CS140, 2014 I11-1

4 N

Transformation based parallel programmin

Program parallelization techniques.

1. Program Mapping

e Program partitioning (with task

aggregation). Dependence analysis.
e Scheduling & load balancing.
e Code distribution.

2. Data Mapping.
e Data partitioning.
e Communication between processors.

e Data distribution. Indexing of local data.

Program and data mapping should be consistent.

_ /

CS, UCSB Tao Yang

CS140, 2014

ITI-2

/

‘ An Example I

Sequential code:

p-1.

x=3

For i = 0 to
y(i)= ix*x;

Endfor

Dependence analysis:

Scheduling: Replicate x = 3 (instead of

broadcasting).
0 1 2 p-1
X=3 | X=3| X=3 X=3
Ox | Ix | 2x (P-1)x

_

~

CS, UCSB

Tao Yang

CS140, 2014 111-3

4 N

SPMD Code:

int x,y,1;

X = 3;

M-
I

mynode () ;

y = 1 * X;

Data and program distribution :

Sequential Parallel (one node)
Data
Array y [0,1,...,p—1] = Element y
program
For i=0 to p-1 — Y=1%x
y(i) = i*x

_ /

CS, UCSB Tao Yang

CS140, 2014 111-4

/ ‘ Dependence Analysis I \

e For each task, define the input and output

sets.

INPUT OUTPUT
Task

Example: S: A=C + B
IN(S) = {C,B}
OUT(S) = {A}.
e Given a program with two tasks: S, .55.
If changing execution order of S; and Ss
affects the result. = S5 depends on S5;.
e Type of dependence:
1. Flow dependence (true data dependence).

2. Output dependence. Anti dependence.

— Useful in a shared memory machine.

\ 3. Control dependence (e.g. if A then B). /

CS, UCSB Tao Yang

CS140, 2014 11-5

4 N

e Flow Dependence: OUT(S]) NIN(S2) # ¢
Si: A=x2+B
So: C=A +3
S2 is dataflow-dependent on S1.

¢ Output Dependence: OUT(S;) N

OUT(S,) # ¢.
S1:A=3
SQZA:ZU

S2 is output-dependent on S1.

e Anti Dependence: IN(S;) N OUT(S2) # ¢.

S1 - B=A+3
So: A=z +5
S2 is anti-dependent on S1.

_ /

CS, UCSB Tao Yang

CS140, 2014 111-6

Coarse-grain dependence graph.'

Tasks operate on data items of large sizes and

perform a large chunk of computations.

Assume each function below only reads input

Ex: S;: A = f{(XB)
parameters. So: C = g(A)
S3: A = h(AC)
U
Flow @ Output
Flo nti
(30

_ /

CS, UCSB Tao Yang

CS140, 2014 I11-7

/

‘Delete redundant dependence edges.

The deletion should not affect the correctness.

An anti or output dependence edge can be deleted

if

_

it is subsumed by another dependence path.

Flow

Flow @

Flo

CS,

UCSB Tao Yang

CS140, 2014 I11-8

GT——
Loop Parallelism

Iteration space — all iterations of a loop and

data dependence between iteration statements.

1 D Loop:
For i = 1 to n
Si . al :bi+ C|
For i = 1 to n

S:ai:ail-l

&)
- |
G

S
_ /

CS, UCSB Tao Yang

EI)-I

T =

n <
L—-II

x Il R
— —~

N _, O

x O 5
-

+

H

CS140, 2014 I11-9

Program Partitioning I

Purpose:
e Increase task granularity (task grain size).
e Reduce unnecessary communication.

e Ease the mapping of a large number of tasks

to a small number of processors.

Actions: Group several tasks together as one
task.

Loop partitioning techniques:
e Loop blocking/unrolling.
e Interior loop blocking.

e Loop interchange.

_ /

CS, UCSB Tao Yang

CS140, 2014 I11-10

‘ Loop blocking/unrolling I

Given:
For i=1 to 2n
Si . Q; — bz + C;

Block this loop by a factor of 2 or unroll this loop
by a tactor of 2.

(&) (3] () Sl

\\f\(\/ \\f\(\/
1 2 n

After transformation:
—For 1=1 to n

do S2;—1,59

_ /

CS, UCSB Tao Yang

CS140, 2014 11-11

General 1D Loop Blocking'

Given: Fori =1 to r*p

S; :a(i) = b(i)+c(i)

Block this loop by a factor of r:
For j = 0 to p-1

For i = r*j+1 to r*j+r
a(i) = b(i)+c(i)

SPMD code on p nodes.

me=mynode();

For i = r*me+1 to r*me-r

a(i) = b(i)+c(i)

_ /

CS, UCSB Tao Yang

CS140, 2014

I11-12

/ ‘Interior Loop Partitioning'

Block the interior loop and make it one task.

Example:

For 2=1 to 4
For 7=1 to 4

Tij = Tij—1+ 1

After blocking:

For 2=1 to 4
For 7=1 to 4

Tij = Tij—1+ 1

O—0O—0—-0
O—C0——C0—- —
O—0O—-0—-0 |
| [O—0—0C—-0 |

0000

The above example preserves the

\parallelism.

~

/

CS, UCSB Tao Yang

CS140, 2014 11-13

4 N

Partitioning may reduce parallelism'

No inter-task parallelism!

_ /

CS, UCSB Tao Yang

CS140, 2014

ITI-14

/

‘ Loop Interchange I

Definition: A program transformation that

Actions: Swap the loop control statements.

Example:

For 2=1 to 4
For 7=1 to 4

Tij = Ti-1,5 + 1

After loop interchange:

For 7=1 to 4
For 72=1 to 4

Tij = Ti—1,5 + 1

_

changes the execution order of a loop program.

~

CS, UCSB

Tao Yang

CS140, 2014 11-15

‘Why loop interchange?.

Usage: Help loop partitioning for better

performance.

Example. Interior loop blocking after interchange.

For 7=1 to 4
For 71=1 to 4

Lij = Li—1j + 1

:

_ /

CS, UCSB Tao Yang

CS140, 2014

ITI-16

///"*

~

Execution order after loop interchange'

Loop interchange alters the execution order.

Fori=1to3 —°
Forj=1to 3 —
Sij “So1 S22 _S23
%BT — S32 S33
Execution order
]
‘Sll %‘512 %‘813
Forj=1to 3 | // //J
i = J
Fori . 1to3 | S21/ ‘522/ ‘823
Sij: 2 A
S31 | S32 |s33
A VA
y ly)
CS, UCSB Tao Yang

CS140, 2014 11-17

/ ‘Not every loop interchange is legal. \
‘in the sequential code'

Loop interchange is not legal if the new execution

order violates data dependence.

Fori=1to3 j
Forj=1to 3 R
"s11 _S12 s .
S i X(i,j)=X(-1,j+1)+1 817/ // S13 Execution order
== — 5 —a&n 3= _ =
‘ Legal? 521/523/5% Dependence
i S3sl S s33

Forj=1to 3

Fori=1to3 s11 [ls12 %1513
el WANA
| s2y S22/ S28
| / | §3{2 ‘533
; 31
SNal
/S

Parallel code execution needs to make sure data

dependence is satisfied when loop interchange is

Qsed. /

CS, UCSB Tao Yang

CS140, 2014

ITI-18

/

_

For i=1 to 10

Interchanging triangular loops

For j=i+1 to 10

—

j=i+1

2 10

— For j=2 to 10
For i=1 to j-1

CS,

UCSB

Tao Yang

CS140, 2014 I11-19

/‘ Transformation for loop interchange I\

How to derive the new bounds for ¢« and j loops?

e Step 1: List all inequalities regarding ¢ and j

from the original code.
1 < 10, 2 >1, 7 <10, 7>14+ 1.

e Step 2: Derive bounds for loop j.

— Extract all inequalities regarding the upper
bound of j.
7 < 10.

The upper bound is 10.

— Extract all inequalities regarding the lower
bound of j.
7 >14+ 1.
The lower bound is 2 since ¢ could be as

low as 1.

\o Step 3: Derive bounds for loop ¢ when j /

CS, UCSB Tao Yang

CS140, 2014 ITI-20

4 N

value is fixed (now loop 7 is an inner loop).

— Extract all inequalities regarding the upper

bound of 7.
1 <10, <5 —1.

The upper bound is min(10, 5 — 1).

— Extract all inequalities regarding the lower
bound of 1.
i> 1.

The lower bound is 1.

_ /

CS, UCSB Tao Yang

CS140, 2014

I11-21

/ Data Partitioning and Distribution' \

Data structure is divided into data units and

assigned to processor local memories.

Why?

e Not enough space for replication for solving

large problems.

e Partition data among processors so that data

accessing is localized for tasks.

Ex : Yy =Axn T

proc O

proc 1
proc 2

n/p
n/p

n/p

Distribute array A among p nodes. But replicate x

to all processors.

_

/

CS, UCSB

Tao Yang

CS140, 2014 I11-22

4 N

Corresponding Task Mapping: (r = n/p)

PO Pl
Az Arp1x
Arx Arjox
Arx 16127“3j

_ /

CS, UCSB Tao Yang

CS140, 2014 ITI-23

‘1D Data Mapping Methods'

1D array — 1D processors.

e Assume that data items are counted from
0,1,---n—1.

e Processors are numbered from 0 to p — 1.
Mapping methods: Let r = [2].
e 1D Block

—

p 0 1 2 3

Data =— Proc

i 7]

_ /

CS, UCSB Tao Yang

CS140, 2014 ITI-24

/

e 1D Cyclic

p 0123012301230123
Data — Proc
1 7 mod p
e 1D Block Cyclic.

First the array is divided into a set of units
using block partitioning (block sizefb). Then
these units are mapped in a cyclic manner to p

Pprocessors.

p 01 2 3 01 2 3
Data — Proc

i LZ}J mod p

r

_ /

CS, UCSB Tao Yang

Tao Yang
r

Tao Yang
r

Tao Yang

Tao Yang

Tao Yang

CS140, 2014

ITI-25

0,1,---n—1.
Methods:

Data (¢,5) = Proc L%j

Data (i,j) = Proc |*]

_

/ 2D array — 1D processors'

2D data space is partitioned into a 1D space.

Then partitioned data items are counted from

Processors are numbered from 0 to p — 1.

e Column-wise block. (call it (* ,block))

Proc O

Proc 1

Proc 2

Proc 3

e Row-wise block. (call it (block,*))

~

CS, UCSB

Tao Yang

CS140, 2014

ITI-26

/

_

e Row cyclic. (cyclic,*)

Data (¢,7) = Proc i mod p.

e Others: Column cyclic. Column block cyclic.

Row block cyclic - - -.

CS,

UCSB

Tao Yang

CS140, 2014 ITI-27

2D array — 2D processors'

Data elements are counted as (¢, 7) where
0<i,j<---n—1L.

Processors are numbered as (s,t) where
cee (g — — _[n
0<st<---g—1whereqg=,/p. Let r =[]

e (Block, Block)
Data (i,7) = Proc (|], |L])

2
Tr Tr

0 1 2 3

Proc Proc Proc Proc
O | 0o |0y | 02 | 03

_ /

CS, UCSB Tao Yang

CS140, 2014 ITI-28

4 N

¢ (Cyclic, Cyclic)
Data (7,7) = Proc (¢ mod ¢,j mod gq,)

012301230123

<] L <1 1 iy Processor

e)

=

A

WNFOWNRFRPOWNRFO

e Others: (Block, Cyclic), (Cyclic, Block),
(Block Cyclic, Block Cyclic).

_ /

CS, UCSB Tao Yang

CS140, 2014 ITI-29

4 N

Program & data mapping: Consistency'

Criteria:

e Sufficient parallelism is provided by

partitioning.

e Also the number of distinct units accessed by

each task is minimized.
A simple mapping heuristic:

“Owner Computes Rule”. If task x

modifies data item, then processor that

owns this data item executes z.

_ /

CS, UCSB Tao Yang

CS140, 2014 ITI-30

An Example of “Owner computes rule” I

Sequential code:
For i = 0 to r*p-1
Sz' . a[i] = 3.

Data distribution:

Map data a(i) to node proc_map(i).
Data array a(%) are distributed to processors such
that if processor x executes a(¢) = 3, then a(7) is

assigned to processor x.

SPMD code on p processors:

me=mynode();

For 1 =0 to rp-1

if (proc_map(i) == me) ali| = 3.

_ /

CS, UCSB Tao Yang

CS140, 2014 ITI-31

/‘ SPMD code with 1D block mapping I\

—

p 0 1 2 3
Datai => proc.map(i) = |%].

Data distribution:
Processor 0 owns data a(0),a(1),---,a(r —1).

Processor 1 owns data a(r),a(r +1),---,a(2r — 1).

Code distribution:

me=mynode();
For i =0 to rp-1

if (proc_map(i) == me) ali| = 3.

Comments: General, but with extra loop and

\branch overhead. /

CS, UCSB Tao Yang

CS140, 2014 ITI-32

4 N

Optimization to remove loop and branch
overhead : First, explicitly block the loop code

by a factor of r.

For j = 0 to p-1
For i = r*j to r*j+r-1
ali] = 3.

Optimized SPMD code on p processors:

me=mynode();
For i = r*me to r*me-+r-1
ali] = 3.

_ /

CS, UCSB Tao Yang

CS140, 2014 ITI-33

SPMD code with 1D cyclic mapping'

p 0123012301230123

Mapping: proc_map(i) = ¢ mod p.

Data distribution:
Processor 0 owns data a(0),a(p), a(2p), - -.
Processor 1 owns data a(1),a(p+1),a(2p+1),---

Optimized SPMD code on p processors:

me=mynode();
For i = me to r*p-1 step p
ali| = 3.

_ /

CS, UCSB Tao Yang

CS140, 2014 ITI-34

‘Global Data Space vs. Local Address'

Sequential program = (Global data address

Distributed program =- Local data address

Data indexing in

me=mynode();
For 1 =0 to rp-1

if (proc_map(i) == me) ali| = 3.

33}
1

Problem: “a(i)=3” uses as the index function
and the value of 7 is in a range between 0 to rp — 1.

Each processor has to allocate the entire array!

Data localization: Allocate r units for each
processor, translate the global index ¢ to a local

index which accesses the local memory only.

_ /

CS, UCSB Tao Yang

CS140, 2014

ITI-35

/

~

‘From global address to local address'

Use 1D block mapping.

A 0

1|2

3

415

|

|

|

0

1

2

i

112

Local array, ProcO Local array, Proc 1

SPMD code.

il

me=mynode();

For 1 =0 to rp-1

int a[r]; /* Not entire array! */

if (proc_map(i) == me) allocal(i)] = 3.

_

CS, UCSB

Tao Yang

CS140, 2014

ITI-36

Local(t) = ¢ mod 7.

Ex. p=2, r=3.
Proc 0 Proc 1
0—0 3—0
1 —1 4 =1
2 — 2 5— 2

Local(i) = L%j

Ex. p=2.
proc 0 proc 1
0—0 1 =20
2 =1 3—1
4 — 2 S — 2
6— 3

_

/I\/Iapping Function for 1D Block:

Mapping Function for 1D Cyclic:

CS, UCSB

Tao Yang

CS140, 2014 ITI-37

/ ‘Important Mapping Functions' \

Given: data item 1.

e 1D Block

Processor 1D:
procmap(i) = | ~|
r
Local data address:

Local (i) = ¢ mod r

e 1D Cyclic

Processor 1D:
proc_map(i) = i mod p
Local data address:

Local(i) = LEJ

_ p /

CS, UCSB Tao Yang

CS140, 2014

ITI-38

/ ‘ Program Parallelization I

Program
/ \
Code Data
Partitioning Partitioning
Tasks + Data
dependence
mapping mapping
scheduling
P processors P processors
\ /
parallel code

Techniques

e Cyclic/block partitioning

e Loop interchange, unrolling, blocking
e Dependence analysis

e Task scheduling

e Task mapping. Data mapping.
(cyclic/ block mapping)

\o Data indexing and communication.

~

CS, UCSB

Tao Yang

