CS140: Parallel Scientific
Computing

2026 Winter Class Introduction
Tao Yang, UCSB

' CS 140 Course Information

e Instructor: Tao Yang (tyang at cs.ucsb).
= Office Hours: MW after class -11:45pm
« TA: TBD

 References (no required textbooks)

= Online references.
e (lass slides/online references:

= http://www.cs.ucsb.edu/~tyang class/140w26

Course introduction
* Why parallel processing?
* Why writing (fast) parallel programs is hard
= Class Information 2

http://www.cs.ucsb.edu/~tyang

All computers use parallel computing

 Web+cloud+cluster computing

Big corporate computing
* Enterprise computing

* Personal computing with many
cores: Desktops, laptops, phones [FEFEE I | NG

Global Data

Live Data Center Live Data Center

e Current fastest machines in the world
* Up-to-date list at www.top500.0rg
* Top one has 2,746 Pflop/s using 11 millions of CPU/GPU cores

http://www.top500.org/

Big Data Drives Computing Need

Transactions

* Web search/ads (Google, Bing) BigData

= 10B-100B pages crawled -> indexing 500-1000TB
/day

= 10B+ queries+pageviews /day - 100+ TB log
« Social media

= Facebook: Billions of content items shared. 500TB+
data ingested/day

= Youtube: A few billion views/day. Millions of TB.
« Al applications

= Self-driving cars with neural machine learning
= Large language models for question answering
= Training requires weeks/months of computing time

’ Performance numbers used in scalable
computing with big data

FLOPS = flop/s = floating point operations per second

Mega Mflop/s = 10° flop/sec Mbyte = 220 ~ 10° bytes

Giga Gflop/s = 10° flop/sec Gbyte = 230 ~ 10° bytes
Tera Tflop/s = 102 flop/sec Tbyte = 240 ~ 1072 bytes
Peta Pflop/s = 107° flop/sec Pbyte = 250 ~ 107° bytes
Exa Eflop/s = 1078 flop/sec Ebyte = 250 ~ 1078 bytes
Zetta Zflop/s = 1041 flop/sec Zbyte = 270 ~ 102" bytes
Yotta Yflop/s = 102* flop/sec || Ybyte = 280 ~ 102% bytes |

How fast can Intel single-core do 1n FLOPS?

How long does it take per each instruction? 5
1-100 Gflop/s. Nanosecond

’ How much parallel computing resource is
needed for ChatGPT?

* $10s - 200 million project to build a flagship AT model
= OpenAl’s pre-training for GPT-4 with 300B parameters

— a dataset of 13 trillion tokens

—2.15x 10% FLOPS

— 25,000 NVIDIA A100s for 90+ days

— $63 million on A100s and ~ $22 million on H100s

* Cost of online inference
= $18,000 purchase or $2 hourly rental for NVIDIA H100
= 20 requests per second @500 tokens/request

= A single ChatGPT call uses one plastic bottle of water for cooling

Architecture Trend

Can a single high speed core be used instead of many cores?

e Chip density is continuing increase ~2Xx every 2 years

e Clock speed 1s not

Use one machine with many cores and big shared memory?

* Technology trends against increasing memory per core. Memory
performance 1s not keeping pace

of cores increases steadily to 144 Intel Xeon. 192 AMD EPYC

» Use a distributed architecture for many high-end computing

* Will all programmers have to be parallel programmers?
* Many applications require parallel/distributed programming
* Parallelized libraries and compilers provide core support with
limitations

7

What do compute-intensive applications have in common?

Common Computational Methods

(Red Hot — Blue Cool)

Embed
SPEC
Games

"Health Image Speech Musu: Browsm

DB

1 Finite State Mach.
2 Combinational

3 Graph Traversal
4 Structured Grid

ense Matrix

6 Sparse Matrix

7 Spectral (FFT)
8 Dynamic Prog

9 N-Body
DMapReduce

11Backtrack/ B&B

12Graphical Models
13Unstructured Grid

Machine learning applications require extensive matrix multiplication

’ Basic Scientific Computing Algorithms

« Matrix-vector multiplication

« Matrix-matrix multiplication

« Direct/iterative methods for solving linear equations
= Gaussian Elimination. Jacobi, Gauss-Seidel.
* Google web search ranking algorithm

« SGD iterative method for model optimization in machine
learning applications

= CNN &transformer computation for text, image, &audio

= Time is dominated by Matrix/vector multiplication
operations

Focus of CS140

' Why writing (fast) parallel programs is hard

* Finding enough parallelism (Amdahl’s Law)
* Granularity

= Algorithm needs sufficiently large units of work to run fast
in parallel (i.e. large granularity), but not so large that
there is not enough parallel work

 Overheads in parallelism with coordination

= cost of starting a thread or process

= cost of accessing data, communicating shared data

= cost of synchronizing
* Locality with memory hierarchies (cache, memory, disk)
 Load balance wit static and dynamic scheduling

 Performance modeling for cost prediction since it is
expensive to scale

10

’ Course Objective

In depth understanding of:
* When is parallel computing useful?

« Understanding of parallel computing hardware
options

« Overview of programming models (software) and
tools and performance analysis

 Parallel algorithms for core computing methods

11

Course Topics

* High performance computing

= Basics of computer architecture, clusters&cloud systems. Storage.

* Parallel programming models, software/libraries
= Task graph computation. SPMD

= Partitioning and mapping of program/data for shared memory and distributed
memory machines

= MPI, OpenMP, GPU, & Pthreads
= MapReduce/Spark for data-intensive computing
= Patterns of parallelism. Optimization techniques for parallelization and
performance
e Core computing algorithms
= Multiplication of matrices and vectors
= Solving linear equations directly and iteratively

= SGD optimization used in machine learning applications (e.g. ChatGPT)
« SIMD/cache-aware programming for serial code optimization

'Class Resource: Expanse Cluster

Expanse: 728 standard CPU nodes, 54 GPU nodes and
4 large-memory nodes.

Each standard node: two 64-core AMD EPYC 7742
processors with 256 GB of DDR4 memory

Each GPU node contains four NVIDIA V100s (32 GB
gMXZ) hosted by dual 20-core Intel Xeon 6248
PUs

CSIL R}

Your
laptop

' Course Prerequisites and Challenges

= Data structure

= Array/lists. Concept of algorithm complexity
 Math

= Matrices/vectors. Partial derivates
 Basic computer architecture

= CPUs, cache, memory
= C programming with Linux

= Python concepts are used in some illustration
e Challenges
 Diafficult for the textbooks to capture the latest technology
* Parallel computing technology 1s complex and evolves fast.
* Reading with self-searching of web material is needed.

14

' Course Workload and Grading

 Tentative workload and weights
= 15% : 5 exercises

= 32%: 3-4 parallel programming assignments
— Parallel programming assignments are done by a group of two.

= 17% midterm exam, 34% final exam.
= 2% : class participation
= 1% bonus: answering Piazza questions

15

If you decide to take this course

Account at CSIL

= C programming with Pthreads, OpenMP, & MPI
Account at Piazza

= Discussion group

= We will send an invitation to your class email
Account at GradeScope.com

= Submit your homework

= We will give you a class account join code in Exercise 1
Account at Expanse cluster

= You open an ACCESS account in https://access-ci.org/

= We will post a google sheet link at Piazza that you fill your ACCESS
account name.

= We add a shared CPU hour allocation to your account then you can
log in login.expanse.sdsc.edu

16

	Slide 1: CS140: Parallel Scientific Computing
	Slide 2: CS 140 Course Information
	Slide 3: All computers use parallel computing
	Slide 4: Big Data Drives Computing Need
	Slide 5: Performance numbers used in scalable computing with big data
	Slide 6: How much parallel computing resource is needed for ChatGPT?
	Slide 7: Architecture Trend
	Slide 8: Common Computational Methods (Red Hot  Blue Cool)
	Slide 9: Basic Scientific Computing Algorithms
	Slide 10: Why writing (fast) parallel programs is hard
	Slide 11: Course Objective
	Slide 12: Course Topics
	Slide 13: Class Resource: Expanse Cluster
	Slide 14: Course Prerequisites and Challenges
	Slide 15: Course Workload and Grading
	Slide 16: If you decide to take this course

