
Optimizing Serial Code Performance with

Cache-aware Programming and BLAS

T. Yang. UCSB CS140, Winter 2026

Topics

High performance computing on single cores

▪ SIMD vectorization on Intel/AMD CPUs
– Covered in parallel architecture lecture

▪ Cache-aware optimization

▪ BLAS

Memory Hierarchy in Computer Systems

▪ Large performance impact when accessing data in
different levels of memory hierarchy

▪ Cache-aware programming through program
transformation is critical to maximize code efficiency

L1

cache

Control

Registers

Main

Meory

(DRAM)

Processor

L2/L3

Cache

(SRAM)

Disk

(SSD,

HDD)

Caching

~1ns ~60-100ns ~0.1-10ms~10ns

GB

KB

MB

TB

Arithmetic

Cache-Aware Programming: Temporal Locality

▪ Exploit temporal locality in program

– Reuse an item that was previously accessed

▪ Ex 1: Y[2] is revisited continuously

▪ Ex 2 with access sequence: Y[2] is revisited after a few

instructions later

For i=1 to n

 y[2]=y[2]+3

5

Cache-aware Programming: Spatial Locality

• Take advantage of better bandwidth by getting a chunk of

memory to cache and use whole or part of chunk

• Exploit spatial locality in program

▪ Access things nearby previous accesses

For i=1 to n

 y[i]=y[i]+3

4000 Y[0] Y[1] Y[2]] Y[3] Y[4] Y[31]

Tag

32-Byte Cache Block

Memory

Fetching Y[1] benefits next access

of Y[2]

• Each cache block has 64 bytes. Cache has 128 bytes

• Program structure

▪ char D[64][64];

▪ Each row is stored in one cache line block

▪ Program 1

 for (j = 0; j <64; j++)
 for (i = 0; i < 64; i++)
 D[i][j] = 0;

▪ Program 2

 for (i = 0; i < 64; i++)
 for (j = 0; j < 64; j++)
 D[i][j] = 0;

Exploit spatial data locality in 2D array with a

simple cache

64*64 data byte access → What is cache miss rate?

Array layout in memory

• A 2D matrix is 1D in memory addresses

• Use 1D array to implement 2D 3x3 array with row major

 for(x = 0; x < 3; x++){

 for(y = 0; y < 3; y++) {

 array[3*x+y]=0; // Column major: array[x+3y]=0;

}

• Default layout in

C/C++ : Row major

• Alternative layout

(e.g. BLAS library)

column major

• for (i = 0; i <64; i++)
 for (j = 0; j < 64; j++)
 D[i][j] = 0;

Data Access Pattern and Cache Miss

1 cache miss

in one inner loop

iteration

64 cache miss out of 64*64 access.

There is spatial locality. Fetched cache block is used 64 times

 before swapping out (consecutive data access within the inner loop

D[0,0] D[0,1] …. D[0,63]

D[1,0] D[1,1] …. D[1,63]

D[63,0] D[63,1] …. D[63,63]

Miss hit hit hit …hit
Cache block

i

j

Each row is stored in
one cache line block

• for (j = 0; j <64; j++)

 for (i = 0; i < 64; i++)

 D[i][j] = 0;

Data Locality and Cache Miss

64 cache miss

in one inner loop

iteration

100% cache miss

There is no spatial locality. Fetched block is only used once before

swapping out.

D[0,0] D[0,1] …. D[0,63]

D[1,0] D[1,1] …. D[1,63]

D[63] D[63,0] …. D[63,63]

i

j

Memory layout and data access by block

D[0,0]

D[0,1]

….

D[0,63]

D[1,0]

D[1,1]

….

D[1,63]

…

D[63,0]

D[63,1]

….

D[63,63]

D[0,0]

D[1,0]

….

D[63,0]

D[0,1]

D[1,1]

….

D[63,1]

…

D[0,63]

D[1,63]

….

D[63,63]

CPU access order Memory layout

Cache

block

Cache

block

Cache

block

D[0,0] D[0,1] …. D[0,63]

D[1,0] D[1,1] …. D[1,63]

D[63] D[63,0] …. D[63,63]

i

j

Program in 2D loop

100% cache miss

Performance of Serial Matrix Multiply with

Different Optimizations in FLOPS
Naïve 3 nested loop

Green = simple blocking

DSB = Hand optimized code by David

Bindel@Cornell

2/2/2026 Berkeley CS267 Lecture

11

• Blocked matrix

multiply: 2-4.8x

faster naïve version

• High performance

library in vendor

machines with

more optimization:

10-19x faster

~350MFLOPS

Upto 1700MFLOPS

~6800MFLOPS

FLOPS= #operations/time

• Assume just 2 levels in the hierarchy: fast cache and slow memory

• All data initially in slow memory

▪ m = number of data elements moved between fast and memory

▪ tm = time of each element access from memory

▪ f = number of arithmetic operations

▪ tf = time per arithmetic operation << tm

▪ q = f / m average number of flops per memory element access

• Minimum possible time = f* tf when all data in fast cache

• Actual time = computation cost + data fetch cost

= f * tf + m * tm = f * tf * (1 + tm/tf /q)

• Larger q → actual time closer to minimum f * tf

12

Computational

Intensity: Key to

algorithm efficiency

Machine

Balance:

Key to

machine

efficiency

Use a Simple Model of Memory to Explain and Optimize

13

Analysis for matrix-vector multiplication

{Implements y = y + A*x}

for i = 1 to n

 for j = 1 to n

 y(i) = y(i) + A(i,j)*x(j)

= + *

y(i) y(i)

A(i,:)

x(:)

14

Add memory-cache data movement

{Read vector x(1:n) into cache}

{Read vector y(1:n) into cache}

for i = 1 to n

 {Read row i of A into cache}

 for j = 1 to n

 y(i) = y(i) + A(i,j)*x(j)

{Write y(1:n) back to slow memory}

• m = number of slow memory refs = 3n + n2

• f = number of arithmetic operations = 2n2

• q = f / m  2 Low computational intensity

•Running time = f * tf + m * tm

•FLOPS rate=f/ Time =1 / (tf + tm/q) = 1 / (tf + tm/2)

• Matrix-vector multiplication limited by slow memory speed

= + *

y(i) y(i)

A(i,:)

x(:)

15

Naïve Implementation for Matrix-Matrix Multiplication

{Implements C = C + A*B}

for i = 1 to n

 for j = 1 to n

 for k = 1 to n

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

• Algorithm has 2*n3 operations and operates on 3*n2 words of memory

• Computational intensity q potentially as large as 2*n3 / 3*n2 = O(n)

• But actual answer is not. q  2 for large n, same as matrix-vector multiplication

Inner loop is matrix-

vector multiplication

operations

16

Naïve Matrix Multiply with Memory-Cache Movement

{Implements C = C + A*B}

for i = 1 to n

 {Read row i of A into cache}

 for j = 1 to n

 {Read C(i,j) into cache}

 {Read column j of B into cache}

 for k = 1 to n

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

 {Write C(i,j) back to slow memory}

= + *

C(i,j) A(i,:)

B(:,j)

C(i,j)

Keep Row i of A in

cache. Assume

optimized cache

replacement

Naïve Matrix Multiply

{Implements C = C + A*B}

for i = 1 to n

 {Read row i of A into cache}

 for j = 1 to n

 {Read C(i,j) into cache}

 {Read column j of B into cache}

 for k = 1 to n

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

 {Write C(i,j) back to memory}

of slow memory ops:

 m = n3 to read each column of B n times

 + n2 to read each row of A once

 + 2n2 to read and write each element of

C once

 = n3 + 3n2

So q = f / m = 2n3 / (n3 + 3n2) =

computational intensity

  2 for large n, no improvement over

matrix-vector multiply

17

= + *

C(i,j) C(i,j) A(i,:)

B(:,j)

Reason: Inner two loops are just matrix-vector

multiply, of row i of A times matrix B

18

Better Implementation with Blocked Matrix

Multiplication
• Example of submartix partitioning: Divide A into 4 submatrices

• Blocked matrix multiply: Element-wise multiply is submatrix multiply

Blocked [Tiled] Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b blocks

where b=n / N is called the block size

=
+

*

b x

b

A[i,k]C[i,j]C[i,j]

B[i,k]

n elements

N blocks

Each block is bxb

19

20

Blocked (Tiled) Matrix Multiply with

Six-Nested Loops

Consider A,B,C to be N-by-N matrices of b-by-b blocks

Each element is a block

 b=n / N is called the block size

 for i = 1 to N

 for j = 1 to N

 for k = 1 to N

 C(i,j) = C(i,j) + A(i,k) * B(k,j) // block submatrix multiply

3 nested loops

inside

= + *A[i,k]C[i,j]

B[i,k]

C[i,j]

21

Blocked (Tiled) Matrix Multiply with

Memory-Cache Data Movement

= + *A[i,k]C[i,j]

B[i,k]

C[i,j]

Consider A,B,C to be N-by-N matrices of b-by-b blocks where

 b=n / N is called the block size

 for i = 1 to N

 for j = 1 to N

 {Read block C(i,j) into cache}

 for k = 1 to N

 {Read block A(i,k) into cache}

 {Read block B(k,j) into cache}

 C(i,j) = C(i,j) + A(i,k) * B(k,j)// Block submatrix multiply

 {Write block C(i,j) back to slow memory}

22

Blocked (Tiled) Matrix Multiply with

Memory-Cache Data Movement

= + *A[i,k]C[i,j]

B[i,k]

C[i,j]

A,B,C to be N-by-N matrices of b-by-b blocks

b=n / N is called the block size

 for i = 1 to N

 for j = 1 to N

 {Read block C(i,j) into cache}

 for k = 1 to N

 {Read block A(i,k) into cache}

 {Read block B(k,j) into cache}

 C(i,j) = C(i,j) + A(i,k) * B(k,j)

 {Write block C(i,j) back to memory}

2n2 to read/write each block of C once

N*n2 to read each block of A N3 times

 (N3 *b2 =N3 *(n/N)2)

N*n2 to read each block of B N3 times

23

Blocked (Tiled) Matrix Multiply

Recall:

 m is amount memory traffic between memory and cache

 matrix has nxn elements, and NxN blocks each of size bxb

 f is number of floating point operations, f=2n3

 q = f / m is our measure of memory access efficiency

So: #slow memory access

m = N*n2 read each block of B N3 times (N3 * b2 = N3 * (n/N)2 = N*n2)

 + N*n2 read each block of A N3 times

 + 2n2 read and write each block of C once

 = (2N + 2) * n2

So computational intensity q = f / m = 2n3 / ((2N + 2) * n2)

  n / N = b for large n

So we can improve performance by increasing the block size b

Blocked version can be much faster than naïve version which has q=2

24

Block Size Limited by Cache Size & Takeaways

Blocked matrix multiply has computational intensity q  b

• Larger the block size → more efficient

• Limit: All three blocks from A,B,C must fit in cache

• Assume L1 cache has size Msize

 3b2  Msize, so q  b  (Msize/3)1/2

• Assume L1 cache has size 32KB, b  104

Takeaways from this figure:

• Blocked matrix multiply: 2-

4.8x faster than naïve version

• BLAS library from vendors

with more optimization: 10-

19x faster

25

Basic Linear Algebra Subroutines (BLAS)

• Industry standard interface: www.netlib.org/blas

• Vendors supply optimized BLAS implementations

▪ BLAS1: Vector operations: dot product, saxpy (y=a*x+y), etc

– m=2*n, f=2*n, low computational density ~1 or less

▪ BLAS2

– E.g. Matrix-vector multiplication. m=n^2, f=2*n^2

– Moderate computational density~2

– Computation expressed with BLAS2 can be faster than BLAS1

▪ BLAS3

– E.g. Matrix-matrix multiplication with m <= O(n^2), f=O(n^3)

– Higher computational density > 2

• Applications may be expressed a mixed set of BLAS1, BLAS2, or

BLAS3 operations

GEMM and GEMV in Intel/NVIDIA BLAS Libraries

▪ Intel Math Kernel Library (MKL) for Intel CPUs and GPUs, and
it works on AMD CPUs (e.g. CPU servers on Expanse)
– cblas_sgemm, cblas_dgemm, sgemm, dgemv

▪ cuBLAS : NVIDIA-optimized implementation for use
with CUDA on its GPUs.
– cublasSgemm, cublasDgemm, cublasSgemv, cublasDgemv

▪ API of MKL and cuBLAS is almost identical

SGEMM (single-precision general matrix-matrix multiplication)

and DGEMM for double-precision: C=α⋅op(A)⋅op(B)+β⋅C

• A, B, and C are M*K, K*N, M*N matrices.

• op(X) can be X (no transpose), XT (transpose)

• α and β are scalar coefficients.

SGEMV and DGEMV for matrix vector multiplication:

 y =α⋅op(A)⋅x+β⋅y
• x and y are column vectors of size K.

26

DGEMV function in MKL: y =α⋅op(A)⋅x+β⋅y

• A is M*K matrix. x and y are column vectors of size K.

• op(A) can be A (no transpose), AT (transpose)

• α and β are scalar coefficients.

void cblas_dgemv(

 CblasColMajor or CblasRowMajor //Choose CblasColMajor

 CblasNoTrans or CblasTrans, // no transpose or transpose of A

 MKL_int M, MKL_int K,

 double alpha, double *A, MKL_int *lda,

 double *x, MKL_int incx,

 double beta, double *y, MKL_int incy);

incx, incy: Stride(increment) of next element in vectors x and y.

Normally choose 1.

lda=3

27

DGEMM function in MKL: C=α⋅op(A)⋅op(B)+β⋅C

• A, B, and C are single-precision M*K, K*N, M*N matrices.

• op(X) can be X (no transpose), XT (transpose)

• α and β are scalar coefficients

void cblas_gemm(

 CblasColMajor or CblasRowMajor //Choose CblasColMajor

 CblasNoTrans or CblasTrans, // no transpose or transpose of A

 CblasNoTrans or CblasTrans, // no transpose or transpose of B

 MKL_int M, MKL_int N, MKL_int K,

 double alpha, double *A, MKL_int lda,

 double *B, MKL_int ldb,

 double beta, double *C, MKL_int ldc);

lda, ldb, ldc: Leading dimensions of A, B, and C as # of elements

between the start of successive columns (Column-Major)

lda=3

29

A=
1 1
1 0

, 𝐵 =
1 3
2 4

 𝐶 = 𝐴𝐵 → 𝐶 =
3 7
3 3

Use of GEMV for GEMM Implementation

• In general, a computing problem may be expressed by

• a set of BLAS-1 operations

• or BLAS-2 operations

• or BLAS-3 operations

• or mixed of all levels

3
3

 = A*
1
2

7
3

 = A∗
3
4

Decomposed

• Matrix-matrix multiplication with size N*N can be can be

expressed as N matrix-vector multiplications. For example, N=2

Concluding Remarks

To optimize serial code efficiency

▪ Cache-aware programming to exploit spatial and temporal
locality

▪ It is recommended to use fully optimized vendor’s or open-
source BLAS library functions for time-consuming core
scientific computation

– Compare FLOPS difference when code can use different
levels of BLAS

– For larger problem sizes, BLAS3 is faster with cache
optimization and SIMD vectorization

– BLAS has calling overhead while unoptimized code may fit
in cache well for small problem sizes

32

Other serial code optimization strategies discussed earlier

• Use compiler optimization level as high as possible

• SIMD vectorization on Intel/AMD CPUs if compiler
cannot vectorize serial code well

	Slide 1: Optimizing Serial Code Performance with Cache-aware Programming and BLAS
	Slide 2: Topics
	Slide 3: Memory Hierarchy in Computer Systems
	Slide 4: Cache-Aware Programming: Temporal Locality
	Slide 5: Cache-aware Programming: Spatial Locality
	Slide 6: Exploit spatial data locality in 2D array with a simple cache
	Slide 7: Array layout in memory
	Slide 8: Data Access Pattern and Cache Miss
	Slide 9: Data Locality and Cache Miss
	Slide 10: Memory layout and data access by block
	Slide 11: Performance of Serial Matrix Multiply with Different Optimizations in FLOPS
	Slide 12: Use a Simple Model of Memory to Explain and Optimize
	Slide 13: Analysis for matrix-vector multiplication
	Slide 14: Add memory-cache data movement
	Slide 15: Naïve Implementation for Matrix-Matrix Multiplication
	Slide 16: Naïve Matrix Multiply with Memory-Cache Movement
	Slide 17: Naïve Matrix Multiply
	Slide 18: Better Implementation with Blocked Matrix Multiplication
	Slide 19: Blocked [Tiled] Matrix Multiply
	Slide 20: Blocked (Tiled) Matrix Multiply with Six-Nested Loops
	Slide 21: Blocked (Tiled) Matrix Multiply with Memory-Cache Data Movement
	Slide 22: Blocked (Tiled) Matrix Multiply with Memory-Cache Data Movement
	Slide 23: Blocked (Tiled) Matrix Multiply
	Slide 24: Block Size Limited by Cache Size & Takeaways
	Slide 25: Basic Linear Algebra Subroutines (BLAS)
	Slide 26: GEMM and GEMV in Intel/NVIDIA BLAS Libraries
	Slide 27: DGEMV function in MKL: y =α⋅op(A)⋅x+β⋅y
	Slide 29: DGEMM function in MKL: C=α⋅op(A)⋅op(B)+β⋅C
	Slide 31: Use of GEMV for GEMM Implementation
	Slide 32: Concluding Remarks

