Distributed Memory Programming
with Message-Passing

T. Yang, CS140
Part of slides from B. Gropp

Outline

MPI: mainly for distributed

* An overview of MPI .
memory architectures

programming

a|gng Jsydey) #

= Six MPI functions
and hello sample vamory | | | [wemory | | | [omery amory
« Send/receive
* Collective

communication
MPI also works for shared

JmemqQry archijtectures

CPU

Message Passing Libraries

MPI, Message Passing Interface, now the industry
standard, for C/C++ and other languages

Running as a set of processes.

 No shared variables among processes
All communication, synchronization require
subroutine calls

= Enquiries

— How many processes? Which one am 1? Any messages
waiting?
= Communication

— point-to-point: Send and Receive
— Collectives such as broadcast

= Synchronization
— Barrier

Process Concept from OS

* Process — a program in execution;
= progress in sequential fashion

A process in memory includes:
= program counter
= Stack/heap
= Datal/instruction (text) section
 Processes do not share space
= Need memory protection and
= address translation

Process 0

memory

\ Process 1
\.0S

N

max 4

stack

heap

data

text

TEXT, DATA, BSS, HEAP and STACK inC

int f3=3; /*Initialized DATA segment */

int f1; /*Unitialized BSS segment*/

char def[] = "1"; Where is def?

int main(void) {
static char abc[12]; /* BSS segment */
static float pi = 3.14159; Where is pi?
inti=3; /" Stack®/
char *cp; where is cp?
cp= malloc(10); /* HEAP for allocated chunk*/
f1=add1(i); /* code is in TEXT. f1 on STACK*/

strcpy(abc , "Test"); Where is “Test"?

}
int add1(int f3{ where is f3?

return f3+1;

STACK
i_E}AP ninitialized
global variables
BSS anq static
Uninitialized] variables
pata | Initialized
Initialized global or static
variables
TEXT 4 Binary code

+ constants

TEXT, DATA, BSS, HEAP, and STACK in C

Int f3=3; /* Initialized DATA segment */
Int f1; /*Uninitialized BSS segment*/
char def[] = "1"; /* DATA segment */
int main(void)

{

static char abc[12], /* BSS segment */

static float pi = 3.14159; /* DATA s ent */
inti=3; /" Stack®/

STACK

U

)

HEAP

BSS
Uninitialized

char *cp; [*stack®/
cp= malloc(10); /malloc allocates space from HEAP*/

DATA
Initialized

f1=add1(i); /* code is in TEXT"/
strcpy(abc , "Test"); /* “Test” is located in TEXT *\

}
int add1(int f3}{/*stack™/

return f3+1;

TEXT

Process Communication

 Normally processes do not share memory
 Processes communicate messages

 If they share some memory through special arrangement,
communicate through shared content

Figure 1 - Shared Memory and Message Passing

SPMD code in MPI for Hello World!

#include <stdio.h>

int main(void) |{
printf("hello, world\n");

return 0;

}

Screen output when running on 4 processes

proses0 s 1 process2 C_proces 3
hello, world

hello, world
hello, world
hello, world

MPI_hello.c Running on 4 nodes

#include "mpi.h"
#include <stdio.h>

printf (/"I am %
MPI Finalize();
return/0;

Screen output:

int main(int argc, char *argv[]) 1 aim 1 ()f4'
{ .
int rank, size; 1 am 3 0f4'
MPI Init(&argc, &argv); T !
MPI Comm/ rank (Lam 2 Of4
MPI_Comy _size ([am 0 of 4!

}

N\ N\

hrocess () : PLOCC)

MPI Components

 MPI_Init: do all the necessary setup.

int MPI Init(
Iint * argc_p F+ in/fout #/,
char##+ argv_p /% in/out */):

 MPI_Finalize: clean up anything allocated for this program.

int MPI Finalize(void):

 Processes are grouped as a communicator

= Each message is sent & received in the same
communicator

= There is a default communicator whose group contains all
initial processes, called MPI COMM_ WORLD

Communicators

int MPI Comm_size(
MPI Comm cComm J= 0In %/,
int=* COMM_JSZ_P f# out *=/);

Collect number of processes in the communicator

int MPI _Comm_ rank(
MPI Comm cComm F= 0In */,
int= my_rank_p f% out #*/);

Return my rank (the process making this call)
a number between 0 and size-1, identifying the calling process
p processes are numbered 0, /, 2, .. p-1

Basic Send

msg_size=4 elments
r NP
msg_type=MPIT INT
What 1s size of this buffer in bytes?

int MPI Send(

void# msqg_buf_p f In %/,
Not in bytes int msg_size [In #/,
MPI_Datatype msg_type f% In %/,
Int dest f= 1n =/,
Int tag f# 1n %/,
MPI Comm communicator /% im #/):

« Send a message
= How will “data” be described?
= How will processes be identified?

= How will the receiver recognize/screen
messages?

Data types

MPI datatype C datatype
MPI_CHAR signed char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int

MPI LONG_LONG
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUELE
MPI_BYTE
MPI_PACKED

signed long long int
unsigned char
unsigned short int
unsigned int
unsigned long int
float

double

long double

Basic Receive: Block until a matching

——message is received
int MPI_Recv(e ‘
void msg_buf_p /%
int buf size /%
MPI_Datatype Dbuf_type /%
int source /%
int tag /%
MPI_Comm communicator /=
MEI Statuss status_p IE:

« Things to specify:

olt
In
In
In
In
In
olt

= Where to receive data

= How will the receiver
recognize/screen messages?

x/
*/
*/
*/
*/

*/

*Ij:

= What is the actual message

received

Message matching

MPI send() does not guarantee the other party receives the sent
message. The system may just copy the message to an internal
buffer of the MPI library and then this function returns.

MPI_Send(send_buf_p, send_buf_sz, send_type, ._
Send_comn); / 4

/
MPI_Send
dest o -0

MPI_Recy
Src

y y
MPI_Recv(recv buf_p, recv_buf sz, recv_type., @
._ &status);

MPI Recv() waits until a message 1s received

Receiving messages without knowing ci{ :'éf
source or tag

 Areceiver can get a message without knowing:
= the amount of data in the message,

= the sender of the message,
— Specify the source as MPI ANY SOURCE

= or the tag of the message.
— Specify the tag as MPI ANY TAG

How to check who sent me a message and what tag 1s?

MPI_Recv(recv_buf_p., recv_buf_sz, recv_type, src, recv_tag,
recv_comm. &status):

Find out who sent me, what tag is, error
code, actual message length in MPl_Status*®

Retrieving Further Information from status
argument in C

Status is a data structure allocated in the user’s
program.
In C:

int recvd tag, recvd from, recvd count;

MPI_Status status;
MPI_Recv(..., MPI ANY SOURCE, MPI ANY TAG, ..., é&status)

recvd tag = status.MPI TAG;
recvd from = status.MPI SOURCE;
MPI Get count(&status, datatype, &recvd count);

Slide source: Bill Gropp, ANL

MPI Example: Simple send/receive
when no of processes =3

int x=0;
MPI Comm rank(MPI COMM WORLD, &rank);
if (rank == 0) {
x = 123;
MPI Send(&x, 1, MPI INT, 1, O,
MPI COMM WORLD) ;
x=456;
} else if (rank == 1) {
MPI Recv(&x, 1, MPI INT, 0, O,
MPI COMM WORLD, &status);
}

What to print?

Proc 0: x=? 456 123
Proc 1: x=7? 123 18

Proc 2: x=7? 0

What MPI Functions are commonly used

Startup

= MPI_Init, MPI_Finalize

Information on the processes

= MPl_Comm_rank, MPl_Comm_size

Point-to-point communication

= MPI|_Send, MPIl Recv

Collective communication

= MPI|_Bcast, MP| _Allreduce, MPIl_Reduce, MPI|_Allgather

To measure time: MPI Wtime ()

double Start time= MPI Wtime(),
Code segment to be timed

double End time=MPI Wtime(),
Time spent 1s end_time — start time.

19

y

Collective Communication in
MPI and Advanced Features

* Collective communication primitives
 (Collective vs. Point-to-Point Communications

http://mpitutorial.com/mpi-broadcast-and-collective-
communication/

’ MPI Collective Communication

« Collective routines provide a higher-level way to
organize a parallel program

= Each process executes the same communication
operations

= Communication and computation is coordinated
among a group of processes in a communicator

= Tags are not used
= No non-blocking collective operations.

« Operation types: synchronization, data movement,
collective computation.

= MPI|_Barrier
= MPI Broadcast, Scatter, Gather, Reduce

21

' Synchronization with MPI Barrier (comm)

« Blocks until all processes Time
In the group of the NP1 Batrlrd] MPI_Barrer(
communicator comm call it. OB :|
« Used in synchronized @ O
actions among processes ® | @
| S | S,
= Measuring performance T1 T2 |

* The right example
llustrates MP|_Barrier is
called by 4 processes and
they wait for each other
from time T1to T4 (a
synchronization point) T3 T4

QOOO:
ololelo

22

Time

Exampe of SPMD MPI Loop with Barriers

for (i=0;

MPI Comm comm= MPI COMM WORLD;
MPI Comm rank (comm, &my rank);

1<3; 1i++){

MPI Barrier (comm) ;
compute (my rank) ;}

Proc O Proc 1 Proc 2
MPI Barrier(comm), || MPI_Barrier(comm); | | MPI_Barrier(comm):
compute(0); compute(1); compute(2);

MPI_Barrier(comm);

MPI_Barrier(comm);

Compute(0);

MPI_Barrier(comm);

MPI_Barrier(comm);

Compute(1);

MPI_Barrier(comm);
[*wait*/

Compute(2);

MPI Barrier(comm);

compute(0);

compute(1);

compute(2);

Broadcast 113(1’

Broadcast,

P2
P3

* Data belonging to a single process is sent to all of the
processes in the communicator.

int MPI Bcast (
void =
int
MPI_Datatype
int
MPI Comm

> > | > >

in for source processes; out for others

data_p / fn;ﬂur */
count VET /| #/
datatype VETY | */
source_proc VETN ! */
comm VETY #/)

« MPI _Bcast is called by both the sender (called the root
process) and the processes that receive the broadcast

= MPI_Bcast is not a “multi-send”

= “source_proc” is the rank of the sender; this tells MPI
which process originates the broadcast and which receive

Time

Broadcast example

Contribute 1 integer.
p. Broadcast from }’roc 0

/

int my rank, my number;

MPI Comm rank (MPI COMM W
my number=my rank;

D,&my ranky;

MPI Bcast (&my number,1l, MPI INT, O0,MPI COMM WORLD) ;
printf (“%d\n”,my number) ;

Proc 0

Proc 1

Proc 2

my number=0;

MPI Bcast
(&my number, ...)

my number=1;

MPI Bcast
(&my number, ...)

my number=2;

MPI Bcast
(&my number, ...)

printf(... my number);

printf(... my number);

printf(... my number);

0

0

0

With MPI Bcast, processes wait for each other and then do a group
communication with Proc 0 as the source of broadcasting

25

How is Broadcast implemented? e o

What is time cost of parallel algorithm? 3 L 2

A tree-structured broadcast of
number 6 from Process O

: %l steps=log p
2 5 6

3 4

Processes
All processes participate in group communication

@/z/j/

o

Tree structure is the reverse structure of tree summation

Collective Computation: Reduce vs. Scan

R 1s the reduction function. For example, sum, max, min, product

PO
Pl

P2
P3

PO
Pl

P2

P3

A

Reduce

wili@liie)

Scan

SHSNEES

PO
P1

P2
P3

PO
P1

P2
P3

R(ABCD)

R(A)

R(AB)

R(ABC)

R(ABCD)

27

MPI_Reduce

int MPI Reduce(
void input_data_p [0In */,
void output_data_p /x out */,
int count [0in %/,
MPI_Datatype datatype [0n x/
MPI_Op operator [0n x/
int dest process l 0in #/,
MPI Comm comm [+ In #/)
Operation Value | Meaning
MPI_MAX Maximum
MPI_MIN Minimum
MPI_SUM Sum
Predefined MPI_PROD Product
reduction MPT_LAND erlgit.:al and
. MPI_BAND Bitwise and
operators In MPI [werior Logical or
MPI_BOR Bitwise or
MPI_LXOR Logical exclusive or
MPI_BXOR Bitwise exclusive or
MPI_MAXLOC Maximum and location of maximum

MPI_MINLOC

Minimum and location of minimum

Predefined reduction operators in MPI

Operation Value | Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical and

MPI_BAND Bitwise and

MPI_LOR Logical or

MPI_BOR Bitwise or

MPI_LXOR Logical exclusive or

MPI_BXOR Bitwise exclusive or

MPI_MAXILOC Maximum and location of maximum
MPI_MINLOC Minimum and location of minimum

Reduce example

/

Contribute 1 integer.
Reduced to Proc 0

My number=my rank;

0,MPI COMM WORLD) ;
printf (“%d\n”,sum) ;

int my rank, my number, sum=0;
MPI Comm rank (MPI COMM WORLD, &my rank);

MPI Reduce (&my number, &sum, 1, MPI INT, MPI SUM,

Time Proc 0 Proc 1 Proc 2
my number=0; my number=1;
MPI Reduce MPI Reduce my number=2;
(&my number,...) (&my number,...) MPI Reduce
(&my number, ...)
printf(... sum); printf(... sum); printf(... sum);
3 0 0

With MPI Reduce, processes wait for each other and then do a group

communication with Proc 0 holding the reduction result.

30

' How to implement global reduction?

__________ Whatis time cost of parallel algorithm?

Processes

using a tree-structured sum

#Parallel StepSZIng Copyright © 2010, Elsevier

Inc. All rights Reserved

Example: Use of MPI Reduce in Computing
__ P1with Numerical Integration

1
1 h = 1.0
=4 d
. ./'n 1+ z2 . sum = 0.0;
N | | for (i=1; 1 <= n; 1i++) {
Divide an integral area into n x =h *(i - 0.5)/n;

segments. Approximate as

=Y 1/(1+x?) J

12

I\

Mapping of loop iterations with SPMD code

Mapping with 2 processes (myID=0, 1)
Iteration 1, 2f 3f 4, 5, 6, 7, 8
Processes o, o0, 0, 0, 1, 1, 1, 1

What i1s the mapping of this SPMD code?
for (1 = myID + 1; 1 <= n; 1 += numprocs) {
x = h * ((double)i - 0.5);
sum += 4.0 / (1.0 + x*x);
}

Assume 2 processes
myID=0 - Iterations? 1, 3, 5, 7
myID=1 - Iterations? 2, 4, 6, 8

33

Cyclic pattern

' Options for lteration-to-Process Mapping

 Block mapping

= Assign blocks of consecutive components to each process.
« Cyclic mapping

= Assign components in a round robin fashion.
* Block-cyclic mapping

= Use a cyclic distribution of blocks of components.

Example: map 12 iterations to 3 processes

Components
Block-cyclic
Process Block Cyclic Blocksize =2
0 01213]0(3]6]9|(|0]1] 6|7
l 4156 | 7|14 T7T|10}|2]3] 8|89
2 19110711 (|2 (5|8 |11 }|45]10]1l

Use of Parallel Integral for Pi Computation

1
- " - " 1
#include "mpi.h r=4 fn H—midm =" 1/(1+x2?)

#include <math.h>

#include <stdio.h>

int main(int argc, char *argv([])

{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;

MPI Init(&argc, &argv);

MPI Comm size (MPI_COMM WORLD, &numprocs) ;
MPI Comm rank (MPI_COMM WORLD, &myid) ;

while ('done) {
if (myid == 0) {
printf ("Enter the number of intervals: (0 quits) ") ;
scanf ("%d" , &n) ;
}
MPI Bcast(&n, 1, MPI_INT, 0, MPI COMM WORLD) ;
if (n == 0) break;

Input and broadcast parameters

Slide source: Bill Gropp, ANL

35

Example: Pi computation

1. Compute local p1 values

h = 1.0 / (double) n;
sum = 0.0;
for (1 = myid + 1; i <= n; 1 += numprocs) {

x = h * ((double)i - 0.5); ,
sum += 4.0 / (1.0 + x*x); \Itera.tlon—to process
cyclic mapping

}

mypi = h * sum;

}

2. Computg summation

MPI Reduce (&mypi, &pi, 1, MPI DOUBLE, MPI SUM, O,
MPI_COMM WORLD) ;

printf ("pi is approximately %.16f, Error is .16£f\n",
pi, fabs(pi - PI25DT));

MPI Finalize();
return O;

Slide source: Bill Gropp, ANL 36

Before MPI_Allreduce

Process 2

Process 3

MPI_Alireduce 5105 1
. Afte‘r‘ MPI_A]}rs:‘duce N
10 10 || 10 10

Do global reduction first and then make the result

available to all of the processes.

int MPI Allreduce(
void =
void =
int
MPI_Datatype
MPI_Op
MPI Comm

input_data_p

output_data_p

count

datatype
operator
comm

/
/
/ #
/#
/#
/

in
out
in
in
in
in

w/
#/
#/
#/
£/)1

Implementation of MPI_Allreduce [
What is time cost of your parallel algorithm

Process 1

Before MPI_Allreduce
Process 2 Process 3

2

3

Wwith p precesses?
2

@\@ e @\EE\@

Processes

Process 2

After MPL_

Allreduce

Process 3

Process

10

10

A global tree reduction
followed by tree broadcast

i \@ of result.
@

#Parallel steps=2log p

' A butterfly-structured global sum
Processes ZAINN
0 1 2 3 4 6 . iy S
ojcRcY<NoNoNc Yo
Gt & ﬁ>@
e
pd

3

Fast group communication 1s a challenging problem and we
just call the vendor-supplied library functions which have a
good implementation

distribution P3

Scatter

PO [A|[BCD
Scatter P
for data p2

Gather

ol @Rvele

« MPI_Scatter can be used in a function that reads in

an entire vector on process 0 but only sends the

needed components to each of the other processes.

int MPI Scatter(
void #
int
MPI Datatype
void #
int
MPI_Datatype
int
MPI Comm

send_buf p
send count
send_type
recv_buf_p
recv_count
recv_type
Src_proc

T T T T T T

in
In
in

out

in
in
in
in

*/
+/
+/
+/
+/
w7
+/

+/)

Collective Data Movement: Allgather and

AlltoAll
PO A POOABCD
PI B Allgather ., P1 A B C D
pp C P2 ABCD
p3 D p3 ABCD
PO AOAIA2A3 po A0 B0 CO DO
Pl BOBIB2B3 Alltoall p; A1BIC1DI
p2 COCIC2C3 p2 A2B2C2D2
p3 DODID2D3 p3 A3 B3 C3D3

41

A ABCD
Allgather B Allgather, A B CD

C ABCD™

D ABCD

« Concatenates the contents of each process’
send_buf p and stores this in each process’
recv_buf p.

 As usual, recv_count is the amount of data being
received from each process.

int MPI_Rllgather(

void * send_buf p /% in %/,

int send_count /% in */,
MPI Datatype send_ type Jx 0in %/,
void # recv_buf p /x out =/,
int recv_count /x in %/,
MPI_Datatype recv_type f+ 0in */,
MPI Comm comm f 0in #/);

' Collective vs. Point-to-Point Communications

« All the processes in the communicator must call the
same collective function.

= For example, a program that attempts to match a call
to MP| Reduce on one process with a call to
MPI| Recv on another process. What will happen?

if(my_rank==2) MPI_Recv(&a, MPI_INT, MPI_SUM,0,0,
MPI_COMM_WORLD);

Else MPI_Reduce(&a,&b,1, MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD): \

Proc O Proc 1 Prog
The program will hang or crash. Reduce() | Reduce() || ReC

N\

' Collective vs. Point-to-Point Communications

 The arguments passed by each process to an MPI
collective communication must be “compatible.”

= For example, if one process passes in 0 as the final
dest process and another passes in 1, then the
outcome of a call to MP| Reduce is erroneous, and,
once again, the program is likely to hang or crash.

if(my_rank==0) MPI_Reduce(&a,&b,1, MPI|_INT,
MPI_SUM, 0, MPI_COMM_WORLD);

else MPI_Reduce(&a,&b,1, MPIl_INT, MPI_SUM, 1,
MPI_COMM_NORLD}/

Proc 0 Proc 1 Proc 2
Reduce(.,40,.\) Reduce(...,1,...) | | Reduce(...,1,...)

N\

Example of MPIl_Reduce execution

Multiple calls to MPI_Reduce with MPI_SUM and Proc 0 as
destination (root)

Will this code exectuon hang?

inta, b, c,d;

Time || Process 0 Process 1 Process 2
0 a=1; ¢ =2 a=1; c=2 a=1; c=2
| MPI Reduce(&a, &b, ...) | MPI_Reduce(&c, &d, ...) | MPI_Reduce(&a, &b, ...)
2 MPI Reduce(&c, &d, ...) | MPI_Reduce(&a, &b, ...) | MPI_Reduce(&c, &d, ...)

Is b=3 on Proc 0 after two MPIl_Reduce() calls?
|s d=6 on Proc 07

Example of MPl_Reduce execution

Multiple calls to MPI_Reduce with MPI_SUM and Proc 0 as
destination (root)

Will this code exectuon hang?

inta, b, c,d;

Time || Process 0 Process 1 Process 2
0 a=1; ¢ =2 a=1; c=2 a=1; c=2
MPI Reduce(&a, &b, ...) | MPI_Reduce(&c, &d, ...) | MPI_Reduce(&a, &b, ...

]
2

After Step 1: Proc 0: b=4 whichisthesumofl1l+2+1

The names of the memory locations are less relevant to the
matching of the calls to MPI Reduce.

Example of MPl_Reduce execution

Multiple calls to MPI_Reduce with MPI_SUM and Proc 0 as
destination (root)

Will this code exectuon hang?

inta, b, c,d;

Time || Process 0 Process 1 Process 2
0 a=1; ¢ =2 a=1; c=2 a=1; c=2
|
2 MPI Reduce(&c, &d, ...) | MPI_Reduce (&a, &b, ... MPI_Reduce(&c, &d, ...

After Step 1: Proc 0: b=4.

After Step 2: Proc O: b=4.
ProcO:d=2+1+2

Checkpointing ™, -

« Computers fail periodically Ei Eﬁ Ei

= Result loss of an expensive long-running job (e.g. that
lasts days or weeks)

« Checkpointing technique

= A program periodically stores information on its
intermediate running state

= A program can restart and resume its execution from a
checkpoint file

* Use of checkpointing in an MPI program

= A process periodically gathers running results from
other parallel processes and saves to a file.

= This program is designed to be restartable after reading
from a checkpoint file.

’ MPI Functions: Summary

« Startup/finishing: MPI_Init, MPI_Finalize

* Information on the processes

= MPl_Comm_rank, MPl_Comm_size

* Point-to-point communication: MP|_Send, MP| Recv
= matched on the basis of tags and communicators.

« Collective communication. Don'’t use tags.

= They're matched solely on the basis of the communicator
and function definition.

« Checkpointing helps fault tolerance of long-running jobs

* To measure time: double Start time= MPI Wtime(),
MPI Wtime () Code segment to be timed
- double End time=MPI Wtime(), 49

Time spent 1s end_time — start time.

	Slide 1: Distributed Memory Programming with Message-Passing
	Slide 2: Outline
	Slide 3: Message Passing Libraries
	Slide 4: Process Concept from OS
	Slide 5: TEXT, DATA, BSS, HEAP and STACK in C
	Slide 6: TEXT, DATA, BSS, HEAP, and STACK in C
	Slide 7: Process Communication
	Slide 8: SPMD code in MPI for Hello World!
	Slide 9: MPI_hello.c Running on 4 nodes
	Slide 10: MPI Components
	Slide 11: Communicators
	Slide 12: Basic Send
	Slide 13: Data types
	Slide 14: Basic Receive: Block until a matching message is received
	Slide 15: Message matching
	Slide 16: Receiving messages without knowing source or tag
	Slide 17: Retrieving Further Information from status argument in C
	Slide 18: MPI Example: Simple send/receive when no of processes =3
	Slide 19: What MPI Functions are commonly used
	Slide 20: Collective Communication in MPI and Advanced Features
	Slide 21: MPI Collective Communication
	Slide 22: Synchronization with MPI_Barrier(comm)
	Slide 23: Exampe of SPMD MPI Loop with Barriers
	Slide 24: Broadcast
	Slide 25: Broadcast example
	Slide 26
	Slide 27: Collective Computation: Reduce vs. Scan
	Slide 28: MPI_Reduce
	Slide 29: Predefined reduction operators in MPI
	Slide 30: Reduce example
	Slide 31: How to implement global reduction?
	Slide 32
	Slide 33: Mapping of loop iterations with SPMD code
	Slide 34: Options for Iteration-to-Process Mapping
	Slide 35: Use of Parallel Integral for Pi Computation
	Slide 36: Example: Pi computation
	Slide 37: MPI_Allreduce
	Slide 38
	Slide 39
	Slide 40: Scatter for data distribution
	Slide 41: Collective Data Movement: Allgather and AlltoAll
	Slide 42: Allgather
	Slide 43: Collective vs. Point-to-Point Communications
	Slide 44: Collective vs. Point-to-Point Communications
	Slide 45: Example of MPI_Reduce execution
	Slide 46: Example of MPI_Reduce execution
	Slide 47: Example of MPI_Reduce execution
	Slide 48: Checkpointing
	Slide 49: MPI Functions: Summary

