacobi’s method.
23

' Convergence of Iterative Methods

Notation:

xr* <> exact solution

z¥ < solution vector at step k
Definition: Sequence :CO, :1;1, 582, .-+, x" converges to
the solution x* with respect to norm || . || if

| 2% — 2* ||< € when k is very large.

ie. k— oo,| ¥ —a*||— 0

24

' Example of Ax=b that Jacobi and GS

—converge

Give an example of matrix A so that solving Ax =b
iteratively can converge?

Definition: Matrix A is strictly diagonally dominant if

n

| Qi |> Z | Q;j | 1=1.2,....n

Theorem: If A is strictly diagonally dominant. Then both Gauss-
Seidel and Jacobi methods converge.

25

' Example of Ax=b that can be solved by

" thod
[6 o 1\ /11\ 6]>2+1

-2 7 2 |T=| 95 7T>2+2
\ 12 s) 5> 142

Matrix A is strictly diagonally dominant:

Both Jacobi and G.S. methods will converge.

26

Sparse matrix in linear system solving

 Given a matrix A for linear system Ax=b
If it contains a lot of zeros, the code design should

take advantage of this:
e Not store too many known zeros.

e Code should explicitly skip those operations

applied to zero elements.

Example: yp = y,+1 = 0.
o — 2y1 + y2 = h°

y1 — 22 +y3 = h?

Yn—1 — Qyn + Yn+1 = h2

27

Sparse matrix in linear system solving

torat tation N

'This set of equations can be rewritten as:

[2 1 N w \ [n

1 -2 1 Y h

2
2

Yn1 12
\ v)\ w) ey

Jacobi method with sparse matrix multiplication notation y=d + H*y
Repeat

For :=1ton

B = O5(%% + yeld — n)
Endfor How to represent

Code format:

Until H g'ne’w . y—*old ||< e Gauss-Seidel? 73

Use of Iterative Solver for Web Page
Ranking with Google PageRank

« Set up a linear equation for each web page
« There are billions of pages - billions of equations

29

Give pages ranks (scores)
based on links to them

Ranking Pages based on their Popularity

_in
Nig

_INn
->

Ks from many pages =
N rank

K from a high-rank page

nigh rank

a®
| B
\
- - .y
e ‘*\?
-
<
lvl.,
4

LN]

.?f :' -

o) X . .

o & ' el g

e '-g " - o
- T e : -3

4 «* L% *

v e e | eqa TR TS iR - . 2 e o, - s a1 e et Mg ®

- L . pl R . T L} . a8 8¢ L] .

30

’ PageRank Algorithm for Modeling Page

__Reputation _in Web _Search Ranking
» Model page reputation for every

page X.
» PR(x) is the page rank of each

%N%/
PR(x) = —dy+a>S TR

=SS It A PR R ER R P

20 PR Points / 5 Links

» C(t) is out-degree of parent node t.

- d is a damping factor. 0 < d<1 0.4 09 10.2

' Set equations for a graph with 3 web pages

1 2, PR(%,)
PR(x)=A—d) + diz_ll)
X R4 d=0.85

N | PR(x)=0.15 +0.85 *PR(z)

\\ PR(y)=0.15 +0.85 *PR(x)/2
3 PR(2)=0.15 +0.85 *(PR(x)/2 + PR(Y))
=1 0.4 0.2 10.2
™\ ~

PR(x)=PR(z) .
PR(y)=PR(x)/2 X’{ AQ

PR(z)=PR(x)/2 + PR(y) N

32

Matrix representation on link relationship for
PageRank computation

PR(x)=A—d)y+a>S LRI

- C@,)

Link analysis of the web

1 2 3 4 5 & T

1 o ®
2 ® &
3 &
4@ @
5 []
6 o
7 ® & @
Graph representation matrix representation

« Web page = vertex
* Link = directed edge
* Link matrix: A;; = 1 if page i links to page |

33

Computing PageRank Iteratively with Jacobi
Method

There are n equations for n web pages

Start with initial PR

values
r S
Each target page adds up Each page distributes
“credit” from multiple in- Rank “credit” to all
bound links to compute outoging pages it
PR, points to

o Effects at each iteration is local. i+1t" iteration
depends only on it iteration

e Atiteration i, RageRank for individual pages cag be
computed inde

34

' Demo for the Iterative Algorithm: Round 1

1. Start each page with initial page rank value 1

2. On each round, have page p contribute
rank, / loutdegree| to its outgoing neighbors

3. Set each page’s rank to 0.15 + 0.85 X contribs

PN

1.0

1.0

35

' Demo for the Iterative Algorithm: Round 2

1. Start each page at a rank of 1

2. On each round, have page p contribute
rank, / loutdegree| to its outgoing neighbors

3. Set each page’s rank to 0.15 + 0.85 X contribs

1.0

1
1.0 0.5 1.0

» 0.5

1.0

36

’ Demo for the Iterative Algorithm: Round 3

1. Start each page at a rank of 1

2. On each round, have page p contribute
rank, / loutdegree| to its outgoing neighbors
3. Set each page’s rank to 0.15 + 0.85 X contribs

LN

0.58

1.85

37

’emo for the Iterative Algorithm: Round 4

1. Start each page at a rank of 1

2. On each round, have page p contribute
rank, / loutdegree,| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 X contribs

1.85
0.58 0-5
1.85
0.58 0.29 1.0
0.29 05

0.58

38

' Demo for the Iterative Algorithm: Round 5

1. Start each page at a rank of 1

2. On each rount, have page p contribute
rank, / loutdegree,| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 X contribs

0.39 1.72

39

' Demo for the Iterative Algorithm: Round 6

1. Start each page at a rank of 1

2. On each iteration, have page p contribute
rank, / loutdegree| to its outgoing neighbors
3. Set each page’s rank to 0.15 + 0.85 X contribs

Final state: 1.44 j\
0.46 1.37

0.73

40

' Parallel Iterative Algorithm for a Large-Scale

Web Graph

Let each process (or thread) be responsible for a
subset of graph vertices (web pages). Repeat the
following map-reduce phases:

1. Map: Every process sends credits of web pages to their
outgoing neighbors (children)

2. Reduce: Every process receives credits from the
parents of its assigned web pages, and updates their
page rank value

o o

20
P%g“‘" "“ﬁ p%?om‘s

TN TN /sz%&\éé/

i rE e
e) \ew) \mem) \emre g . mp:m mv«w mn*” mww mnw 41

Parallel Algorithm for PageRank

Let each color represent an assigned thread (or process)

Map Phase: distribute PageRank “credit” to outgoing neighbors

2 N N D I B/ DNV

Reduce Phase: gather up PageRank “credit” from
multiple sources to compute new PageRank value

N v

Source of Image: Lin 2008 42

Iterate until
convergence

' Summary:Parallel Scientific Computing
___Algorithms

 Basic operations
« Solving linear systems of equations

« Gaussian Elimination direct method for dense matrices

- Jacobi/Gauss-Seidel iterative method for sparse matrices
« Use of iterative solver for Google PageRank

« Equations involve billions of unknown variables

« Parallel Jacobi method in a sparse matrix format

Applications

Conve

Sparse matrix

>
Dense Matrix/vecor

multiplication

L
_/
)

	Slide 1: Parallel Scientific Computing Algorithms
	Slide 2: Scientific Computing Algorithms
	Slide 3: Solving Linear System of Equations
	Slide 4: Solving Linear System of Equations: GE
	Slide 5: Gaussian Elimination in a Matrix Form
	Slide 6: Gaussian Elimination Algorithm
	Slide 7: Gaussian Elimination Algorithm
	Slide 8: Complexity of Gaussian Elimination
	Slide 9: Partitioning for Parallel Gaussian Elimination
	Slide 10: Row-Oriented Parallel Gaussian Elimination
	Slide 11: Strategies for Mapping and Scheduling
	Slide 12: Map to Parallel Processes, Decide data ownership, and Schedule Tasks
	Slide 14: Map to p Parallel Processes, Decide data ownership, and Schedule Tasks
	Slide 15: Parallel Algorithm for Gaussian Elimination
	Slide 16: Solving linear system Ax=b in practice
	Slide 17
	Slide 18: Iterative Methods for Linear System Solving
	Slide 19: Iterative Methods for Linear System Solving
	Slide 20: Jacobi Method for Linear System Solving in a Matrix Notation
	Slide 21: Definition: Norm of a Vector
	Slide 22: Iterative Methods for Linear System Solving: Jacobi method vs. Gauss Seidel method
	Slide 23: Example with Gauss-Sidel
	Slide 24: Convergence of Iterative Methods
	Slide 25: Example of Ax=b that Jacobi and GS converge
	Slide 26: Example of Ax=b that can be solved by iterative methods
	Slide 27: Sparse matrix in linear system solving
	Slide 28: Sparse matrix in linear system solving
	Slide 29: Use of Iterative Solver for Web Page Ranking with Google PageRank
	Slide 30: Ranking Pages based on their Popularity
	Slide 31: PageRank Algorithm for Modeling Page Reputation in Web Search Ranking
	Slide 32: Set equations for a graph with 3 web pages
	Slide 33: Matrix representation on link relationship for PageRank computation
	Slide 34: Computing PageRank Iteratively with Jacobi Method
	Slide 35: Demo for the Iterative Algorithm: Round 1
	Slide 36
	Slide 37: Demo for the Iterative Algorithm: Round 3
	Slide 38: Demo for the Iterative Algorithm: Round 4
	Slide 39: Demo for the Iterative Algorithm: Round 5
	Slide 40: Demo for the Iterative Algorithm: Round 6
	Slide 41: Parallel Iterative Algorithm for a Large-Scale Web Graph
	Slide 42: Parallel Algorithm for PageRank
	Slide 43: Summary:Parallel Scientific Computing Algorithms

