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Topics

High performance computing on single cores

▪ SIMD vectorization on Intel/AMD CPUs
– Covered in parallel architecture lecture

▪ Cache-aware optimization   

▪ BLAS



Memory Hierarchy in Computer Systems

▪ Large performance impact when accessing data in 
different levels of  memory hierarchy  

▪ Cache-aware programming through program 
transformation is critical to maximize code efficiency
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Cache-Aware Programming: Temporal Locality

▪ Exploit temporal locality in program

– Reuse an item that was previously accessed

▪ Ex 1:  Y[2] is revisited continuously

▪ Ex 2 with access sequence: Y[2] is revisited after a few 

instructions later

For i=1 to n

    y[2]=y[2]+3
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Cache-aware Programming:  Spatial Locality

• Take advantage of better bandwidth by getting a chunk of 

memory to cache and use whole or part of  chunk 

• Exploit spatial locality in program

▪ Access  things nearby previous accesses

For i=1 to n

    y[i]=y[i]+3

4000 Y[0] Y[1] Y[2]] Y[3] Y[4] Y[31]

Tag

32-Byte Cache Block

Memory

Fetching Y[1] benefits next access 

of Y[2]



• Each cache block has 64 bytes. Cache has 128 bytes

• Program structure  

▪ char D[64][64];

▪ Each row is stored in one cache line block

▪ Program 1 

                for (j = 0; j <64; j++)
                  for (i = 0; i < 64; i++)
                        D[i][j] = 0;

▪ Program 2 

             for (i = 0; i < 64; i++)
               for (j = 0; j < 64; j++)
                     D[i][j] = 0;

Exploit spatial data locality in 2D array with a 

simple cache

64*64 data byte access → What is cache miss rate?



Array layout in memory  

• A 2D matrix  is 1D  in memory addresses  

• Use 1D array to implement 2D 3x3 array with row major

   for(x = 0; x < 3; x++){

  for(y = 0; y < 3; y++)  {

    array[3*x+y]=0;  //   Column major: array[x+3y]=0;  

}

• Default layout in 

C/C++  : Row major 

• Alternative layout 

(e.g.  BLAS library)   

column  major 



• for (i = 0; i <64; i++)
   for (j = 0; j < 64; j++)
      D[i][j] = 0;

Data Access Pattern and Cache Miss

1 cache miss

in one inner loop

iteration

64 cache miss out of 64*64 access.

There is  spatial locality. Fetched cache block is used 64 times

 before swapping out  (consecutive data access within the inner loop

D[0,0] D[0,1] …. D[0,63]

D[1,0] D[1,1] …. D[1,63]

D[63,0] D[63,1] …. D[63,63]

Miss hit hit hit …hit
Cache block

i

j

Each row is stored in 
one cache line block



• for (j = 0; j <64; j++)

   for (i = 0; i < 64; i++)

      D[i][j] = 0;

Data Locality and Cache Miss

64 cache miss

in one inner loop

iteration

100% cache miss

There is no spatial locality. Fetched block is only used once before 

swapping out.

D[0,0] D[0,1] …. D[0,63]

D[1,0] D[1,1] …. D[1,63]

D[63] D[63,0] …. D[63,63]

i

j



Memory layout and data access by block
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Performance of Serial Matrix Multiply with 

Different Optimizations in FLOPS
Naïve 3 nested loop  

Green = simple blocking

DSB = Hand optimized code by  David 

Bindel@Cornell

2/2/2026 Berkeley CS267 Lecture
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• Blocked matrix 

multiply:  2-4.8x 

faster naïve version 

• High performance 

library in vendor 

machines with 

more optimization: 

10-19x faster

~350MFLOPS

Upto 1700MFLOPS

~6800MFLOPS

FLOPS= #operations/time



• Assume just 2 levels in the hierarchy: fast cache and slow memory

• All data initially in slow memory

▪ m = number of data elements  moved between fast and  memory 

▪ tm = time of each element access from memory

▪ f = number of arithmetic operations

▪ tf = time per arithmetic operation << tm

▪ q = f / m  average number of flops per memory element access

• Minimum possible time = f* tf when all data in fast cache

• Actual time = computation cost + data fetch cost

= f * tf + m * tm = f * tf * (1 + tm/tf  /q) 

• Larger q → actual time closer to minimum f * tf 
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Computational 

Intensity: Key to 

algorithm efficiency

Machine 

Balance: 

Key to 

machine 

efficiency 

Use a Simple Model of Memory to Explain and Optimize
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Analysis for matrix-vector multiplication

{Implements y = y + A*x}

for i = 1 to n

  for j = 1 to n

   y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)
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Add memory-cache data movement

{Read vector x(1:n) into cache}

{Read vector y(1:n) into cache}

for i = 1 to n

     {Read row i of A into cache}

     for j = 1 to n

     y(i) = y(i) + A(i,j)*x(j)

{Write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f   = number of arithmetic operations = 2n2

• q  = f / m  2     Low computational intensity

•Running time = f * tf + m * tm 

•FLOPS rate=f/ Time =1 / (tf  +  tm/q)  = 1 / (tf  +  tm/2)

• Matrix-vector multiplication limited by slow memory speed

= + *

y(i) y(i)

A(i,:)

x(:)
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Naïve Implementation for Matrix-Matrix Multiplication

{Implements C = C + A*B}

for i = 1 to n

       for j = 1 to n

  for k = 1 to n

            C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

• Algorithm has 2*n3 operations and operates on 3*n2 words of memory

• Computational intensity q potentially as large as 2*n3 / 3*n2 = O(n)

• But actual answer is not. q  2 for large n, same as matrix-vector multiplication

Inner loop is matrix-

vector multiplication 

operations
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Naïve Matrix Multiply with Memory-Cache Movement 

{Implements C = C + A*B}

for i = 1 to n

  {Read row i of A into cache}

   for j = 1 to n

       {Read C(i,j) into cache}

       {Read column j of B into cache}

       for k = 1 to n

           C(i,j) = C(i,j) + A(i,k) * B(k,j)

       {Write C(i,j) back to slow memory}

= + *

C(i,j) A(i,:)

B(:,j)

C(i,j)

Keep Row i of A in 

cache. Assume 

optimized cache 

replacement



Naïve Matrix Multiply

{Implements C = C + A*B}

for i = 1 to n

  {Read row i of A into cache}

   for j = 1 to n

       {Read C(i,j) into cache}

       {Read column j of B into cache}

       for k = 1 to n

           C(i,j) = C(i,j) + A(i,k) * B(k,j)

       {Write C(i,j) back to memory}

# of slow memory ops:

  m = n3    to read each column of B n times

         + n2     to read each row of A once 

         + 2n2   to read and write each element of      

C once

        = n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2)  = 

computational intensity

         2 for large n, no improvement over 

matrix-vector multiply
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= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

Reason: Inner two loops are just matrix-vector 

multiply, of row i of A times matrix B
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Better Implementation with Blocked Matrix 

Multiplication
• Example of submartix partitioning: Divide A into 4 submatrices

• Blocked matrix multiply: Element-wise multiply is submatrix multiply



Blocked [Tiled] Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b blocks 

where b=n / N is called the block size 

 

=
+

*

b x 

b

A[i,k]C[i,j]C[i,j]

B[i,k]

n elements

N blocks

Each block is bxb
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Blocked (Tiled) Matrix Multiply with 

Six-Nested Loops

Consider A,B,C to be N-by-N matrices of b-by-b blocks 

Each element is a block

        b=n / N is called the block size 

    for i = 1 to N

       for j = 1 to N 

       for k = 1 to N         

                  C(i,j) = C(i,j) + A(i,k) * B(k,j) //  block submatrix multiply

      

3 nested loops 

inside

= + *A[i,k]C[i,j]

B[i,k]

C[i,j]
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Blocked (Tiled) Matrix Multiply with 

Memory-Cache Data Movement

= + *A[i,k]C[i,j]

B[i,k]

C[i,j]

Consider A,B,C to be N-by-N matrices of b-by-b  blocks where  

 b=n / N is called the block size 

    for i = 1 to N

       for j = 1 to N

       {Read block C(i,j) into cache}

       for k = 1 to N

                  {Read block A(i,k) into cache}

                  {Read block B(k,j) into cache}

                  C(i,j) = C(i,j) + A(i,k) * B(k,j)// Block submatrix multiply

       {Write block C(i,j) back to slow memory}
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Blocked (Tiled) Matrix Multiply with 

Memory-Cache Data Movement

= + *A[i,k]C[i,j]

B[i,k]

C[i,j]

A,B,C to be N-by-N matrices of b-by-b  blocks 

b=n / N is called the block size 

    for i = 1 to N

       for j = 1 to N

       {Read block C(i,j) into cache}

       for k = 1 to N

                  {Read block A(i,k) into cache}

                  {Read block B(k,j) into cache}

                  C(i,j) = C(i,j) + A(i,k) * B(k,j)

       {Write block C(i,j) back to memory}

2n2 to read/write each block of C once 

N*n2  to read each block of A N3 times 

          (N3 *b2 =N3 *(n/N)2)

N*n2 to read each block of B N3 times
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Blocked (Tiled) Matrix Multiply

Recall:

   m is amount memory traffic between  memory and cache

   matrix has nxn elements, and NxN blocks each of size bxb

   f is number of floating point operations,  f=2n3  

   q = f / m is our measure of memory access efficiency

So: #slow memory access

m =  N*n2    read each block of B  N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)

         + N*n2   read each block of A  N3 times

         + 2n2     read and write each block of C once

        =  (2N + 2) * n2

So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)

                                                n / N = b  for large n

So we can improve performance by increasing the block size b 

Blocked version can be much faster than naïve version which has q=2
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Block Size Limited by Cache Size & Takeaways

Blocked matrix multiply has computational intensity q  b

• Larger the block size → more efficient  

• Limit:   All three blocks from A,B,C must fit in cache

• Assume L1 cache has size Msize

                  3b2  Msize,   so   q  b  (Msize/3)1/2

• Assume L1 cache has size 32KB,  b   104

Takeaways from this figure: 

• Blocked matrix multiply:  2-

4.8x faster than naïve version 

•  BLAS library from vendors  

with more optimization: 10-

19x faster
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Basic Linear Algebra Subroutines (BLAS)

• Industry standard interface: www.netlib.org/blas

• Vendors supply optimized BLAS implementations

▪ BLAS1:  Vector operations: dot product, saxpy (y=a*x+y), etc

– m=2*n, f=2*n,  low computational density ~1 or less

▪ BLAS2  

– E.g. Matrix-vector multiplication.  m=n^2, f=2*n^2 

– Moderate computational density~2  

– Computation expressed with BLAS2 can be faster than BLAS1

▪ BLAS3  

– E.g. Matrix-matrix multiplication  with m <= O(n^2), f=O(n^3)

– Higher computational density > 2  

• Applications may be expressed a mixed set of BLAS1, BLAS2, or 

BLAS3 operations



GEMM and GEMV in Intel/NVIDIA BLAS Libraries

▪ Intel Math Kernel Library (MKL)  for Intel CPUs and GPUs, and 
it works on AMD  CPUs (e.g. CPU servers on Expanse)
–  cblas_sgemm,  cblas_dgemm,  sgemm,   dgemv 

▪ cuBLAS :  NVIDIA-optimized implementation for use 
with CUDA on its GPUs.
– cublasSgemm,  cublasDgemm, cublasSgemv, cublasDgemv

▪ API of MKL and cuBLAS is  almost identical 

SGEMM  ( single-precision general matrix-matrix multiplication) 

and DGEMM for double-precision:      C=α⋅op(A)⋅op(B)+β⋅C

• A, B, and C are M*K, K*N, M*N  matrices.

• op(X) can be X (no transpose), XT (transpose) 

• α and β are scalar coefficients.

SGEMV  and DGEMV for matrix vector multiplication:

 y =α⋅op(A)⋅x+β⋅y
• x and y are column vectors of size K.
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DGEMV function in MKL: y =α⋅op(A)⋅x+β⋅y

• A is M*K matrix. x and y are column vectors of size K.

• op(A) can be A (no transpose), AT (transpose) 

• α and β are scalar coefficients.

void cblas_dgemv(   

  CblasColMajor or CblasRowMajor //Choose CblasColMajor

  CblasNoTrans or CblasTrans,  //   no transpose or transpose of A

  MKL_int M,  MKL_int K,

  double alpha, double *A,  MKL_int *lda,

 double *x,  MKL_int incx,

  double beta, double *y,  MKL_int incy); 

incx, incy: Stride(increment) of next element in vectors x and y. 

Normally choose 1.

lda=3
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DGEMM function in MKL: C=α⋅op(A)⋅op(B)+β⋅C

• A, B, and C are single-precision M*K, K*N, M*N  matrices.

• op(X) can be X (no transpose), XT (transpose) 

• α and β are scalar coefficients

void  cblas_gemm(  

  CblasColMajor or CblasRowMajor //Choose CblasColMajor

  CblasNoTrans or CblasTrans,  //   no transpose or transpose of A

  CblasNoTrans or CblasTrans,  //   no transpose or transpose of B

  MKL_int M, MKL_int N, MKL_int K,

  double alpha, double *A,   MKL_int lda,

  double *B,  MKL_int ldb,

 double beta, double *C,  MKL_int ldc); 

lda, ldb, ldc: Leading dimensions of A, B, and C as # of elements 

between the start of successive columns (Column-Major)

lda=3
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A=
1 1
1 0

, 𝐵 =
1 3
2 4

 𝐶 = 𝐴𝐵 → 𝐶 =
3 7
3 3

Use of GEMV for GEMM Implementation

• In general,  a computing problem  may be expressed by 

• a set of BLAS-1 operations 

• or BLAS-2 operations

• or  BLAS-3 operations

• or mixed of all levels

3
3

 = A*
1
2

7
3

 = A∗
3
4

Decomposed

• Matrix-matrix multiplication with  size N*N can be  can be 

expressed as N matrix-vector multiplications. For example, N=2



Concluding Remarks

To optimize serial code efficiency  

▪ Cache-aware programming to exploit spatial and temporal 
locality

▪ It is recommended to use fully optimized  vendor’s or open-
source BLAS library functions for time-consuming core 
scientific computation  

– Compare FLOPS difference when code can use different 
levels of BLAS

– For larger problem sizes, BLAS3 is faster with cache 
optimization and SIMD vectorization

– BLAS has calling overhead while unoptimized code may fit 
in cache well for small problem sizes
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Other serial code optimization strategies discussed earlier

• Use compiler optimization level as high as possible

• SIMD vectorization on Intel/AMD CPUs if compiler 
cannot vectorize serial code well
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