
Optimizing Serial Code Performance with Cache-aware Programming and BLAS

T. Yang. UCSB CS140, Winter 2026

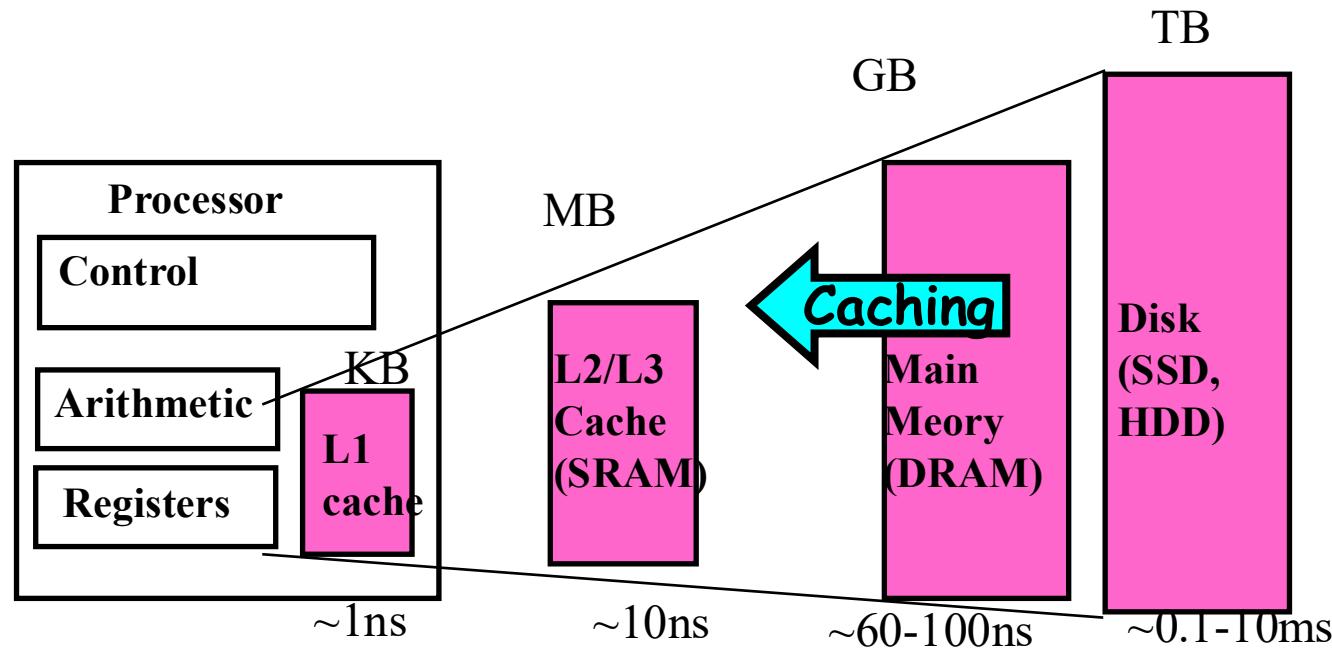
Topics

High performance computing on single cores

- SIMD vectorization on Intel/AMD CPUs
 - Covered in parallel architecture lecture
- Cache-aware optimization
- BLAS

Memory Hierarchy in Computer Systems

- Large performance impact when accessing data in different levels of memory hierarchy
- Cache-aware programming through program transformation is critical to maximize code efficiency

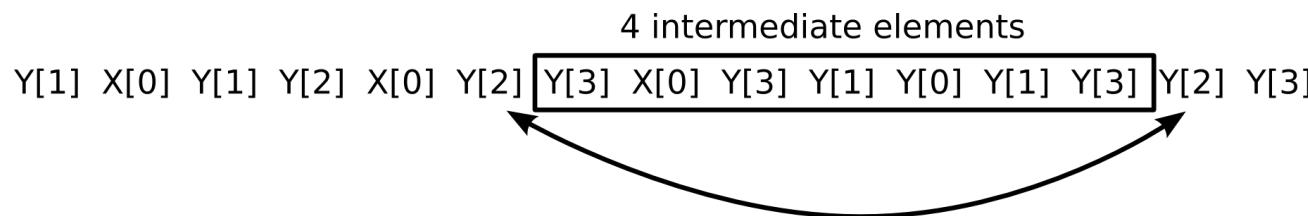


Cache-Aware Programming: Temporal Locality

- Exploit **temporal locality** in program
 - Reuse an item that was previously accessed
- Ex 1: $Y[2]$ is revisited continuously

For $i=1$ to n
 $y[2]=y[2]+3$

- Ex 2 with access sequence: $Y[2]$ is revisited after a few instructions later

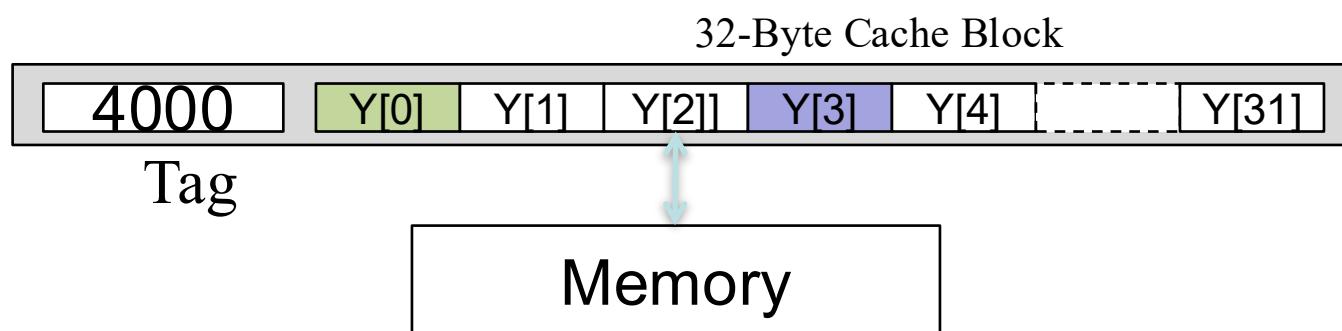


Cache-aware Programming: Spatial Locality

- Take advantage of better bandwidth by getting a chunk of memory to cache and use whole or part of chunk
- Exploit **spatial locality** in program
 - Access things nearby previous accesses

For $i=1$ to n
 $y[i]=y[i]+3$

Fetching $Y[1]$ benefits next access of $Y[2]$



Exploit spatial data locality in 2D array with a simple cache

- Each cache block has 64 bytes. Cache has 128 bytes
- Program structure
 - `char D[64][64];`
 - Each row is stored in one cache line block
 - **Program 1**

```
for (j = 0; j < 64; j++)  
    for (i = 0; i < 64; i++)  
        D[i][j] = 0;
```

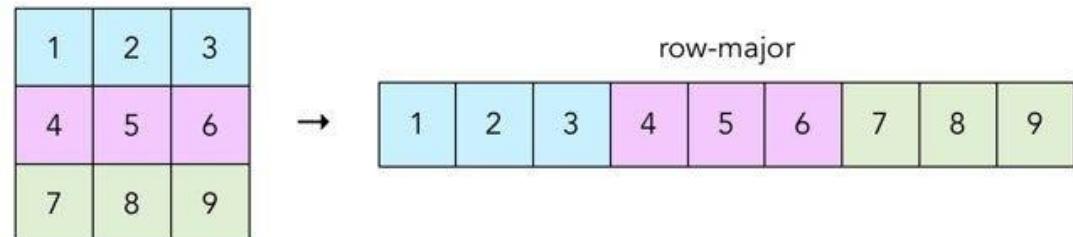
- **Program 2**

```
for (i = 0; i < 64; i++)  
    for (j = 0; j < 64; j++)  
        D[i][j] = 0;
```

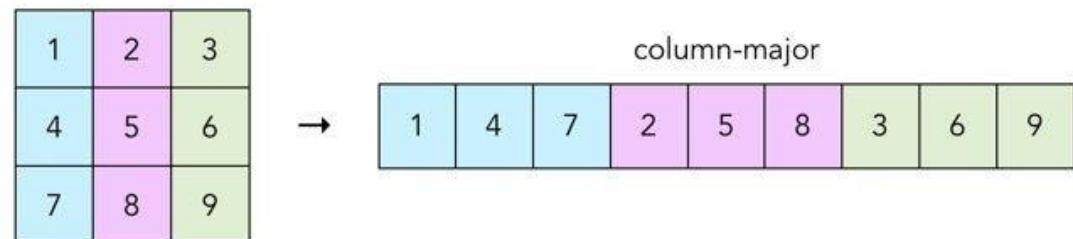
64*64 data byte access → What is cache miss rate?

Array layout in memory

- Default layout in C/C++ : Row major



- Alternative layout (e.g. BLAS library)
column major



- A 2D matrix is 1D in memory addresses
- Use 1D array to implement 2D 3x3 array with row major

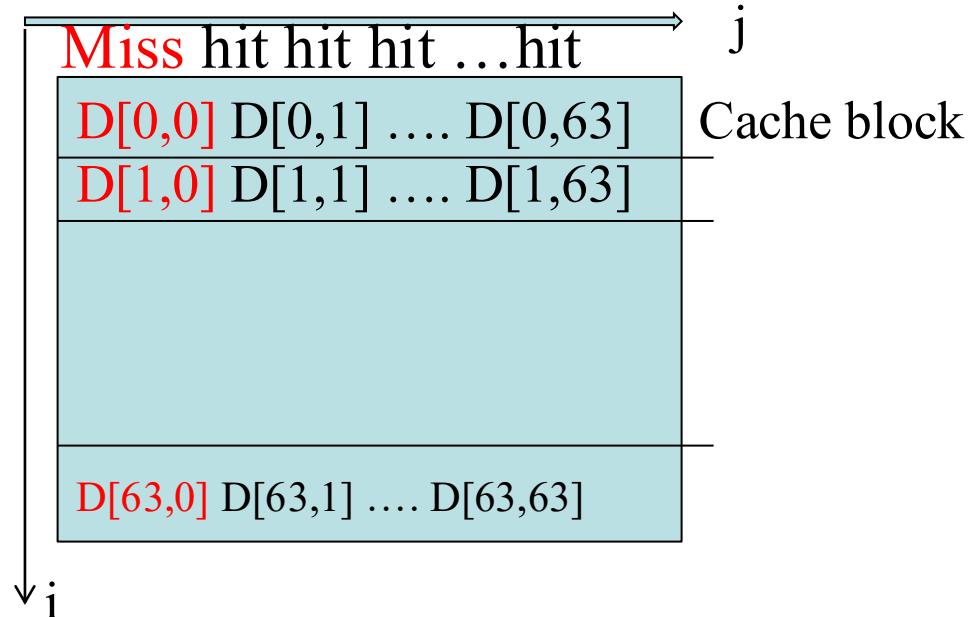
```
for(x = 0; x < 3; x++){  
    for(y = 0; y < 3; y++) {  
        array[3*x+y]=0; // Column major: array[x+3y]=0;  
    }  
}
```

Data Access Pattern and Cache Miss

```
• for (i = 0; i < 64; i++)  
  for (j = 0; j < 64; j++)  
    D[i][j] = 0;
```

1 cache miss
in one **inner** loop
iteration

Each row is stored in
one cache line block



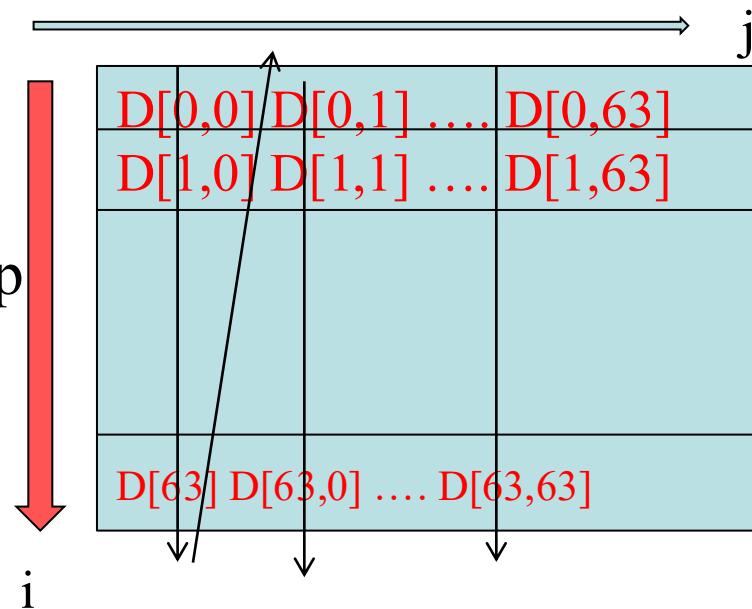
64 cache miss out of 64*64 access.

There is spatial locality. Fetched cache block is used 64 times
before swapping out (consecutive data access within the inner loop

Data Locality and Cache Miss

```
• for (j = 0; j < 64; j++)  
  for (i = 0; i < 64; i++)  
    D[i][j] = 0;
```

64 cache miss
in one **inner** loop
iteration



100% cache miss

There is no spatial locality. Fetched block is only used once before swapping out.

Memory layout and data access by block

CPU access order

D[0,0]
D[1,0]
....
D[63,0]
D[0,1]
D[1,1]
....
D[63,1]
...
D[0,63]
D[1,63]
....
D[63,63]

Memory layout

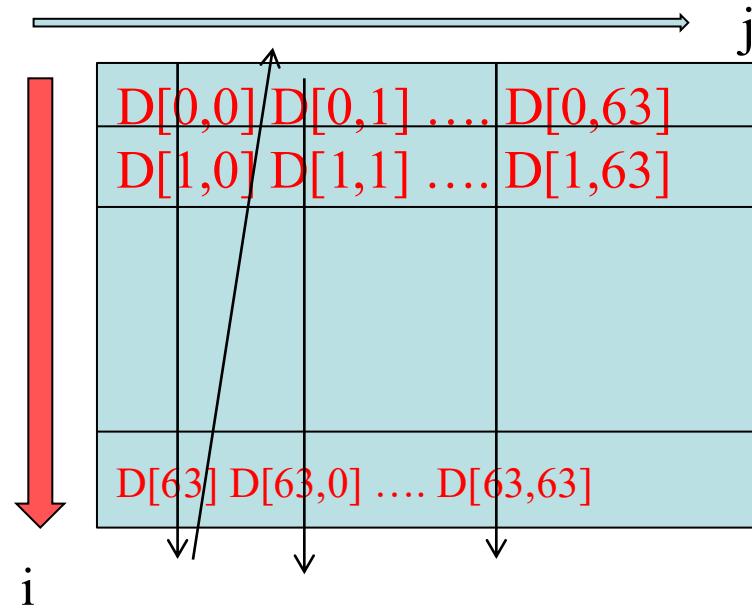
D[0,0]
D[0,1]
....
D[0,63]
D[1,0]
D[1,1]
....
D[1,63]
...
D[63,0]
D[63,1]
....
D[63,63]

Cache block

Cache block

Cache block

Program in 2D loop



100% cache miss

Performance of Serial Matrix Multiply with Different Optimizations in FLOPS

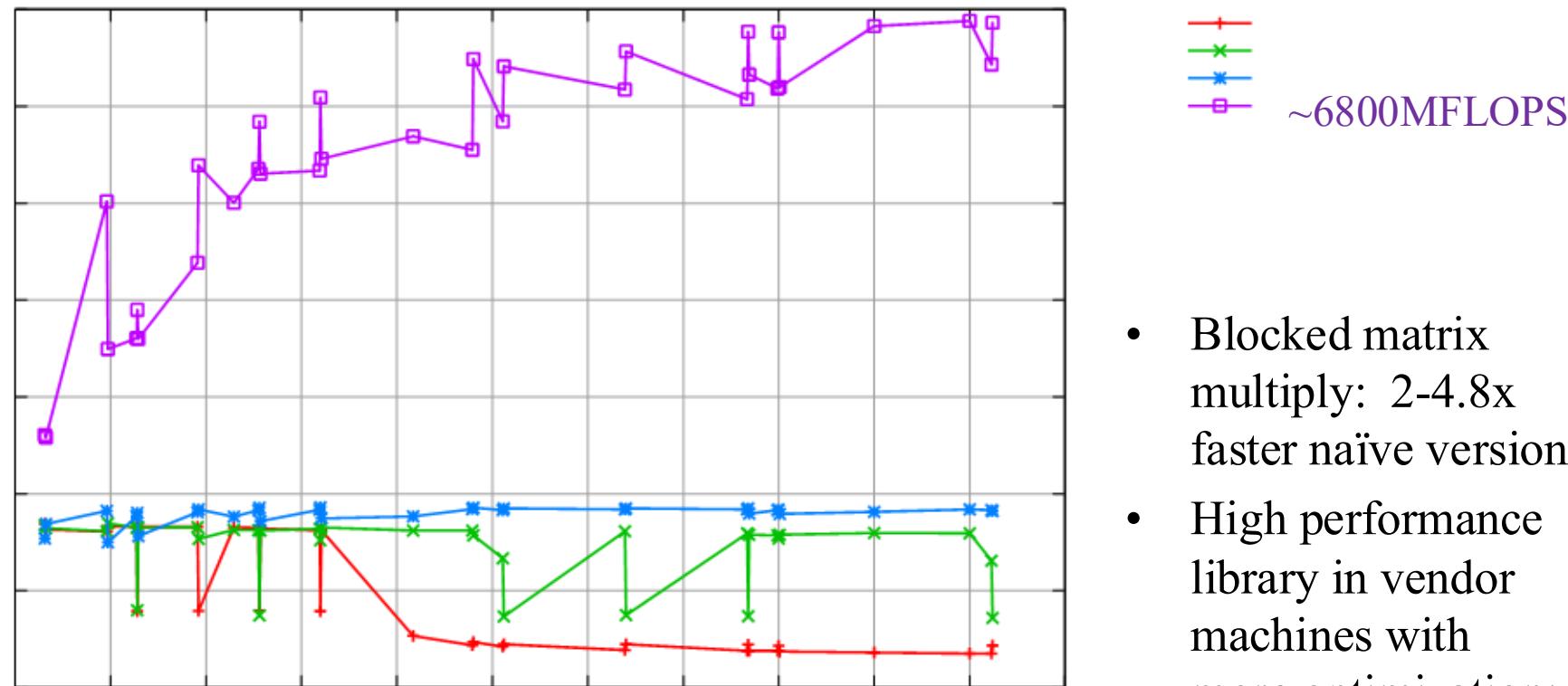
Naïve 3 nested loop

~350MFLOPS

Green = simple blocking

Upto 1700MFLOPS

DSB = Hand optimized code by David Bindel@Cornell



- Blocked matrix multiply: 2-4.8x faster naïve version
- High performance library in vendor machines with more optimization: 10-19x faster

Use a Simple Model of Memory to Explain and Optimize

- Assume just 2 levels in the hierarchy: fast cache and slow memory
- All data initially in slow memory
 - m = number of data elements moved between fast and memory
 - t_m = time of each element access from memory
 - f = number of arithmetic operations
 - t_f = time per arithmetic operation $\ll t_m$
 - $q = f / m$ average number of flops per memory element access
- Minimum possible time = $f * t_f$ when all data in fast cache
- Actual time = computation cost + data fetch cost
$$= f * t_f + m * t_m = f * t_f * (1 + \frac{t_m}{t_f} / q)$$
- Larger $q \rightarrow$ actual time closer to minimum $f * t_f$

Computational Intensity: Key to algorithm efficiency

Machine Balance: Key to machine efficiency

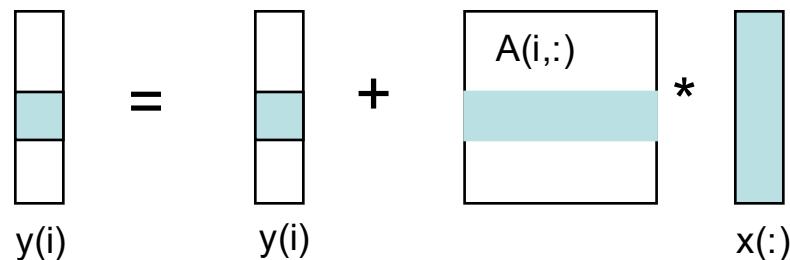
Analysis for matrix-vector multiplication

{Implements $y = y + A^*x$ }

for $i = 1$ to n

 for $j = 1$ to n

$y(i) = y(i) + A(i,j)^*x(j)$



Add memory-cache data movement

{Read vector $x(1:n)$ into cache}

{Read vector $y(1:n)$ into cache}

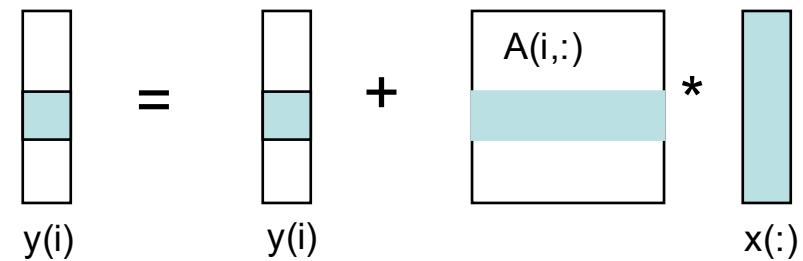
for $i = 1$ to n

{Read row i of A into cache}

for $j = 1$ to n

$$y(i) = y(i) + A(i,j) * x(j)$$

{Write $y(1:n)$ back to slow memory}



- $m = \text{number of slow memory refs} = 3n + n^2$
- $f = \text{number of arithmetic operations} = 2n^2$
- $q = f / m \approx 2$ Low computational intensity
- **Running time** = $f * t_f + m * t_m$
- **FLOPS rate** = $f / \text{Time} = 1 / (t_f + t_m/q) = 1 / (t_f + t_m/2)$
- Matrix-vector multiplication limited by slow memory speed

Naive Implementation for Matrix-Matrix Multiplication

{Implements $C = C + A \cdot B$ }

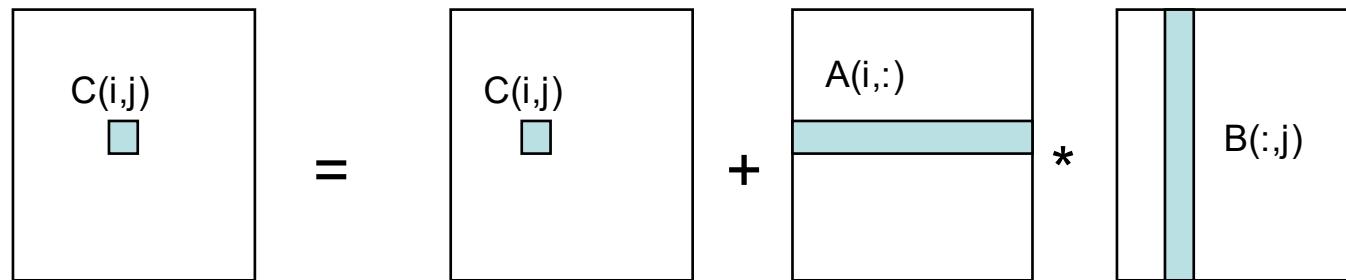
for $i = 1$ to n

 for $j = 1$ to n

 for $k = 1$ to n

$$C(i,j) = C(i,j) + A(i,k) * B(k,j)$$

Inner loop is matrix-vector multiplication operations



- Algorithm has $2 \cdot n^3$ operations and operates on $3 \cdot n^2$ words of memory
- Computational intensity q *potentially* as large as $2 \cdot n^3 / 3 \cdot n^2 = O(n)$
- But actual answer is not. $q \approx 2$ for large n , same as matrix-vector multiplication

Naïve Matrix Multiply with Memory-Cache Movement

{Implements $C = C + A^*B$ }

for $i = 1$ to n

{Read row i of A into cache}

for $j = 1$ to n

{Read $C(i,j)$ into cache}

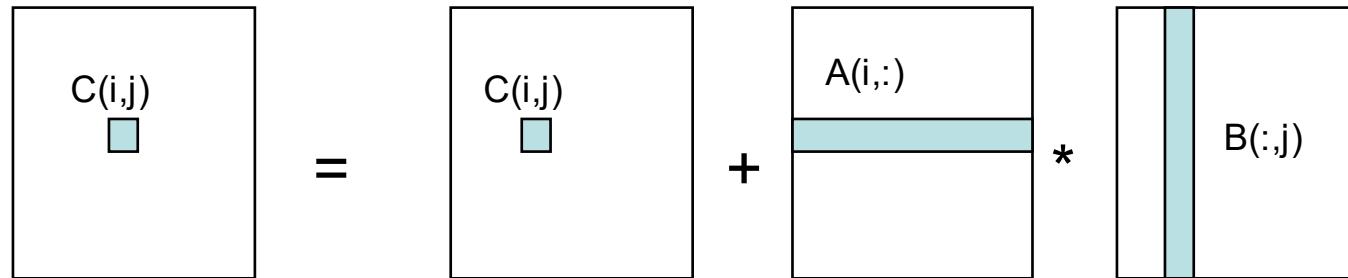
{Read column j of B into cache}

for $k = 1$ to n

$C(i,j) = C(i,j) + A(i,k) * B(k,j)$

{Write $C(i,j)$ back to slow memory}

Keep Row i of A in cache. Assume optimized cache replacement



Naïve Matrix Multiply

{Implements $C = C + A * B$ }

for $i = 1$ to n

{Read row i of A into cache}

for $j = 1$ to n

{Read $C(i,j)$ into cache}

{Read column j of B into cache}

for $k = 1$ to n

$$C(i,j) = C(i,j) + A(i,k) * B(k,j)$$

{Write $C(i,j)$ back to memory}

of slow memory ops:

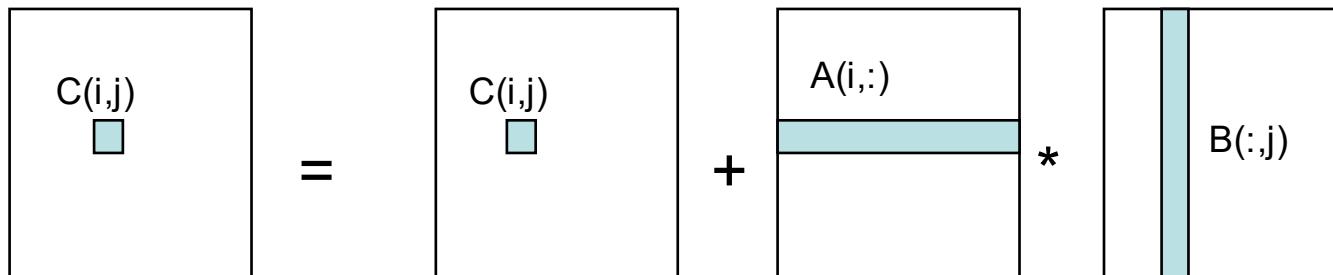
$$\begin{aligned} m &= n^3 && \text{to read each column of } B \text{ } n \text{ times} \\ &+ n^2 && \text{to read each row of } A \text{ once} \\ &+ 2n^2 && \text{to read and write each element of } C \text{ once} \end{aligned}$$

$$= n^3 + 3n^2$$

So $q = f / m = 2n^3 / (n^3 + 3n^2) =$
computational intensity

≈ 2 for large n , no improvement over
matrix-vector multiply

Reason: Inner two loops are just matrix-vector
multiply, of row i of A times matrix B



Better Implementation with Blocked Matrix Multiplication

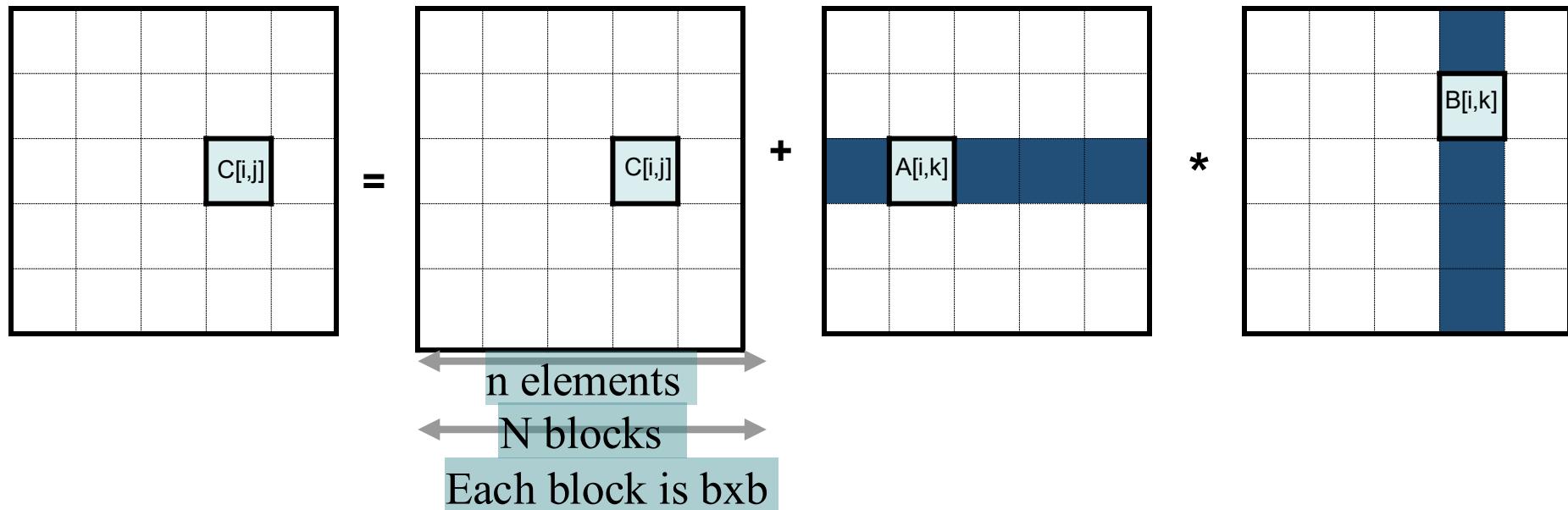
- Example of submatrix partitioning: Divide A into 4 submatrices

$$A = \left(\begin{array}{cc|cc} a_{11} & a_{12} & a_{13} & a_{1n} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ \hline a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{array} \right) \implies \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
$$A_{11} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, A_{12} = \begin{pmatrix} a_{13} & a_{14} \\ a_{23} & a_{24} \end{pmatrix}$$
$$A_{21} = \begin{pmatrix} a_{31} & a_{32} \\ a_{41} & a_{42} \end{pmatrix}, A_{22} = \begin{pmatrix} a_{33} & a_{34} \\ a_{43} & a_{44} \end{pmatrix}$$

- Blocked matrix multiply: Element-wise multiply is submatrix multiply

Blocked [Tiled] Matrix Multiply

Consider A, B, C to be N -by- N matrices of b -by- b blocks
where $b=n / N$ is called the **block size**



Blocked (Tiled) Matrix Multiply with Six-Nested Loops

Consider A,B,C to be N-by-N matrices of b-by-b blocks

Each element is a block

$b=n / N$ is called the block size

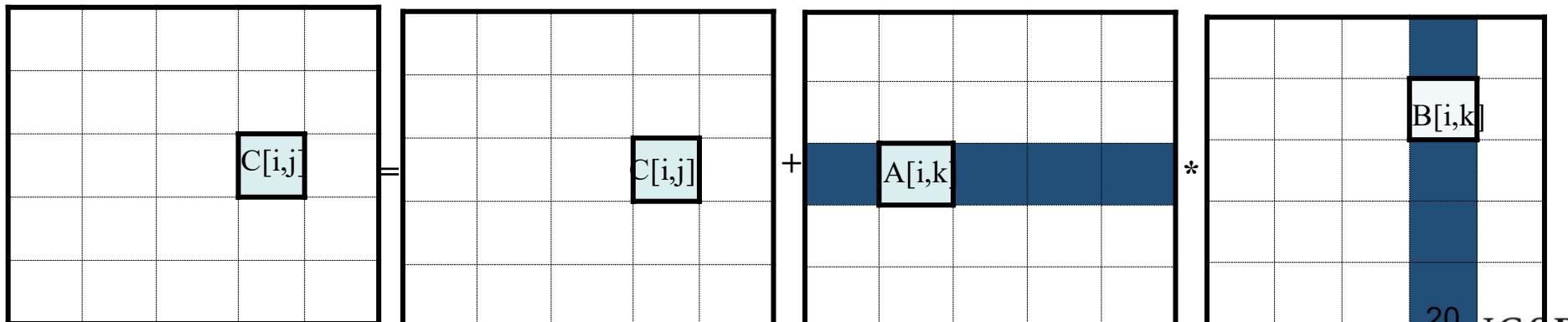
for $i = 1$ to N

 for $j = 1$ to N

 for $k = 1$ to N

$C(i,j) = C(i,j) + A(i,k) * B(k,j) //$ block submatrix multiply

3 nested loops
inside



Blocked (Tiled) Matrix Multiply with Memory-Cache Data Movement

Consider A,B,C to be N-by-N matrices of b-by-b blocks where $b=n / N$ is called the block size

for $i = 1$ to N

 for $j = 1$ to N

 {Read block $C(i,j)$ into cache}

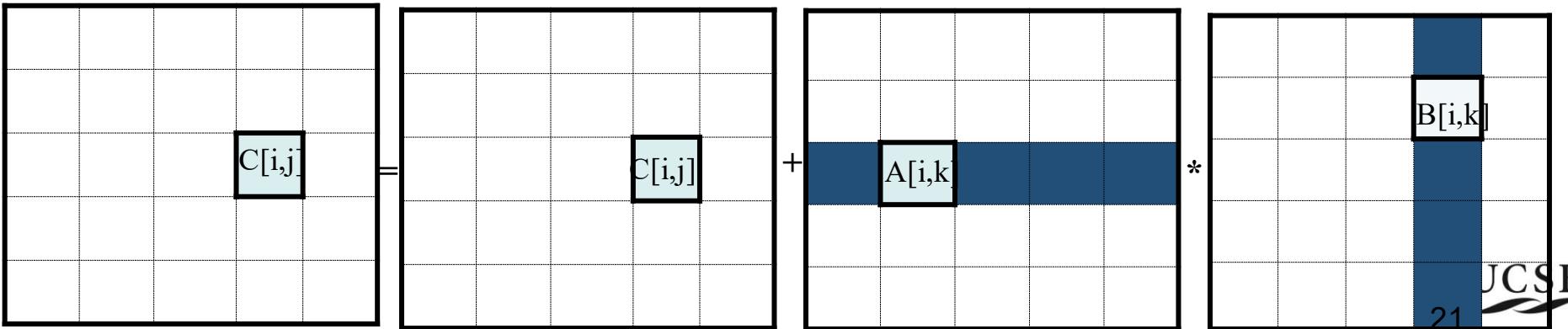
 for $k = 1$ to N

 {Read block $A(i,k)$ into cache}

 {Read block $B(k,j)$ into cache}

$C(i,j) = C(i,j) + A(i,k) * B(k,j)$ // Block submatrix multiply

 {Write block $C(i,j)$ back to slow memory}



Blocked (Tiled) Matrix Multiply with Memory-Cache Data Movement

A,B,C to be N-by-N matrices of b-by-b blocks

b=n / N is called the block size

for $i = 1$ to N

 for $j = 1$ to N

 {Read block $C(i,j)$ into cache}

 for $k = 1$ to N

 {Read block $A(i,k)$ into cache}

 {Read block $B(k,j)$ into cache}

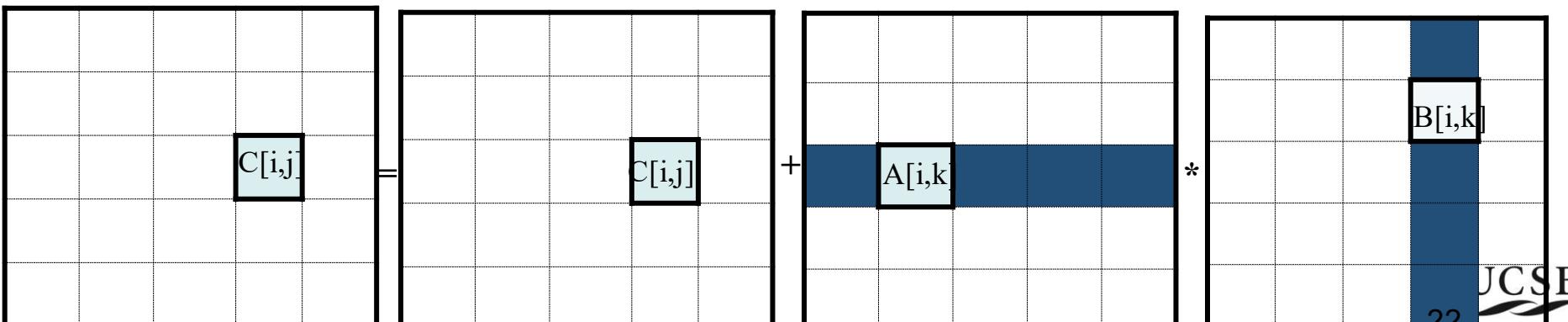
$C(i,j) = C(i,j) + A(i,k) * B(k,j)$

 {Write block $C(i,j)$ back to memory}

2 n^2 to read/write each block of C once

N^2 to read each block of A N^3 times
($N^3 * b^2 = N^3 * (n/N)^2$)

N^2 to read each block of B N^3 times



Blocked (Tiled) Matrix Multiply

Recall:

m is amount memory traffic between memory and cache

matrix has $n \times n$ elements, and $N \times N$ blocks each of size $b \times b$

f is number of floating point operations, $f = 2n^3$

$q = f / m$ is our measure of memory access efficiency

So: #slow memory access

$m = N \cdot n^2$ read each block of B N^3 times ($N^3 \cdot b^2 = N^3 \cdot (n/N)^2 = N \cdot n^2$)

+ $N \cdot n^2$ read each block of A N^3 times

+ $2n^2$ read and write each block of C once

= $(2N + 2) \cdot n^2$

So computational intensity $q = f / m = 2n^3 / ((2N + 2) \cdot n^2)$

$\approx n / N = b$ for large n

So we can improve performance by increasing the block size b

Blocked version can be much faster than naïve version which has $q=2$

Block Size Limited by Cache Size & Takeaways

Blocked matrix multiply has computational intensity $q \approx b$

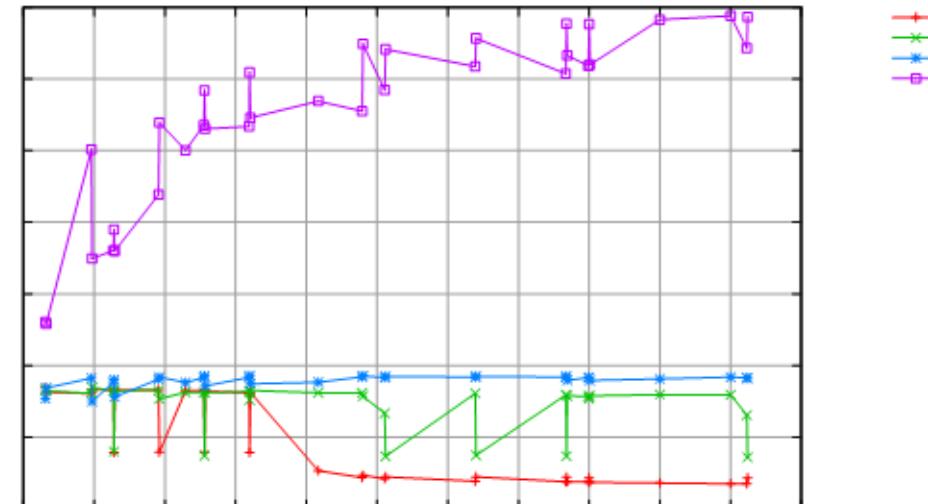
- Larger the block size \rightarrow more efficient
- Limit: All three blocks from A,B,C must fit in cache
- Assume L1 cache has size M_{size}

$$3b^2 \leq M_{size}, \text{ so } q \approx b \leq (M_{size}/3)^{1/2}$$

- Assume L1 cache has size 32KB, $b \leq 104$

Takeaways from this figure:

- Blocked matrix multiply: 2-4.8x faster than naïve version
- BLAS library from vendors with more optimization: 10-19x faster



Basic Linear Algebra Subroutines (BLAS)

- Industry standard interface: www.netlib.org/blas
- **Vendors supply optimized BLAS implementations**
 - **BLAS1**: Vector operations: dot product, saxpy ($y=a*x+y$), etc
 - $m=2*n$, $f=2*n$, low computational density ~ 1 or less
 - **BLAS2**
 - E.g. Matrix-vector multiplication. $m=n^2$, $f=2*n^2$
 - Moderate computational density ~ 2
 - Computation expressed with BLAS2 can be faster than BLAS1
 - **BLAS3**
 - E.g. Matrix-matrix multiplication with $m \leq O(n^2)$, $f=O(n^3)$
 - Higher computational density > 2
- **Applications may be expressed a mixed set of BLAS1, BLAS2, or BLAS3 operations**

GEMM and GEMV in Intel/NVIDIA BLAS Libraries

- Intel Math Kernel Library (**MKL**) for Intel CPUs and GPUs, and it works on AMD CPUs (e.g. CPU servers on Expanse)
 - `cblas_sgemm`, `cblas_dgemm`, `sgemm`, `dgemv`
- **cuBLAS** : NVIDIA-optimized implementation for use with **CUDA** on its GPUs.
 - `cublasSgemm`, `cublasDgemm`, `cublasSgemv`, `cublasDgemv`
- API of MKL and cuBLAS is almost identical

SGEMM (single-precision general matrix-matrix multiplication) and **DGEMM** for double-precision: $C = \alpha \cdot \text{op}(A) \cdot \text{op}(B) + \beta \cdot C$

- A, B, and C are $M \times K$, $K \times N$, $M \times N$ matrices.
- $\text{op}(X)$ can be X (no transpose), X^T (transpose)
- α and β are scalar coefficients.

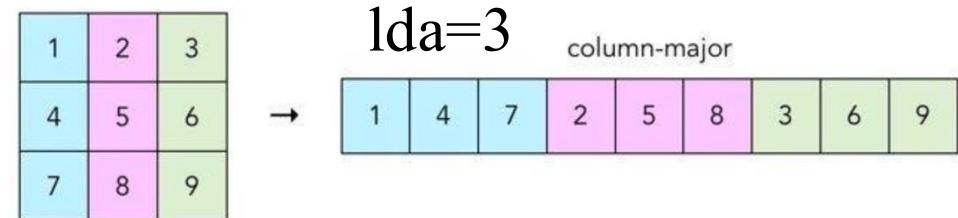
SGEMV and **DGEMV** for matrix vector multiplication:

$$y = \alpha \cdot \text{op}(A) \cdot x + \beta \cdot y$$

- x and y are column vectors of size K .

DGEMV function in MKL: $y = \alpha \cdot \text{op}(A) \cdot x + \beta \cdot y$

- A is M*K matrix. x and y are column vectors of size K.
- $\text{op}(A)$ can be A (no transpose), A^T (transpose)
- α and β are scalar coefficients.



void **cblas_dgemv**(

CblasColMajor or CblasRowMajor //Choose CblasColMajor

CblasNoTrans or CblasTrans, // no transpose or transpose of A

MKL_int M, MKL_int K,

double alpha, double *A, MKL_int *lda,

double *x, MKL_int incx,

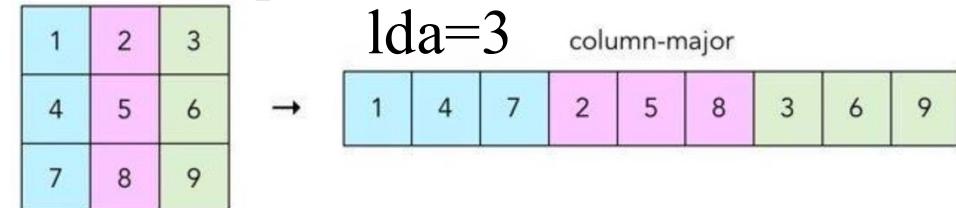
double beta, double *y, MKL_int incy);

incx, incy: Stride(increment) of next element in vectors x and y.

Normally choose 1.

DGEMM function in MKL: $C = \alpha \cdot \text{op}(A) \cdot \text{op}(B) + \beta \cdot C$

- A, B, and C are single-precision $M \times K$, $K \times N$, $M \times N$ matrices.
- $\text{op}(X)$ can be X (no transpose), X^T (transpose)
- α and β are scalar coefficients



```
void cblas_gemm(
```

CblasColMajor or CblasRowMajor //Choose CblasColMajor

CblasNoTrans or CblasTrans, // no transpose or transpose of A

CblasNoTrans or CblasTrans, // no transpose or transpose of B

MKL_int M, MKL_int N, MKL_int K,

double alpha, double *A, MKL_int lda,

double *B, MKL_int ldb,

double beta, double *C, MKL_int ldc);

lda, ldb, ldc: Leading dimensions of A, B, and C as # of elements between the start of successive columns (Column-Major)

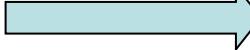
Use of GEMV for GEMM Implementation

- Matrix-matrix multiplication with size $N \times N$ can be expressed as N matrix-vector multiplications. For example, $N=2$

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 3 \end{bmatrix} = A * \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$C = AB \rightarrow C = \begin{bmatrix} 3 & 7 \\ 3 & 3 \end{bmatrix}$$

Decomposed


$$\begin{bmatrix} 7 \\ 3 \end{bmatrix} = A * \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

- In general, a computing problem may be expressed by
 - a set of BLAS-1 operations
 - or BLAS-2 operations
 - or BLAS-3 operations
 - or mixed of all levels

Concluding Remarks

To optimize serial code efficiency

- **Cache-aware programming** to exploit spatial and temporal locality
- It is recommended to **use fully optimized vendor's or open-source BLAS library functions** for time-consuming core scientific computation
 - Compare FLOPS difference when code can use different levels of BLAS
 - For larger problem sizes, BLAS3 is faster with cache optimization and SIMD vectorization
 - BLAS has calling overhead while unoptimized code may fit in cache well for small problem sizes

Other serial code optimization strategies discussed earlier

- Use compiler optimization level as high as possible
- SIMD vectorization on Intel/AMD CPUs if compiler cannot vectorize serial code well