Optimizing Serial Code Performance with
Cache-aware Programming and BLAS

T. Yang. UCSB CS140, Winter 2026

UCSB

' Topics

High performance computing on single cores
= SIMD vectorization on Intel/ AMD CPUs

— Covered in parallel architecture lecture
= Cache-aware optimization

= BLAS

UCSB

Memory Hierarchy in Computer Systems

= Large performance impact when accessing data in
different levels of memory hierarchy

= Cache-aware programming through program
transformation is critical to maximize code efficiency

TB

GB

Processor

Control

Arithmetic -

Registers

~10ns

~Ins ~60-100ns

Cache-Aware Programming: Temporal Locality

= Exploit temporal locality in program

— Reuse an 1item that was previously accessed

= Ex 1: Y[2]1s revisited continuously

For1=1 ton
y[2]=y[2]+3

= Ex 2 with access sequence: Y[2] is revisited after a few

instructions later

Y[1] X[O] Y[1] Y[2] X[O] Y[2]

4 intermediate elements

Y[3] X[O0] Y[3] Y[1] Y[O] Y[1] Y[3]

Y[2] Y[3]

~_

UCSB

’ Cache-aware Programming: Spatial Locality

« Take advantage of better bandwidth by getting a chunk of
memory to cache and use whole or part of chunk

» Exploit spatial locality in program

= Access things nearby previous accesses

Fori1=1 ton Fetching Y[1] benefits next access
y[1]=y[1]+3 of Y[2]
32-Byte Cache Block
4000 Y[l [Y11 [Yo [YI8l T vidl | Y[31]
Tag
Memory
5 Leod

’ Exploit spatial data locality in 2D array with a
simple cache

 Each cache block has 64 bytes. Cache has 128 bytes
* Program structure
= char D[64][64];
= Each row is stored in one cache line block
* Program 1
for j = 0;) <64; j++)
for (1=0;1<64; 1++)

D[i][j] = 0;

* Program 2
for 1=0;1<64; 1++)
for (j =0;) < 64; j++)
D[1](j] = 0;

64*64 data byte access = What is cache miss rate? Leas

' Array layout in memory

* Default layout in 1

row-major

C/C++ : Row major | 4

4

5

6

* Alternative layout :

2

3

column-major

(e.g. BLAS library) | .

5

6

column major ;

8

9

2

S

8

A 2D matrix is 1D in memory addresses
* Use 1D array to implement 2D 3x3 array with row major

for(x = 0; x < 3; x++){
for(y = 0;y < 3; y++) {
array[3*x+y]=0; //

Column major: array[x+3y]=0;

UCSB

Data Access Pattern and Cache Miss

» for (1= 0;1<64; 1++) Each row 1s stored in
for (j =0; j <64; j++) one cache line block
DIi][j] = 0;

Miss hit hit oit ...t !
D[0,0] D[0,1] D[0,63] |Cache block
D[1,0] D[1,1] D[1,63]

1 cache miss
in one inner loop
1teration

D[63,0] D[63,1] D[63,63]

64 cache miss out of 64*64 access.
There 1s spatial locality. Fetched cache block 1s used 64 times

before swapping out (consecutive data access within the inner loop
UCSB

Data Locality and Cache Miss

e for (7 = 0; 3 <64; J++)
for (i = 0; i < 64; i++)
D[i][]j] = O;

DID.01/D[0.1] .. .ID[0.63]
D[I1,0)D[1,1]|D[1,63]

64 cache miss
in one inner loop
iteration

D[6 3/4 D[63,0] D[43,63]

v/ J \”

100% cache miss
There 1s no spatial locality. Fetched block 1s only used once before

swapping out.
UCSB

Memory layout and data access by block

CPU access order Memory layout Program in 2D loop

D[0,0] D[0,0] " >]

D[1,0] D[0,1] DID.01D[0,1][D[0,63]

i D[I1,0)D[1,1]|D[1,63]

D[63,0] D[0,63]

D[0,1] [1,0]

D[1,1] D[1,1]

D[63,1] D[1,63] D[e3/§ D[63,0] ... D[43,63]

DJ[0,63] DJ[63,0]

DJ[1,63] C DJ[63,1]

bl 100% cache miss

D[63,63] D[63,63] UCSE

e

Different Optimizations in FLOPS

Performance of Serial Matrix Multiply with

Naive 3 nested loop ~350MFLOPS
Green = simple blocking Upto 1700MFLOPS
DSB = Hand optimized code by David

Bindel@Cornell

——F + 4 ¥
| | 1 1 1 | | |

2/2/2026 Berkeley CS267 Lecture

FLOPS= #operations/time

—&= ~6800MFLOPS

Blocked matrix
multiply: 2-4.8x
faster naive version
High performance
library in vendor
machines with
more optimization:
10-19x faster

11

UCSB
>

Use a Simple Model of Memory to Explain and Optimize

* Assume just 2 levels in the hierarchy: fast cache and slow memory

« All data initially in slow memory

= m = number of data elements moved between fast and memory

= t . = time of each element access from memory

= {= number of arithmetic operations

Computational
Intensity: Key to

algorithm/efﬁciency

" t.= time per arithmetic operation <<'t_, /

" |q=1/m average number of flops per memory element access

 Minimum possible time = f* t; when all data in fast cache

* Actual time = computation cost + data fetch cost
=f*te+tm*t, =1f*t.* (1 +t, /tr /qQ)

« Larger q = actual time closer to minimum *t;,—| Key to

Machine
Balance:

machine
efficiency 12
UCSB
e

Analysis for matrix-vector multiplication

{Implements y =y + A*x}
fori=1ton
forj=1ton

y(i) = y(i) + A(i,j)*x(j)

I
+
*

y(i) y(0) x(:)

ByucsB
>

Add memory-cache data movement

{Read vector x(1:n) into cache}
{Read vector y(1:n) into cache}
fori=1ton
{Read row i of A into cache}
forj=1ton
y(i) = y(i) + A(i.,j)*x(j)
{Write y(1:n) back to slow memory} y()

y(i)

« m = number of slow memory refs = 3n + n?

« f =number of arithmetic operations = 2n?
eq =f/m=2 Low computational intensity
‘Running time =f* t.+m * t_

I
+

A(,:)

*FLOPS rate=f/ Time=1/(t; + t /q) = 1/(ty + t./2)
e Matrix-vector multiplication limited by slow memory speed

4ucsB
>

Naive Implementation for Matrix-Matrix Multiplication

C(i) C(i) Ali-2)

]
+

« Algorithm has 2*n3 operations and operates on 3*n? words of memory
« Computational intensity q potentially as large as 2*n3 / 3*n? = O(n)

{Implements C = C + A*B} | Inner loop is matrix-
fori=1ton vector multiplication
forj=1ton operations
fork=1ton
C(ij) = C(ij) + Ali,k) * B(k,j)

» But actual answer 1s not. q = 2 for large n, same as matrix-vector multiplication

15 UCSB

Naive Matrix Multiply with Memory-Cache Movement

{Implements C = C + A*B}

fori=1ton

{Read row i of A into cache}
forj=1ton

{Read C(i,j) into cache}

{Read column j of B into cache}
fork=1ton

C(i,j) = C(i,j) + A(i,k) " B(k,j)
{Write C(i,j) back to slow memory}

/

/

Keep Row 1 of A in
cache. Assume
optimized cache
replacement

C(i,j)
[

C(i.j)
[

8yCsB
>

Naive Matrix Multiply

{Implements C =C + A*B}
fori=1ton

{Read row 1 of A into cache}

fory=1ton

{Read C(1,)) into cache}

{Read column j of B into cache}

fork=1ton

C(1,)) = C(1,)) + A(Lk) * B(ky)
{Write C(i,)) back to memory}

of slow memory ops:
m=n3 toread each column of B n times
+n? toread each row of A once
+ 2n? to read and write each element of
C once
— 1’13 + 31’12
Soq=f/m=2n3/(n*+ 3n?) =
computational intensity
= 2 for large n, no improvement over
matrix-vector multiply

C(i,j)

Reason: Inner two loops are just matrix-vector
multiply, of row 1 of A times matrix B

A(i,:)

17 UCSB
>

Better Implementation with Blocked Matrix

—Multiplication

« Example of submartix partitioning: Divide A into 4 submatrices

/(111 a2 | a3 aln\
Al A

A1 Aao

a a2 | az a24
A — 21 3 3

a3z1 as2| a3z az4

* Blocked matrix multiply: Element-wise multiply is submatrix multiply 18;-qp
>

’ Blocked [Tiled] Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b blocks
where b=n / N is called the block size

Bli,k]

CIi,j] Cli,jl Ali.k]

n elements
“——Nblocks— "

Each block is bxb

19 UCSB
>

Blocked (Tiled) Matrix Multiply with
Six-Nested Loops

Consider A,B,C to be N-by-N matrices of b-by-b blocks
Each element is a block
b=n/ N is called the block size

fori=1toN
forj=1to N

3 nested loops
inside

fork=1to N /

C(i,j) = C(i,j) + A(i,k) * B(k,j) // block submatrix multiply

Blocked (Tiled) Matrix Multiply with
Memory-Cache Data Movement

Consider A,B,C to be N-by-N matrices of b-by-b blocks where
b=n/ N i1s called the block size
fori=1toN
foryj=1toN
{Read block C(1,j) into cache}
fork=1to N
{Read block A(i,k) into cache}
{Read block B(k,j) into cache}
C(,)) = C(1) + A(1,k) * B(k,j)// Block submatrix multiply
{Write block C(1,)) back to slow memory}

C[1.]] = Clh,] + Alik *

Blocked (Tiled) Matrix Multiply with
Memory-Cache Data Movement

A,B,C to be N-by-N matrices of b-by-b blocks
b=n/ N is called the block size
fori=1toN
fory=1toN
{Read block C(1,j) into cache}
fork=1toN
{Read block A(i,k) into cache}
{Read block B(k,j) into cache}
C(1,)) = C(1,)) + A(Lk) * B(ky)
{Write block C(i,j) back to memory}

2n? to read/write each block of C once

N*n? to read each block of A N3 times
(N3 *b2 =N3 *(n/N)2)

N*n2 to read each block of B N3 times

Blocked (Tiled) Matrix Multiply

Recall:
m 1s amount memory traffic between memory and cache
matrix has nxn elements, and NxN blocks each of size bxb
f'is number of floating point operations, f=2n3
q = f/m is our measure of memory access efficiency

So: #slow memory access

m= N*n? read each block of B N3 times (N3 * b2 = N3 * (n/N)?=N%*n?)
+ N*n? read each block of A N3 times
+2n? read and write each block of C once
— ON+2) * n2

So computational intensity q =f/m =2n3/ ((2N + 2) * n?)
~n/N =b forlargen
So we can improve performance by increasing the block size b

Blocked version can be much faster than naive version which has qg=2 2317CSB
>

' Block Size Limited by Cache Size & Takeaways

Blocked matrix multiply has computational intensity q = b
» Larger the block size = more efficient

 Limit: All three blocks from A,B,C must fit in cache
 Assume L1 cache has size M..

S17¢€

3b2<M,,.,, SO q~b<(M,,/3)"

S1Z€

 Assume L1 cache has size 32KB, b < 104

Takeaways from this figure:

* Blocked matrix multiply: 2- - I\MIJ
4 .8x faster than naive version - IL
 BLAS library from vendors k

1th more optimization: 10- = 7 &
W ptimiz ’—‘T—rﬂ_ﬁ\ A -
19x faster .

% % : 3
'l L 1 1 1

24

’ Basic Linear Algebra Subroutines (BLAS)

* Industry standard interface: www.netlib.org/blas

* Vendors supply optimized BLAS implementations
= BLASI1: Vector operations: dot product, saxpy (y=a*x+y), etc
— m=2*n, {=2*n, low computational density ~1 or less
= BLAS2
— E.g. Matrix-vector multiplication. m=n"2, {=2*n"2
— Moderate computational density~2
— Computation expressed with BLAS2 can be faster than BLASI
= BLAS3
— E.g. Matrix-matrix multiplication with m <= O(n"2), f=0O(n"3)
— Higher computational density > 2

 Applications may be expressed a mixed set of BLAS1, BLAS2, or

BLAS3 operations UCSB
oE >

GEMM and GEMV in Intel/NVIDIA BLAS Libraries

= Intel Math Kernel Library (MKL) for Intel CPUs and GPUs, and
it works on AMD CPUs (e.g. CPU servers on Expanse)

— cblas_sgemm, cblas dgemm, sgemm, dgemv

= cuBLAS : NVIDIA-optimized implementation for use
with CUDA on its GPUs.

— cublasSgemm, cublasDgemm, cublasSgemv, cublasDgemv

= API of MKL and cuBLAS is almost identical

SGEMM (single-precision general matrix-matrix multiplication)
and DGEMM for double-precision: C=a-op(A)-op(B)+p-C
« A, B, and C are M*K, K*N, M*N matrices.
* op(X) can be X (no transpose), X! (transpose)
* o and B are scalar coefficients.
SGEMYV and DGEMYV for matrix vector multiplication:

y =0-0p(A)-x+p-y
* x and y are column vectors of size K. s UCSB

DGEMYV function in MKL: y =a-op(A)-x+f-y

* A1s M*K matrix. x and y are column vectors of size K.
* op(A) can be A (no transpose), Al (transpose)
* o and B are scalar coefficients.

1 2 < 1da:3 column-major

4 5 6 = 1 4 7 2 S 8 3 6 9

void cblas dgemv(7 | ¢
CblasColMajor or CblasRowMajor //Choose CblasColMajor
CblasNoTrans or CblasTrans, // no transpose or transpose of A
MKL intM, MKL intK,
double alpha, double *A, MKL int *1da,
double *x, MKL int incx,
double beta, double *y, MKL 1nt incy);

Incx, incy: Stride(increment) of next element in vectors x and vy.
Normally choose 1. 27UCSB

' DGEMM function in MKL: C=a-op(A)-op(B)+f3-C

* A, B, and C are single-precision M*K, K*N, M*N matrices.
* op(X) can be X (no transpose), X! (transpose)
* o and B are scalar coefficients | 1|2 |3 Ida=3 colmnmajor

4 > 6 e 1 4 74 2 5 8 3 6 9

void cblas gemm(;
CblasColMajor or CblasRowMajor //Choose CblasColMajor

CblasNoTrans or CblasTrans, // no transpose or transpose of A

CblasNoTrans or CblasTrans, // no transpose or transpose of B
MKL int M, MKL int N, MKL int K,

double alpha, double *A, MKL int lda,

double *B, MKL int Ildb,

double beta, double *C, MKL int ldc);

lda, 1db, Idc: Leading dimensions of A, B, and C as # of elements
between the start of successive columns (Column-Major) .6 UCSB

Use of GEMV for GEMM Implementation

* Matrix-matrix multiplication with size N*N can be can be
expressed as N matrix-vector multiplications. For example, N=2

M 11, M 3
A=11 0]'3 = [2 4] g] :A*B]
C=AB = C = B ; Decomposed

= [==[]

* In general, a computing problem may be expressed by
* asetof BLAS-1 operations
* or BLAS-2 operations
* or BLAS-3 operations
* or mixed of all levels

UCSB

Concluding Remarks

To optimize serial code efficiency

* Cache-aware programming to exploit spatial and temporal
locality

= It 1s recommended to use fully optimized vendor’s or open-
source BLAS library functions for time-consuming core
scientific computation

— Compare FLOPS difference when code can use different
levels of BLAS

— For larger problem sizes, BLAS3 1is faster with cache
optimization and SIMD vectorization

— BLAS has calling overhead while unoptimized code may fit
in cache well for small problem sizes

Other serial code optimization strategies discussed earlier

* Use compiler optimization level as high as possible

e SIMD vectorization on Intel/AMD CPUs 1f compiler
cannot vectorize serial code well 32 UCSB

	Slide 1: Optimizing Serial Code Performance with Cache-aware Programming and BLAS
	Slide 2: Topics
	Slide 3: Memory Hierarchy in Computer Systems
	Slide 4: Cache-Aware Programming: Temporal Locality
	Slide 5: Cache-aware Programming: Spatial Locality
	Slide 6: Exploit spatial data locality in 2D array with a simple cache
	Slide 7: Array layout in memory
	Slide 8: Data Access Pattern and Cache Miss
	Slide 9: Data Locality and Cache Miss
	Slide 10: Memory layout and data access by block
	Slide 11: Performance of Serial Matrix Multiply with Different Optimizations in FLOPS
	Slide 12: Use a Simple Model of Memory to Explain and Optimize
	Slide 13: Analysis for matrix-vector multiplication
	Slide 14: Add memory-cache data movement
	Slide 15: Naïve Implementation for Matrix-Matrix Multiplication
	Slide 16: Naïve Matrix Multiply with Memory-Cache Movement
	Slide 17: Naïve Matrix Multiply
	Slide 18: Better Implementation with Blocked Matrix Multiplication
	Slide 19: Blocked [Tiled] Matrix Multiply
	Slide 20: Blocked (Tiled) Matrix Multiply with Six-Nested Loops
	Slide 21: Blocked (Tiled) Matrix Multiply with Memory-Cache Data Movement
	Slide 22: Blocked (Tiled) Matrix Multiply with Memory-Cache Data Movement
	Slide 23: Blocked (Tiled) Matrix Multiply
	Slide 24: Block Size Limited by Cache Size & Takeaways
	Slide 25: Basic Linear Algebra Subroutines (BLAS)
	Slide 26: GEMM and GEMV in Intel/NVIDIA BLAS Libraries
	Slide 27: DGEMV function in MKL: y =α⋅op(A)⋅x+β⋅y
	Slide 29: DGEMM function in MKL: C=α⋅op(A)⋅op(B)+β⋅C
	Slide 31: Use of GEMV for GEMM Implementation
	Slide 32: Concluding Remarks

