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Scientific Computing Algorithms
•  Basic operations:

• Vector-vector multiplication

• Matrix vector multiplication

• Matrix-matrix multiplication

• Solving linear systems of equations

• Solving non-linear systems

• Finite-difference methods for solving ordinary differential 

equations (ODEs)

• Finite-difference for partial differential equations PDEs 

PDE
Linear 

system 

solvingODE

Convert Matrix/vecor 

multiplication

Convert
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Solving Linear System of Equations

Direct methods: Gaussian Elimination

•Step 1: Forward elimination
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Solving Linear System of Equations: GE

Step 2: Backward substitution
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Gaussian Elimination in a Matrix Form

• Use an augmented matrix to express elimination 

process for solving Ax = b in a form of (A | b) 
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(A|b)=



Gaussian Elimination Algorithm

• Forward elimination

Use Row k to modify 

rows k+1, k+2, …, n
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Gaussian Elimination Algorithm 

Step 2: Backward substitution

7



Complexity of Gaussian Elimination
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Partitioning for Parallel Gaussian Elimination

Focus on forward 

elimination which is 

dominating the cost

Computation partitioning:

Another option:
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Row-Oriented Parallel Gaussian Elimination

Focus on forward 

elimination which is 

dominating the cost

Computation partitioning:

Task graph:
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Strategies for Mapping and Scheduling

• Option 1: Directly map tasks to p processes (threads)

• Option 2:

▪ Step 1. Assume there are enough parallelism. 

– Cluster tasks  to reduce unnecessary 

communication/synchronization

– If needed, assign data ownership (e.g. owner-compute rule)

▪ Step 2. Map clusters to p processes (threads)

Clustering

4 clusters

Mapping

2 processes
16 tasks

11



Map to Parallel Processes, Decide data 

ownership, and Schedule Tasks

Step 1: map to n-1 clusters while preserving parallelism

Update AnUpdate A4
•  Identify write patterns

•   Cluster vertically to reduce

  communication

Cluster i owns  i-th row

•   Assign data ownership
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Map to  p Parallel Processes, Decide data 

ownership, and Schedule Tasks

Step 2: Assign n-1  clusters (virtual processes) to p  processes 

Mapping options? Cyclic or block mapping

2 processes

Cyclic for load balancing

Cost of Cluster  i  increases 

as i increases.
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Parallel Algorithm for Gaussian Elimination
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Solving linear system Ax=b in practice
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Example of sparse matrix for 

social network applications

Assume matrix 

dimension size n= 

1 billion

How long does it 

take with O(n3) 

algorithm? 

• Large dimension size n

• A is sparse matrix

Too expensive



Sparse matrix pattern in Physics/Material

Source: Accelerator Cavity Design Problem (Ko via Husbands)
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Iterative Methods for Linear System 

Solving 
• More effective for sparse matrices

• Start from an initial guess of solutions

• Derive an update of solutions using 

equations
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Iterative Methods for Linear System 

Solving 

• Derive an update of solutions using equations
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Jacobi Method for Linear System 

Solving in a Matrix Notation 

• Represent iteartive computation in a matrix notation

20

Matrix nototation:

xk+1 =d + H xk       
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Definition: Norm of a Vector

Example
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Iterative Methods for Linear System Solving: 

Jacobi method vs. Gauss Seidel method

 • Gauss Seidel uses updated solutions ASAP
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Matrix nototation:

xk+1 =d + H xk       
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Example with Gauss-Sidel
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Convergence of Iterative Methods

24

Notation:



Example of Ax=b that Jacobi and GS 

converge
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Give an example of matrix A so that solving Ax = b 

iteratively can converge? 

Definition: Matrix A is strictly diagonally dominant if 

Theorem: If A is strictly diagonally dominant. Then both Gauss-
Seidel and Jacobi methods converge. 



Example of Ax=b that can be solved by 

iterative methods
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Matrix A is strictly diagonally dominant: 

Both Jacobi and G.S. methods will converge. 
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Sparse matrix in linear system solving

• Given a matrix A for linear system Ax=b
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Sparse matrix in linear system solving

• Iterative solution for solving linear 

system Ax=b
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Jacobi method with sparse matrix multiplication notation

How to represent 

Gauss-Seidel?

y = d + H*y       

Code format:



Use of Iterative Solver for Web Page 

Ranking with Google PageRank

• Set up a linear equation for each web page

• There are billions of pages → billions of equations
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Ranking Pages based on their Popularity

Give pages ranks (scores) 

based on links to them

• Links from many pages ➔ 

high rank

• Link from a high-rank page 

➔ high rank
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PageRank Algorithm for Modeling Page 

Reputation  in Web  Search Ranking

 Model page reputation for every 
page x.

 PR(x) is the page rank of each 
page.

 C(t) is out-degree of parent node t.

 d is a damping factor. 0 ≤ d≤1


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Set equations for a graph with 3 web pages


=

+−=
n

i i
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PR(x)=0.15  +0.85 *PR(z)

PR(y)=0.15  +0.85 *PR(x)/2

PR(z)=0.15  +0.85 *(PR(x)/2 + PR(y))

d=0.85

d=1

PR(x)=PR(z)

PR(y)=PR(x)/2

PR(z)=PR(x)/2 + PR(y)

0.4

0.4

0.2

0.2

0.2

0.2

0.4

32



Matrix representation on link relationship for 

PageRank computation

Graph representation              matrix representation


=

+−=
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Computing PageRank Iteratively with Jacobi 

Method

Start with initial PR 
values

Each page distributes 
Rank “credit” to all 
outoging pages it 

points to.

Each target page adds up 
“credit” from multiple in-
bound links to compute 

PRi+1

 Effects at each iteration is local. i+1th iteration 
depends only on ith iteration

 At iteration i, PageRank for individual pages can be 
computed independently 

There are n equations for n web pages
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Demo for the Iterative Algorithm: Round 1

1.0 1.0

1.0

1.0

1. Start each page with initial page rank value 1

2. On each round, have page p contribute

rankp / |outdegreep| to its outgoing neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs
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1. Start each page at a rank of 1

2. On each round, have  page p contribute

rankp / |outdegreep| to its outgoing neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

1.0 1.0

1.0

1.0

1

0.5

0.5

0.5

1

0.5

Demo for the Iterative Algorithm: Round 2
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Demo for the Iterative Algorithm: Round 3

1. Start each page at a rank of 1

2. On each round, have page p contribute

rankp / |outdegreep| to its outgoing neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

0.58 1.0

1.85

0.58
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Demo for the Iterative Algorithm: Round 4

1. Start each page at a rank of 1

2. On each round, have page p contribute

rankp / |outdegreep| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

0.58

0.29

0.29

0.5

1.85
0.58 1.0

1.85

0.58

0.5

38



Demo for the Iterative Algorithm: Round 5

1. Start each page at a rank of 1

2. On each rount, have page p contribute

rankp / |outdegreep| to its neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

0.39 1.72

1.31

0.58

. . .
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Demo for the Iterative Algorithm: Round 6

1. Start each page at a rank of 1

2. On each iteration, have page p contribute

rankp / |outdegreep| to its outgoing neighbors

3. Set each page’s rank to 0.15 + 0.85 × contribs

0.46 1.37

1.44

0.73

Final state:
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Parallel Iterative Algorithm for a Large-Scale 

Web Graph
Let each process (or thread) be responsible for a 

subset of graph vertices (web pages). Repeat the 

following map-reduce phases:

1. Map: Every process sends credits of web pages to their 

outgoing neighbors (children) 

2. Reduce: Every process receives credits from the 

parents of its assigned web pages, and updates their 

page rank value
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Parallel Algorithm for PageRank

Map Phase: distribute PageRank “credit” to outgoing neighbors

Reduce Phase: gather up PageRank “credit” from 
multiple sources to compute new PageRank value

Iterate until
convergence

Source of Image: Lin 2008

Let each color represent an assigned thread (or process)
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Summary:Parallel Scientific Computing 

Algorithms

• Basic operations

• Solving linear systems of equations

• Gaussian Elimination direct method for dense matrices

• Jacobi/Gauss-Seidel iterative method for sparse matrices

• Use of iterative solver for Google PageRank

• Equations involve billions of  unknown variables

• Parallel Jacobi method in a sparse matrix format

PDE/

ODE

Linear 

system 

solving

Convert
Dense Matrix/vecor 

multiplication

Applications
Sparse matrix 

code

Model
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