
1

CS140: Parallel Scientific

Computing

2026 Winter Class Introduction

Tao Yang, UCSB

2

CS 140 Course Information

• Instructor: Tao Yang (tyang at cs.ucsb).

▪ Office Hours: MW after class -11:45pm

• TA: TBD

• References (no required textbooks)

▪ Online references.

• Class slides/online references:

▪ http://www.cs.ucsb.edu/~tyang_class/140w26

Course introduction

▪ Why parallel processing?

▪ Why writing (fast) parallel programs is hard

▪ Class Information

http://www.cs.ucsb.edu/~tyang

3

All computers use parallel computing

• Web+cloud+cluster computing

Big corporate computing

• Enterprise computing

• Personal computing with many

cores: Desktops, laptops, phones

• Current fastest machines in the world

• Up-to-date list at www.top500.org

• Top one has 2,746 Pflop/s using 11 millions of CPU/GPU cores

http://www.top500.org/

Big Data Drives Computing Need

• Web search/ads (Google, Bing)

▪ 10B-100B pages crawled -> indexing 500-1000TB

/day

▪ 10B+ queries+pageviews /day → 100+ TB log

• Social media

▪ Facebook: Billions of content items shared. 500TB+

data ingested/day

▪ Youtube: A few billion views/day. Millions of TB.

• AI applications

▪ Self-driving cars with neural machine learning

▪ Large language models for question answering

▪ Training requires weeks/months of computing time

5

Performance numbers used in scalable

computing with big data

Mega Mflop/s = 106 flop/sec Mbyte = 220 ~ 106 bytes

Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes

Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes

Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes

Exa Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes

Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes

Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes

How fast can Intel single-core do in FLOPS?

How long does it take per each instruction?

FLOPS = flop/s = floating point operations per second

1-100 Gflop/s. Nanosecond

How much parallel computing resource is

needed for ChatGPT?

• $10s - 200 million project to build a flagship AI model

▪ OpenAI’s pre-training for GPT-4 with 300B parameters

– a dataset of 13 trillion tokens

– 2.15 x 1025 FLOPS

– 25,000 NVIDIA A100s for 90+ days

– $63 million on A100s and ~ $22 million on H100s

• Cost of online inference

▪ $18,000 purchase or $2 hourly rental for NVIDIA H100

▪ 20 requests per second @500 tokens/request

▪ A single ChatGPT call uses one plastic bottle of water for cooling

7

Architecture Trend

• Chip density is continuing increase ~2x every 2 years

• Clock speed is not

Can a single high speed core be used instead of many cores?

Use one machine with many cores and big shared memory?

• Technology trends against increasing memory per core. Memory

performance is not keeping pace

•# of cores increases steadily to 144 Intel Xeon. 192 AMD EPYC

• Use a distributed architecture for many high-end computing

• Will all programmers have to be parallel programmers?

• Many applications require parallel/distributed programming

• Parallelized libraries and compilers provide core support with

limitations

Common Computational Methods
(Red Hot → Blue Cool)

What do compute-intensive applications have in common?

Machine learning applications require extensive matrix multiplication

9

Basic Scientific Computing Algorithms

• Matrix-vector multiplication

• Matrix-matrix multiplication

• Direct/iterative methods for solving linear equations

▪ Gaussian Elimination. Jacobi, Gauss-Seidel.

▪ Google web search ranking algorithm

• SGD iterative method for model optimization in machine

learning applications

▪ CNN &transformer computation for text, image, &audio

▪ Time is dominated by Matrix/vector multiplication

operations

Focus of CS140

10

Why writing (fast) parallel programs is hard

• Finding enough parallelism (Amdahl’s Law)

• Granularity

▪ Algorithm needs sufficiently large units of work to run fast

in parallel (i.e. large granularity), but not so large that

there is not enough parallel work

• Overheads in parallelism with coordination

▪ cost of starting a thread or process

▪ cost of accessing data, communicating shared data

▪ cost of synchronizing

• Locality with memory hierarchies (cache, memory, disk)

• Load balance wit static and dynamic scheduling

• Performance modeling for cost prediction since it is

expensive to scale

11

Course Objective

In depth understanding of:

• When is parallel computing useful?

• Understanding of parallel computing hardware

options

• Overview of programming models (software) and

tools and performance analysis

• Parallel algorithms for core computing methods

12

Course Topics

• High performance computing

▪ Basics of computer architecture, clusters&cloud systems. Storage.

• Parallel programming models, software/libraries

▪ Task graph computation. SPMD

▪ Partitioning and mapping of program/data for shared memory and distributed

memory machines

▪ MPI, OpenMP, GPU, & Pthreads

▪ MapReduce/Spark for data-intensive computing

▪ Patterns of parallelism. Optimization techniques for parallelization and

performance

• Core computing algorithms

▪ Multiplication of matrices and vectors

▪ Solving linear equations directly and iteratively

▪ SGD optimization used in machine learning applications (e.g. ChatGPT)

• SIMD/cache-aware programming for serial code optimization

Class Resource: Expanse Cluster

Expanse: 728 standard CPU nodes, 54 GPU nodes and
4 large-memory nodes.

 Each standard node: two 64-core AMD EPYC 7742
processors with 256 GB of DDR4 memory

 Each GPU node contains four NVIDIA V100s (32 GB
SMX2) hosted by dual 20-core Intel Xeon 6248
CPUs

13

CSIL Expanse

Cluster (San

Diego)

Your

laptop

14

Course Prerequisites and Challenges

▪ Data structure

▪ Array/lists. Concept of algorithm complexity

• Math

▪ Matrices/vectors. Partial derivates

• Basic computer architecture

▪ CPUs, cache, memory

▪ C programming with Linux

▪ Python concepts are used in some illustration
• Challenges

• Difficult for the textbooks to capture the latest technology

• Parallel computing technology is complex and evolves fast.

• Reading with self-searching of web material is needed.

Course Workload and Grading

• Tentative workload and weights

▪ 15% : 5 exercises

▪ 32%: 3-4 parallel programming assignments

– Parallel programming assignments are done by a group of two.

▪ 17% midterm exam, 34% final exam.

▪ 2% : class participation

▪ 1% bonus: answering Piazza questions

15

If you decide to take this course

• Account at CSIL

▪ C programming with Pthreads, OpenMP, & MPI

• Account at Piazza

▪ Discussion group

▪ We will send an invitation to your class email

• Account at GradeScope.com

▪ Submit your homework

▪ We will give you a class account join code in Exercise 1

• Account at Expanse cluster

▪ You open an ACCESS account in https://access-ci.org/

▪ We will post a google sheet link at Piazza that you fill your ACCESS

account name.

▪ We add a shared CPU hour allocation to your account then you can

log in login.expanse.sdsc.edu

16

	Slide 1: CS140: Parallel Scientific Computing
	Slide 2: CS 140 Course Information
	Slide 3: All computers use parallel computing
	Slide 4: Big Data Drives Computing Need
	Slide 5: Performance numbers used in scalable computing with big data
	Slide 6: How much parallel computing resource is needed for ChatGPT?
	Slide 7: Architecture Trend
	Slide 8: Common Computational Methods (Red Hot  Blue Cool)
	Slide 9: Basic Scientific Computing Algorithms
	Slide 10: Why writing (fast) parallel programs is hard
	Slide 11: Course Objective
	Slide 12: Course Topics
	Slide 13: Class Resource: Expanse Cluster
	Slide 14: Course Prerequisites and Challenges
	Slide 15: Course Workload and Grading
	Slide 16: If you decide to take this course

