
1

Parallel Scientific Computing

Algorithms

CS140 Tao Yang, UCSB

Scientific Computing Algorithms
• Basic operations:

• Vector-vector multiplication

• Matrix vector multiplication

• Matrix-matrix multiplication

• Solving linear systems of equations

• Solving non-linear systems

• Finite-difference methods for solving ordinary differential

equations (ODEs)

• Finite-difference for partial differential equations PDEs

PDE
Linear

system

solvingODE

Convert Matrix/vecor

multiplication

Convert

3

Solving Linear System of Equations

Direct methods: Gaussian Elimination

•Step 1: Forward elimination

3

Solving Linear System of Equations: GE

Step 2: Backward substitution

4

Gaussian Elimination in a Matrix Form

• Use an augmented matrix to express elimination

process for solving Ax = b in a form of (A | b)

5

(A|b)=

Gaussian Elimination Algorithm

• Forward elimination

Use Row k to modify

rows k+1, k+2, …, n

6

Gaussian Elimination Algorithm

Step 2: Backward substitution

7

Complexity of Gaussian Elimination

8

Partitioning for Parallel Gaussian Elimination

Focus on forward

elimination which is

dominating the cost

Computation partitioning:

Another option:
9

Row-Oriented Parallel Gaussian Elimination

Focus on forward

elimination which is

dominating the cost

Computation partitioning:

Task graph:

10

Strategies for Mapping and Scheduling

• Option 1: Directly map tasks to p processes (threads)

• Option 2:

▪ Step 1. Assume there are enough parallelism.

– Cluster tasks to reduce unnecessary

communication/synchronization

– If needed, assign data ownership (e.g. owner-compute rule)

▪ Step 2. Map clusters to p processes (threads)

Clustering

4 clusters

Mapping

2 processes
16 tasks

11

Map to Parallel Processes, Decide data

ownership, and Schedule Tasks

Step 1: map to n-1 clusters while preserving parallelism

Update AnUpdate A4
• Identify write patterns

• Cluster vertically to reduce

 communication

Cluster i owns i-th row

• Assign data ownership

12

Map to p Parallel Processes, Decide data

ownership, and Schedule Tasks

Step 2: Assign n-1 clusters (virtual processes) to p processes

Mapping options? Cyclic or block mapping

2 processes

Cyclic for load balancing

Cost of Cluster i increases

as i increases.

14

Parallel Algorithm for Gaussian Elimination

15

Solving linear system Ax=b in practice

16

Example of sparse matrix for

social network applications

Assume matrix

dimension size n=

1 billion

How long does it

take with O(n3)

algorithm?

• Large dimension size n

• A is sparse matrix

Too expensive

Sparse matrix pattern in Physics/Material

Source: Accelerator Cavity Design Problem (Ko via Husbands)

17

Iterative Methods for Linear System

Solving
• More effective for sparse matrices

• Start from an initial guess of solutions

• Derive an update of solutions using

equations

18

Iterative Methods for Linear System

Solving

• Derive an update of solutions using equations

19

20

Jacobi Method for Linear System

Solving in a Matrix Notation

• Represent iteartive computation in a matrix notation

20

Matrix nototation:

xk+1 =d + H xk

21

Definition: Norm of a Vector

Example

21

22

Iterative Methods for Linear System Solving:

Jacobi method vs. Gauss Seidel method

 • Gauss Seidel uses updated solutions ASAP

22

Matrix nototation:

xk+1 =d + H xk

23

Example with Gauss-Sidel

23

Convergence of Iterative Methods

24

Notation:

Example of Ax=b that Jacobi and GS

converge

25

Give an example of matrix A so that solving Ax = b

iteratively can converge?

Definition: Matrix A is strictly diagonally dominant if

Theorem: If A is strictly diagonally dominant. Then both Gauss-
Seidel and Jacobi methods converge.

Example of Ax=b that can be solved by

iterative methods

26

Matrix A is strictly diagonally dominant:

Both Jacobi and G.S. methods will converge.

27

Sparse matrix in linear system solving

• Given a matrix A for linear system Ax=b

27

28

Sparse matrix in linear system solving

• Iterative solution for solving linear

system Ax=b

28

Jacobi method with sparse matrix multiplication notation

How to represent

Gauss-Seidel?

y = d + H*y

Code format:

Use of Iterative Solver for Web Page

Ranking with Google PageRank

• Set up a linear equation for each web page

• There are billions of pages → billions of equations

 29

Ranking Pages based on their Popularity

Give pages ranks (scores)

based on links to them

• Links from many pages ➔

high rank

• Link from a high-rank page

➔ high rank

30

PageRank Algorithm for Modeling Page

Reputation in Web Search Ranking

 Model page reputation for every
page x.

 PR(x) is the page rank of each
page.

 C(t) is out-degree of parent node t.

 d is a damping factor. 0 ≤ d≤1


=

+−=
n

i i

i

tC

tPR
ddxPR

1)(

)(
)1()(

0.4

0.4

0.2

0.2

0.2

0.2

0.4

d=1
31

Set equations for a graph with 3 web pages


=

+−=
n

i i

i

tC

tPR
ddxPR

1)(

)(
)1()(

x

z

y

PR(x)=0.15 +0.85 *PR(z)

PR(y)=0.15 +0.85 *PR(x)/2

PR(z)=0.15 +0.85 *(PR(x)/2 + PR(y))

d=0.85

d=1

PR(x)=PR(z)

PR(y)=PR(x)/2

PR(z)=PR(x)/2 + PR(y)

0.4

0.4

0.2

0.2

0.2

0.2

0.4

32

Matrix representation on link relationship for

PageRank computation

Graph representation matrix representation


=

+−=
n

i i

i

tC

tPR
ddxPR

1)(

)(
)1()(

33

Computing PageRank Iteratively with Jacobi

Method

Start with initial PR
values

Each page distributes
Rank “credit” to all
outoging pages it

points to.

Each target page adds up
“credit” from multiple in-
bound links to compute

PRi+1

 Effects at each iteration is local. i+1th iteration
depends only on ith iteration

 At iteration i, PageRank for individual pages can be
computed independently

There are n equations for n web pages

34

Demo for the Iterative Algorithm: Round 1

1.0 1.0

1.0

1.0

1. Start each page with initial page rank value 1

2. On each round, have page p contribute

rankp / |outdegreep| to its outgoing neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

35

1. Start each page at a rank of 1

2. On each round, have page p contribute

rankp / |outdegreep| to its outgoing neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

1.0 1.0

1.0

1.0

1

0.5

0.5

0.5

1

0.5

Demo for the Iterative Algorithm: Round 2

36

Demo for the Iterative Algorithm: Round 3

1. Start each page at a rank of 1

2. On each round, have page p contribute

rankp / |outdegreep| to its outgoing neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

0.58 1.0

1.85

0.58
37

Demo for the Iterative Algorithm: Round 4

1. Start each page at a rank of 1

2. On each round, have page p contribute

rankp / |outdegreep| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

0.58

0.29

0.29

0.5

1.85
0.58 1.0

1.85

0.58

0.5

38

Demo for the Iterative Algorithm: Round 5

1. Start each page at a rank of 1

2. On each rount, have page p contribute

rankp / |outdegreep| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

0.39 1.72

1.31

0.58

. . .

39

Demo for the Iterative Algorithm: Round 6

1. Start each page at a rank of 1

2. On each iteration, have page p contribute

rankp / |outdegreep| to its outgoing neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

0.46 1.37

1.44

0.73

Final state:

40

Parallel Iterative Algorithm for a Large-Scale

Web Graph
Let each process (or thread) be responsible for a

subset of graph vertices (web pages). Repeat the

following map-reduce phases:

1. Map: Every process sends credits of web pages to their

outgoing neighbors (children)

2. Reduce: Every process receives credits from the

parents of its assigned web pages, and updates their

page rank value

41

Parallel Algorithm for PageRank

Map Phase: distribute PageRank “credit” to outgoing neighbors

Reduce Phase: gather up PageRank “credit” from
multiple sources to compute new PageRank value

Iterate until
convergence

Source of Image: Lin 2008

Let each color represent an assigned thread (or process)

42

Summary:Parallel Scientific Computing

Algorithms

• Basic operations

• Solving linear systems of equations

• Gaussian Elimination direct method for dense matrices

• Jacobi/Gauss-Seidel iterative method for sparse matrices

• Use of iterative solver for Google PageRank

• Equations involve billions of unknown variables

• Parallel Jacobi method in a sparse matrix format

PDE/

ODE

Linear

system

solving

Convert
Dense Matrix/vecor

multiplication

Applications
Sparse matrix

code

Model

43

	Slide 1: Parallel Scientific Computing Algorithms
	Slide 2: Scientific Computing Algorithms
	Slide 3: Solving Linear System of Equations
	Slide 4: Solving Linear System of Equations: GE
	Slide 5: Gaussian Elimination in a Matrix Form
	Slide 6: Gaussian Elimination Algorithm
	Slide 7: Gaussian Elimination Algorithm
	Slide 8: Complexity of Gaussian Elimination
	Slide 9: Partitioning for Parallel Gaussian Elimination
	Slide 10: Row-Oriented Parallel Gaussian Elimination
	Slide 11: Strategies for Mapping and Scheduling
	Slide 12: Map to Parallel Processes, Decide data ownership, and Schedule Tasks
	Slide 14: Map to p Parallel Processes, Decide data ownership, and Schedule Tasks
	Slide 15: Parallel Algorithm for Gaussian Elimination
	Slide 16: Solving linear system Ax=b in practice
	Slide 17
	Slide 18: Iterative Methods for Linear System Solving
	Slide 19: Iterative Methods for Linear System Solving
	Slide 20: Jacobi Method for Linear System Solving in a Matrix Notation
	Slide 21: Definition: Norm of a Vector
	Slide 22: Iterative Methods for Linear System Solving: Jacobi method vs. Gauss Seidel method
	Slide 23: Example with Gauss-Sidel
	Slide 24: Convergence of Iterative Methods
	Slide 25: Example of Ax=b that Jacobi and GS converge
	Slide 26: Example of Ax=b that can be solved by iterative methods
	Slide 27: Sparse matrix in linear system solving
	Slide 28: Sparse matrix in linear system solving
	Slide 29: Use of Iterative Solver for Web Page Ranking with Google PageRank
	Slide 30: Ranking Pages based on their Popularity
	Slide 31: PageRank Algorithm for Modeling Page Reputation in Web Search Ranking
	Slide 32: Set equations for a graph with 3 web pages
	Slide 33: Matrix representation on link relationship for PageRank computation
	Slide 34: Computing PageRank Iteratively with Jacobi Method
	Slide 35: Demo for the Iterative Algorithm: Round 1
	Slide 36
	Slide 37: Demo for the Iterative Algorithm: Round 3
	Slide 38: Demo for the Iterative Algorithm: Round 4
	Slide 39: Demo for the Iterative Algorithm: Round 5
	Slide 40: Demo for the Iterative Algorithm: Round 6
	Slide 41: Parallel Iterative Algorithm for a Large-Scale Web Graph
	Slide 42: Parallel Algorithm for PageRank
	Slide 43: Summary:Parallel Scientific Computing Algorithms

