
CS140, 2014 III-1✬

✫

✩

✪

Transformation based parallel programming

Program parallelization techniques.

1. Program Mapping

• Program partitioning (with task

aggregation). Dependence analysis.

• Scheduling & load balancing.

• Code distribution.

2. Data Mapping.

• Data partitioning.

• Communication between processors.

• Data distribution. Indexing of local data.

Program and data mapping should be consistent.

CS, UCSB Tao Yang

CS140, 2014 III-2✬

✫

✩

✪

An Example

Sequential code:

x=3

For i = 0 to p-1.

y(i)= i*x;

Endfor

Dependence analysis:

0 x 1 x 2 x (p-1)x

x = 3

. . . .

Scheduling: Replicate x = 3 (instead of

broadcasting).

x = 3 x = 3x = 3 x = 3

0 x 1x 2 x
. . .

(p-1)x

210 p-1

CS, UCSB Tao Yang

CS140, 2014 III-3✬

✫

✩

✪

SPMD Code:

int x,y,i;

x = 3;

i = mynode();

y = i * x;

Data and program distribution :

Sequential Parallel (one node)

Data

Array y [0, 1, . . . , p− 1] =⇒ Element y

program

For i=0 to p-1 =⇒ y = i ∗ x
y(i) = i*x

CS, UCSB Tao Yang

CS140, 2014 III-4✬

✫

✩

✪

Dependence Analysis

• For each task, define the input and output

sets.

Task
INPUT OUTPUT

Example: S : A = C + B

IN(S) = {C,B}
OUT(S) = {A}.

• Given a program with two tasks: S1, S2.

If changing execution order of S1 and S2

affects the result. =⇒ S2 depends on S1.

• Type of dependence:

1. Flow dependence (true data dependence).

2. Output dependence. Anti dependence.

– Useful in a shared memory machine.

3. Control dependence (e.g. if A then B).

CS, UCSB Tao Yang

CS140, 2014 III-5✬

✫

✩

✪

• Flow Dependence: OUT(S1) ∩ IN(S2) 6= φ

S1 : A = x + B

S2 : C = A + 3

S2 is dataflow-dependent on S1.

• Output Dependence: OUT(S1) ∩
OUT(S2) 6= φ.

S1 : A = 3

S2 : A = x

S2 is output-dependent on S1.

• Anti Dependence: IN(S1) ∩ OUT(S2) 6= φ.

S1 : B = A + 3

S2 : A = x + 5

S2 is anti-dependent on S1.

CS, UCSB Tao Yang

CS140, 2014 III-6✬

✫

✩

✪

Coarse-grain dependence graph.

Tasks operate on data items of large sizes and

perform a large chunk of computations.

Assume each function below only reads input

parameters.

Ex: S1 : A = f(X,B)

S2 : C = g(A)

S3 : A = h(A,C)

S

Anti

S

S

1

2

3

Flow

OutputFlow

Flow

CS, UCSB Tao Yang

CS140, 2014 III-7✬

✫

✩

✪

Delete redundant dependence edges

The deletion should not affect the correctness.

An anti or output dependence edge can be deleted

if it is subsumed by another dependence path.

S

S

S

1

2

3

Flow

Flow

Flow

CS, UCSB Tao Yang

CS140, 2014 III-8✬

✫

✩

✪

Loop Parallelism

Iteration space – all iterations of a loop and

data dependence between iteration statements.

1 D Loop:

S1 SnS2

S1 S2 S3 Sn. . .

For i = 1 to n

. . .

For i = 1 to n
S : a = b + ci

iS : a = a - 1

i i

i-1i

i

2 D Loop:

S11 S S

SSS

S S S

12 13

21 22 23

31 32 33i

j

For i = 1 to n
For j = 1 to n

ij ij i-1,j
S : x = x +1

CS, UCSB Tao Yang

CS140, 2014 III-9✬

✫

✩

✪

Program Partitioning

Purpose:

• Increase task granularity (task grain size).

• Reduce unnecessary communication.

• Ease the mapping of a large number of tasks

to a small number of processors.

Actions: Group several tasks together as one

task.

Loop partitioning techniques:

• Loop blocking/unrolling.

• Interior loop blocking.

• Loop interchange.

CS, UCSB Tao Yang

CS140, 2014 III-10✬

✫

✩

✪

Loop blocking/unrolling

Given:

For i=1 to 2n

Si : ai = bi + ci

Block this loop by a factor of 2 or unroll this loop

by a factor of 2.

S1 S2 S3 S4 S2n2n-1S

1

. . .

. . .
2 n

After transformation:

=⇒ For i = 1 to n

do S2i−1, S2i

CS, UCSB Tao Yang

CS140, 2014 III-11✬

✫

✩

✪

General 1D Loop Blocking

Given: For i = 1 to r*p

Si : a(i) = b(i)+c(i)

Block this loop by a factor of r:

For j = 0 to p-1

For i = r*j+1 to r*j+r

a(i) = b(i)+c(i)

SPMD code on p nodes.

me=mynode();

For i = r*me+1 to r*me+r

a(i) = b(i)+c(i)

CS, UCSB Tao Yang

CS140, 2014 III-12✬

✫

✩

✪

Interior Loop Partitioning

Block the interior loop and make it one task.

Example:

For i = 1 to 4

For j = 1 to 4

xi,j = xi,j−1 + 1

After blocking:

For i = 1 to 4

For j = 1 to 4

xi,j = xi,j−1 + 1

j

i
i

The above example preserves the

parallelism.

CS, UCSB Tao Yang

CS140, 2014 III-13✬

✫

✩

✪

Partitioning may reduce parallelism

For i = 1 to 4

For j = 1 to 4

xi,j = xi−1,j + 1

i

j

i

No inter-task parallelism!

CS, UCSB Tao Yang

CS140, 2014 III-14✬

✫

✩

✪

Loop Interchange

Definition: A program transformation that

changes the execution order of a loop program.

Actions: Swap the loop control statements.

Example:

For i = 1 to 4

For j = 1 to 4

xi,j = xi−1,j + 1

After loop interchange:

For j = 1 to 4

For i = 1 to 4

xi,j = xi−1,j + 1

CS, UCSB Tao Yang

CS140, 2014 III-15✬

✫

✩

✪

Why loop interchange?

Usage: Help loop partitioning for better

performance.

Example. Interior loop blocking after interchange.

For j = 1 to 4

For i = 1 to 4

xij = xi−1j + 1

j

i

CS, UCSB Tao Yang

CS140, 2014 III-16✬

✫

✩

✪

Execution order after loop interchange

Loop interchange alters the execution order.

S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

Execution order

For i = 1 to 3
For j= 1 to 3

S i,j :

For i = 1 to 3
For j= 1 to 3

S i,j :

CS, UCSB Tao Yang

CS140, 2014 III-17✬

✫

✩

✪

Not every loop interchange is legal

in the sequential code

Loop interchange is not legal if the new execution

order violates data dependence.

For i = 1 to 3
For j= 1 to 3

S i,j :
S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

X(i,j)=X(i−1,j+1)+1

For i = 1 to 3
For j= 1 to 3

S i,j : X(i,j)=X(i−1,j+1)+1

Legal?

S11 S12 S13

S21 S22 S23

S31 S32 S33
i

j

Execution order

Dependence

Parallel code execution needs to make sure data

dependence is satisfied when loop interchange is

used.

CS, UCSB Tao Yang

CS140, 2014 III-18✬

✫

✩

✪

Interchanging triangular loops

For i=1 to 10

For j=i+1 to 10

=⇒ For j=2 to 10

For i=1 to j-1

1

10
j

i
j=i+1

2

1

10
j

i

2

CS, UCSB Tao Yang

CS140, 2014 III-19✬

✫

✩

✪

Transformation for loop interchange

How to derive the new bounds for i and j loops?

• Step 1: List all inequalities regarding i and j

from the original code.

i ≤ 10, i ≥ 1, j ≤ 10, j ≥ i+ 1.

• Step 2: Derive bounds for loop j.

– Extract all inequalities regarding the upper

bound of j.

j ≤ 10.

The upper bound is 10.

– Extract all inequalities regarding the lower

bound of j.

j ≥ i+ 1.

The lower bound is 2 since i could be as

low as 1.

• Step 3: Derive bounds for loop i when j

CS, UCSB Tao Yang

CS140, 2014 III-20✬

✫

✩

✪

value is fixed (now loop i is an inner loop).

– Extract all inequalities regarding the upper

bound of i.

i ≤ 10, i ≤ j − 1.

The upper bound is min(10, j − 1).

– Extract all inequalities regarding the lower

bound of i.

i ≥ 1.

The lower bound is 1.

CS, UCSB Tao Yang

CS140, 2014 III-21✬

✫

✩

✪

Data Partitioning and Distribution

Data structure is divided into data units and

assigned to processor local memories.

Why?

• Not enough space for replication for solving

large problems.

• Partition data among processors so that data

accessing is localized for tasks.

Ex : y = An×n · x

n/p

n/p

x

proc 1

proc 0

proc 2

n/p

.

.
.

Distribute array A among p nodes. But replicate x

to all processors.

CS, UCSB Tao Yang

CS140, 2014 III-22✬

✫

✩

✪

Corresponding Task Mapping: (r = n/p)

P0 P1 · · ·
A1x Ar+1x

A2x Ar+2x . . .

. . .

Arx A2rx

CS, UCSB Tao Yang

CS140, 2014 III-23✬

✫

✩

✪

1D Data Mapping Methods

1D array −→ 1D processors.

• Assume that data items are counted from

0, 1, · · · n− 1.

• Processors are numbered from 0 to p− 1.

Mapping methods: Let r = ⌈n
p
⌉.

• 1D Block

r

0 1 2 3p

Data =⇒ Proc

i ⌊ i
r
⌋

CS, UCSB Tao Yang

CS140, 2014 III-24✬

✫

✩

✪

• 1D Cyclic

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3p

Data =⇒ Proc

i i mod p

• 1D Block Cyclic.

First the array is divided into a set of units

using block partitioning (block size b). Then

these units are mapped in a cyclic manner to p

processors.

p 32103210

r r r r r r r r

Data =⇒ Proc

i ⌊ i
b
⌋ mod p

CS, UCSB Tao Yang

Tao Yang
r

Tao Yang
r

Tao Yang

Tao Yang

Tao Yang

CS140, 2014 III-25✬

✫

✩

✪

2D array −→ 1D processors

2D data space is partitioned into a 1D space.

Then partitioned data items are counted from

0, 1, · · · n− 1.

Processors are numbered from 0 to p− 1.

Methods:

• Column-wise block. (call it (*,block))

Data (i, j) ⇒ Proc ⌊ j
r
⌋

Proc
0 1 2 3

Proc 0

Proc 1

Proc 2

Proc 3

• Row-wise block. (call it (block,*))

Data (i, j) ⇒ Proc ⌊ i
r
⌋

CS, UCSB Tao Yang

CS140, 2014 III-26✬

✫

✩

✪

• Row cyclic. (cyclic,*)

Data (i, j) ⇒ Proc i mod p.

• Others: Column cyclic. Column block cyclic.

Row block cyclic · · ·.

CS, UCSB Tao Yang

CS140, 2014 III-27✬

✫

✩

✪

2D array −→ 2D processors

Data elements are counted as (i, j) where

0 ≤ i, j ≤ · · ·n− 1.

Processors are numbered as (s, t) where

0 ≤ s, t ≤ · · · q − 1 where q =
√
p. Let r = ⌈n

q
⌉.

• (Block, Block)

Data (i, j) ⇒ Proc (⌊ i
r
⌋, ⌊ j

r
⌋)

0 1 2 3

0

1

2

3

(0,0) (0,1) (0,2) (0,3)

Proc Proc Proc Proc

CS, UCSB Tao Yang

CS140, 2014 III-28✬

✫

✩

✪

• (Cyclic, Cyclic)

Data (i, j) ⇒ Proc (i mod q, j mod q,)
0 1 2 3 0 1 2 3 0 1 2 3

0
1
2
3
0
1
2
3
0
1
2
3

(0,3)

Processor

• Others: (Block, Cyclic), (Cyclic, Block),

(Block Cyclic, Block Cyclic).

CS, UCSB Tao Yang

CS140, 2014 III-29✬

✫

✩

✪

Program & data mapping: Consistency

Criteria:

• Sufficient parallelism is provided by

partitioning.

• Also the number of distinct units accessed by

each task is minimized.

A simple mapping heuristic:

“Owner Computes Rule”. If task x

modifies data item, then processor that

owns this data item executes x.

CS, UCSB Tao Yang

CS140, 2014 III-30✬

✫

✩

✪

An Example of “Owner computes rule”

Sequential code:

For i = 0 to r*p-1

Si : a[i] = 3.

Data distribution:

Map data a(i) to node proc map(i).

Data array a(i) are distributed to processors such

that if processor x executes a(i) = 3, then a(i) is

assigned to processor x.

SPMD code on p processors:

me=mynode();

For i =0 to rp-1

if (proc map(i) == me) a[i] = 3.

CS, UCSB Tao Yang

CS140, 2014 III-31✬

✫

✩

✪

SPMD code with 1D block mapping

r

0 1 2 3p

Data i =⇒ proc map(i) = ⌊ i
r
⌋.

Data distribution:

Processor 0 owns data a(0), a(1), · · · , a(r − 1).

Processor 1 owns data a(r), a(r + 1), · · · , a(2r − 1).

· · ·.

Code distribution:

me=mynode();

For i =0 to rp-1

if (proc map(i) == me) a[i] = 3.

Comments: General, but with extra loop and

branch overhead.

CS, UCSB Tao Yang

CS140, 2014 III-32✬

✫

✩

✪

Optimization to remove loop and branch

overhead : First, explicitly block the loop code

by a factor of r.

For j = 0 to p-1

For i = r*j to r*j+r-1

a[i] = 3.

Optimized SPMD code on p processors:

me=mynode();

For i = r*me to r*me+r-1

a[i] = 3.

CS, UCSB Tao Yang

CS140, 2014 III-33✬

✫

✩

✪

SPMD code with 1D cyclic mapping

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3p

Mapping: proc map(i) = i mod p.

Data distribution:

Processor 0 owns data a(0), a(p), a(2p), · · ·.
Processor 1 owns data a(1), a(p+ 1), a(2p + 1), · · ·.

Optimized SPMD code on p processors:

me=mynode();

For i = me to r*p-1 step p

a[i] = 3.

CS, UCSB Tao Yang

CS140, 2014 III-34✬

✫

✩

✪

Global Data Space vs. Local Address

Sequential program ⇒ Global data address

Distributed program ⇒ Local data address

Data indexing in

me=mynode();

For i =0 to rp-1

if (proc map(i) == me) a[i] = 3.

Problem: “a(i)=3” uses “i” as the index function

and the value of i is in a range between 0 to rp− 1.

Each processor has to allocate the entire array!

Data localization: Allocate r units for each

processor, translate the global index i to a local

index which accesses the local memory only.

CS, UCSB Tao Yang

CS140, 2014 III-35✬

✫

✩

✪

From global address to local address

Use 1D block mapping.
A 1 2 3 4 5

0 1 2 0 1 2

Local array, Proc 0 Local array, Proc 1

0

SPMD code.

int a[r]; /* Not entire array! */

me=mynode();

For i =0 to rp-1

if (proc map(i) == me) a[local(i)] = 3.

CS, UCSB Tao Yang

CS140, 2014 III-36✬

✫

✩

✪

Mapping Function for 1D Block:

Local(i) = i mod r.

Ex. p=2, r=3.

Proc 0 Proc 1

0 → 0 3 → 0

1 → 1 4 → 1

2 → 2 5 → 2

Mapping Function for 1D Cyclic:

Local(i) = ⌊ i
p
⌋.

Ex. p=2.

proc 0 proc 1

0 → 0 1 → 0

2 → 1 3 → 1

4 → 2 5 → 2

6 → 3

CS, UCSB Tao Yang

CS140, 2014 III-37✬

✫

✩

✪

Important Mapping Functions

Given: data item i.

• 1D Block

Processor ID:

proc map(i) = ⌊ i
r
⌋

Local data address:

Local(i) = i mod r

• 1D Cyclic

Processor ID:

proc map(i) = i mod p

Local data address:

Local(i) = ⌊ i
p
⌋.

CS, UCSB Tao Yang

CS140, 2014 III-38✬

✫

✩

✪

Program Parallelization

Program

Code
Partitioning

Data
Partitioning

dependence
Tasks + Data

mapping
scheduling

mapping

P processors P processors

parallel code

Techniques

• Cyclic/block partitioning

• Loop interchange, unrolling, blocking

• Dependence analysis

• Task scheduling

• Task mapping. Data mapping.

(cyclic/ block mapping)

• Data indexing and communication.

CS, UCSB Tao Yang

