
Distributed Memory Programming

with Message-Passing

T. Yang, CS140

Part of slides from B. Gropp

Outline

• An overview of MPI
programming

▪ Six MPI functions
and hello sample

• Send/receive

• Collective
communication

#
 C

h
a

p
te

r S
u

b
title

MPI: mainly for distributed

 memory architectures

MPI also works for shared

 memory architectures

3

Message Passing Libraries

• MPI, Message Passing Interface, now the industry

standard, for C/C++ and other languages

• Running as a set of processes.

• No shared variables among processes

• All communication, synchronization require

subroutine calls

▪ Enquiries

– How many processes? Which one am I? Any messages

waiting?

▪ Communication

– point-to-point: Send and Receive

– Collectives such as broadcast

▪ Synchronization

– Barrier

Process Concept from OS

• Process – a program in execution;

▪ progress in sequential fashion

• A process in memory includes:

▪ program counter

▪ Stack/heap

▪ Data/instruction (text) section

• Processes do not share space

▪ Need memory protection and

▪ address translation

memory

Process 0

Process 1

OS

5

TEXT, DATA, BSS, HEAP and STACK in C

int f3=3; /*Initialized DATA segment */

int f1; /*Unitialized BSS segment*/

char def[] = "1";

int main(void) {

static char abc[12]; /* BSS segment */

static float pi = 3.14159;

int i = 3; /* Stack*/

 char *cp;

 cp= malloc(10); /* HEAP for allocated chunk*/

 f1= add1(i); /* code is in TEXT. f1 on STACK*/

 strcpy(abc , "Test");

}

int add1(int f3}{

 return f3+1;

}

Where is def?

Where is pi?

where is cp?

Where is “Test”?

STACK

HEAP

BSS

Uninitialized

DATA
Initialized

TEXT

where is f3?

Uninitialized

global variables

and static

variables

Initialized

global or static

variables

Binary code

+ constants

6

TEXT, DATA, BSS, HEAP, and STACK in C

Int f3=3; /* Initialized DATA segment */

Int f1; /*Uninitialized BSS segment*/

char def[] = "1"; /* DATA segment */

int main(void)

{

static char abc[12], /* BSS segment */

static float pi = 3.14159; /* DATA segment */

int i = 3; /* Stack*/

 char *cp; /*stack*/

 cp= malloc(10); /*malloc allocates space from HEAP*/

 f1= add1(i); /* code is in TEXT*/

 strcpy(abc , "Test"); /* “Test” is located in TEXT */

}

int add1(int f3}{/*stack*/

 return f3+1;

}

STACK

HEAP

BSS

Uninitialized

DATA
Initialized

TEXT

Process Communication

• Normally processes do not share memory

• Processes communicate messages

• If they share some memory through special arrangement,
communicate through shared content

SPMD code in MPI for Hello World!

hello, world

hello, world

hello, world

hello, world

Screen output when running on 4 processes

process 1process 0 process 2 process 3

9

MPI_hello.c Running on 4 nodes

#include "mpi.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 printf("I am %d of %d!\n", rank, size);

 MPI_Finalize();

 return 0;

}

CPU

process 1
CPU

process 0

CPU

process 2

CPU

process 3

Screen output:

I am 1 of 4!

I am 3 of 4!

I am 2 of 4!

I am 0 of 4!

MPI Components

• MPI_Init: do all the necessary setup.

• MPI_Finalize: clean up anything allocated for this program.

• Processes are grouped as a communicator

▪ Each message is sent & received in the same

communicator

▪ There is a default communicator whose group contains all

initial processes, called MPI_COMM_WORLD

Communicators

Collect number of processes in the communicator

Return my rank (the process making this call)
a number between 0 and size-1, identifying the calling process

p processes are numbered 0, 1, 2, .. p-1

Basic Send

• Send a message

▪ How will “data” be described?

▪ How will processes be identified?

▪ How will the receiver recognize/screen
messages?

msg_size=4 elments

msg_type=MPI_INT

What is size of this buffer in bytes?

Not in bytes

Data types

Basic Receive: Block until a matching

message is received

• Things to specify:
▪ Where to receive data

▪ How will the receiver
recognize/screen messages?

▪ What is the actual message
received

Message matching

MPI_Send

dest

MPI_Recv

src

MPI_send() does not guarantee the other party receives the sent

message. The system may just copy the message to an internal

buffer of the MPI library and then this function returns.

MPI_Recv() waits until a message is received

Receiving messages without knowing

source or tag

• A receiver can get a message without knowing:

▪ the amount of data in the message,

▪ the sender of the message,

– Specify the source as MPI_ANY_SOURCE

▪ or the tag of the message.

– Specify the tag as MPI_ANY_TAG

How to check who sent me a message and what tag is?

Find out who sent me, what tag is, error

code, actual message length in MPI_Status*

17

Retrieving Further Information from status

argument in C

• Status is a data structure allocated in the user’s

program.

• In C:
int recvd_tag, recvd_from, recvd_count;

MPI_Status status;

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)

recvd_tag = status.MPI_TAG;

recvd_from = status.MPI_SOURCE;

MPI_Get_count(&status, datatype, &recvd_count);

Slide source: Bill Gropp, ANL

18

MPI Example: Simple send/receive

when no of processes =3
int x=0;

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (rank == 0) {

 x = 123;

 MPI_Send(&x, 1, MPI_INT, 1, 0,

 MPI_COMM_WORLD);

 x=456;

 } else if (rank == 1) {

 MPI_Recv(&x, 1, MPI_INT, 0, 0,

 MPI_COMM_WORLD, &status);

 }

 printf(“Proc %d: x=%d\n”, rank, buf);
What to print?

Proc 0: x=?

Proc 1: x=?

Proc 2: x=?

456

123

0

x=0

Proc 0

x=123

Proc 1

x ?

123 Proc 2

x?

19

What MPI Functions are commonly used

• Startup

▪ MPI_Init, MPI_Finalize

• Information on the processes

▪ MPI_Comm_rank, MPI_Comm_size

• Point-to-point communication

▪ MPI_Send, MPI_Recv

• Collective communication

▪ MPI_Bcast, MPI_Allreduce, MPI_Reduce, MPI_Allgather

• To measure time: MPI_Wtime()

double Start time= MPI_Wtime();

Code segment to be timed

double End time=MPI_Wtime();

Time spent is end_time – start_time.

Collective Communication in

MPI and Advanced Features

• Collective communication primitives

• Collective vs. Point-to-Point Communications

http://mpitutorial.com/mpi-broadcast-and-collective-

communication/

21

MPI Collective Communication

• Collective routines provide a higher-level way to

organize a parallel program

▪ Each process executes the same communication

operations

▪ Communication and computation is coordinated

among a group of processes in a communicator

▪ Tags are not used

▪ No non-blocking collective operations.

• Operation types: synchronization, data movement,

collective computation.

▪ MPI_Barrier

▪ MPI Broadcast, Scatter, Gather, Reduce

22

Synchronization with MPI_Barrier(comm)

• Blocks until all processes

in the group of the

communicator comm call it.

• Used in synchronized

actions among processes

▪ Measuring performance

• The right example

illustrates MPI_Barrier is

called by 4 processes and

they wait for each other

from time T1 to T4 (a

synchronization point)

Time

23

Exampe of SPMD MPI Loop with Barriers

MPI_Comm comm= MPI_COMM_WORLD;

MPI_Comm_rank(comm,&my_rank);

for (i=0; i<3; i++){

 MPI_Barrier(comm);

 compute(my_rank);}

MPI_Barrier(comm);

compute(0);

MPI_Barrier(comm);

Compute(0);

MPI_Barrier(comm);

compute(0);

MPI_Barrier(comm);

compute(1);

MPI_Barrier(comm);

Compute(1);

MPI_Barrier(comm);

/*wait*/

compute(1);

MPI_Barrier(comm);

compute(2);

MPI_Barrier(comm);

Compute(2);

MPI_Barrier(comm);

compute(2);

Time Proc 0 Proc 1 Proc 2

Broadcast

• Data belonging to a single process is sent to all of the

processes in the communicator.
in for source processes; out for others

• MPI_Bcast is called by both the sender (called the root

process) and the processes that receive the broadcast

▪ MPI_Bcast is not a “multi-send”

▪ “source_proc” is the rank of the sender; this tells MPI

which process originates the broadcast and which receive

A

A

A

A

Broadcast
AP0

P1

P2

P3

25

Broadcast example

int my_rank, my_number;

MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

my_number=my_rank;

MPI_Bcast(&my_number,1, MPI_INT, 0,MPI_COMM_WORLD);

printf(“%d\n”,my_number);

…

my_number=0;

MPI_Bcast

(&my_number, …)

printf(... my_number);

…

my_number=1;

MPI_Bcast

(&my_number, …)

printf(... my_number);

…

my_number=2;

MPI_Bcast

(&my_number, …)

printf(… my_number);

Time Proc 0 Proc 1 Proc 2

Contribute 1 integer.

Broadcast from Proc 0

With MPI_Bcast, processes wait for each other and then do a group

communication with Proc 0 as the source of broadcasting

0 0 0

How is Broadcast implemented?

A tree-structured broadcast of

a number 6 from Process 0

• All processes participate in group communication

• Tree structure is the reverse structure of tree summation

What is time cost of parallel algorithm?

#Parallel steps=log p

27

Collective Computation: Reduce vs. Scan

P0

P1

P2

P3

A

B

D

C

P0

P1

P2

P3

A

B

D

C

Reduce

Scan

R(ABCD)P0

P1

P2

P3

R(A)

R(AB)

R(ABC)

R(ABCD)

P0

P1

P2

P3

R is the reduction function. For example, sum, max, min, product

MPI_Reduce

Predefined

reduction

operators in MPI

Predefined reduction operators in MPI

30

Reduce example

int my_rank, my_number, sum=0;

MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

My_number=my_rank;

MPI_Reduce(&my_number,&sum, 1, MPI_INT, MPI_SUM,

0,MPI_COMM_WORLD);

printf(“%d\n”,sum);

…

my_number=0;

MPI_Reduce

(&my_number,…)

printf(... sum);

…

my_number=1;

MPI_Reduce

(&my_number,…)

printf(... sum);

…

my_number=2;

MPI_Reduce

(&my_number, …)

printf(… sum);

Time Proc 0 Proc 1 Proc 2

Contribute 1 integer.

Reduced to Proc 0

With MPI_Reduce, processes wait for each other and then do a group

communication with Proc 0 holding the reduction result.

3 0 0

How to implement global reduction?

Copyright © 2010, Elsevier
Inc. All rights Reserved

using a tree-structured sum

What is time cost of parallel algorithm?

#Parallel steps=log p

0

2

4

6

8

10

12

3 5 7 9 11 13 15

Example: Use of MPI_Reduce in Computing

Pi with Numerical Integration

Divide an integral area into n

segments. Approximate as

 π= ∑ 1/(1+x2)

h = 1.0 /n;

 sum = 0.0;

 for(i=1; i <= n; i++) {

 x = h *(i - 0.5)/n;

 sum += 4/ (1+ x*x);

 }

 mypi = h * sum;

33

Mapping of loop iterations with SPMD code

Assume 2 processes

myID=0 → Iterations?

myID=1 → Iterations?

Mapping with 2 processes (myID=0, 1)

Iteration 1, 2, 3, 4, 5, 6, 7, 8

Processes 0, 0, 0, 0, 1, 1, 1, 1

What is the mapping of this SPMD code?

for (i = myID + 1; i <= n; i += numprocs) {

 x = h * ((double)i - 0.5);

 sum += 4.0 / (1.0 + x*x);

 }

2, 4, 6, 8

1, 3, 5, 7

Cyclic pattern

Options for Iteration-to-Process Mapping

• Block mapping

▪ Assign blocks of consecutive components to each process.

• Cyclic mapping

▪ Assign components in a round robin fashion.

• Block-cyclic mapping

▪ Use a cyclic distribution of blocks of components.

Example: map 12 iterations to 3 processes

35

Use of Parallel Integral for Pi Computation

#include "mpi.h"

#include <math.h>
#include <stdio.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done) {

 if (myid == 0) {

 printf("Enter the number of intervals: (0 quits) ");

 scanf("%d",&n);

 }

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;

Slide source: Bill Gropp, ANL

Input and broadcast parameters

=∑ 1/(1+x2)

36

Example: Pi computation

h = 1.0 / (double) n;

 sum = 0.0;

 for (i = myid + 1; i <= n; i += numprocs) {

 x = h * ((double)i - 0.5);

 sum += 4.0 / (1.0 + x*x);

 }

 mypi = h * sum;

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD);

 if (myid == 0)

 printf("pi is approximately %.16f, Error is .16f\n",

 pi, fabs(pi - PI25DT));

}

MPI_Finalize();

 return 0;

}
Slide source: Bill Gropp, ANL

1. Compute local pi values

2. Compute summation

Iteration-to process

cyclic mapping

MPI_Allreduce

• Do global reduction first and then make the result

available to all of the processes.

A global tree reduction

followed by tree broadcast

of result.

Implementation of MPI_Allreduce
What is time cost of your parallel algorithm

with p processes?

#Parallel steps=2log p

A butterfly-structured global sum

Fast group communication is a challenging problem and we

just call the vendor-supplied library functions which have a

good implementation

Scatter

for data

distribution

• MPI_Scatter can be used in a function that reads in

an entire vector on process 0 but only sends the

needed components to each of the other processes.

A

B

D

C

B C D Scatter

Gather

AP0

P1

P2

P3

41

Collective Data Movement: Allgather and

AlltoAll

Allgather

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

Alltoall

A

B

D

C

P0

P1

P2

P3

P0

P1

P2

P3

A B C D

A B C D

A B C D

A B C D

P0

P1

P2

P3

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

P0

P1

P2

P3

Allgather

• Concatenates the contents of each process’

send_buf_p and stores this in each process’

recv_buf_p.

• As usual, recv_count is the amount of data being

received from each process.

A

B

D

C

A B C D

A B C D

A B C D

A B C D

Allgather

Collective vs. Point-to-Point Communications

• All the processes in the communicator must call the

same collective function.

▪ For example, a program that attempts to match a call

to MPI_Reduce on one process with a call to

MPI_Recv on another process. What will happen?

if(my_rank==2) MPI_Recv(&a, MPI_INT, MPI_SUM,0,0,

MPI_COMM_WORLD);

Else MPI_Reduce(&a,&b,1, MPI_INT, MPI_SUM, 0,

MPI_COMM_WORLD);

The program will hang or crash.

Proc 0

Reduce()

Proc 1

Reduce()

Proc 2

Recv()

Collective vs. Point-to-Point Communications

• The arguments passed by each process to an MPI

collective communication must be “compatible.”

▪ For example, if one process passes in 0 as the final

dest_process and another passes in 1, then the

outcome of a call to MPI_Reduce is erroneous, and,

once again, the program is likely to hang or crash.

if(my_rank==0) MPI_Reduce(&a,&b,1, MPI_INT,

MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Reduce(&a,&b,1, MPI_INT, MPI_SUM, 1,

MPI_COMM_WORLD);

Proc 0

Reduce(..,0,…)
Proc 1

Reduce(…,1,…)

Proc 2

Reduce(…,1,…)

Example of MPI_Reduce execution

Multiple calls to MPI_Reduce with MPI_SUM and Proc 0 as
destination (root)

Will this code exectuon hang?

int a, b, c,d;

Is b=3 on Proc 0 after two MPI_Reduce() calls?
Is d=6 on Proc 0?

Example of MPI_Reduce execution

Multiple calls to MPI_Reduce with MPI_SUM and Proc 0 as
destination (root)

Will this code exectuon hang?

int a, b, c,d;

After Step 1: Proc 0: b=4 which is the sum of 1 + 2 +1

The names of the memory locations are less relevant to the

matching of the calls to MPI_Reduce.

Example of MPI_Reduce execution

Multiple calls to MPI_Reduce with MPI_SUM and Proc 0 as
destination (root)

Will this code exectuon hang?

int a, b, c,d;

After Step 1: Proc 0: b=4.

After Step 2: Proc 0: b=4.
 Proc 0: d=2 + 1 +2

Checkpointing

• Computers fail periodically

▪ Result loss of an expensive long-running job (e.g. that

lasts days or weeks)

• Checkpointing technique

▪ A program periodically stores information on its

intermediate running state

▪ A program can restart and resume its execution from a

checkpoint file

• Use of checkpointing in an MPI program

▪ A process periodically gathers running results from

other parallel processes and saves to a file.

▪ This program is designed to be restartable after reading

from a checkpoint file.

49

MPI Functions: Summary

• Startup/finishing: MPI_Init, MPI_Finalize

• Information on the processes

▪ MPI_Comm_rank, MPI_Comm_size

• Point-to-point communication: MPI_Send, MPI_Recv

▪ matched on the basis of tags and communicators.

• Collective communication. Don’t use tags.

▪ They’re matched solely on the basis of the communicator

and function definition.

• Checkpointing helps fault tolerance of long-running jobs

double Start time= MPI_Wtime();

Code segment to be timed

double End time=MPI_Wtime();

Time spent is end_time – start_time.

• To measure time:

MPI_Wtime()

	Slide 1: Distributed Memory Programming with Message-Passing
	Slide 2: Outline
	Slide 3: Message Passing Libraries
	Slide 4: Process Concept from OS
	Slide 5: TEXT, DATA, BSS, HEAP and STACK in C
	Slide 6: TEXT, DATA, BSS, HEAP, and STACK in C
	Slide 7: Process Communication
	Slide 8: SPMD code in MPI for Hello World!
	Slide 9: MPI_hello.c Running on 4 nodes
	Slide 10: MPI Components
	Slide 11: Communicators
	Slide 12: Basic Send
	Slide 13: Data types
	Slide 14: Basic Receive: Block until a matching message is received
	Slide 15: Message matching
	Slide 16: Receiving messages without knowing source or tag
	Slide 17: Retrieving Further Information from status argument in C
	Slide 18: MPI Example: Simple send/receive when no of processes =3
	Slide 19: What MPI Functions are commonly used
	Slide 20: Collective Communication in MPI and Advanced Features
	Slide 21: MPI Collective Communication
	Slide 22: Synchronization with MPI_Barrier(comm)
	Slide 23: Exampe of SPMD MPI Loop with Barriers
	Slide 24: Broadcast
	Slide 25: Broadcast example
	Slide 26
	Slide 27: Collective Computation: Reduce vs. Scan
	Slide 28: MPI_Reduce
	Slide 29: Predefined reduction operators in MPI
	Slide 30: Reduce example
	Slide 31: How to implement global reduction?
	Slide 32
	Slide 33: Mapping of loop iterations with SPMD code
	Slide 34: Options for Iteration-to-Process Mapping
	Slide 35: Use of Parallel Integral for Pi Computation
	Slide 36: Example: Pi computation
	Slide 37: MPI_Allreduce
	Slide 38
	Slide 39
	Slide 40: Scatter for data distribution
	Slide 41: Collective Data Movement: Allgather and AlltoAll
	Slide 42: Allgather
	Slide 43: Collective vs. Point-to-Point Communications
	Slide 44: Collective vs. Point-to-Point Communications
	Slide 45: Example of MPI_Reduce execution
	Slide 46: Example of MPI_Reduce execution
	Slide 47: Example of MPI_Reduce execution
	Slide 48: Checkpointing
	Slide 49: MPI Functions: Summary

