42

Shared Memory Parallel Programming
with OpenMP

C3S140, T. Yang

’ Shared Memory Programming with Threads

Several Thread Libraries/systems

« OpenMP standard for application level programming
= Support for scientific programming on shared memory

* Pthreads is the POSIX Standard: Relatively low level

« Java threads: Built on top of POSIX threads

 Python packages often use multiple CPU cores with
OpenMP and GPU threads when GPU is attached

Targeted platform: shared
memory architecture

CPU

CPU

CPU CPU

Interconnect

Memory

' Thread Execution on Single/Multiple Cores

« Two threads run 1 core
concurrently if Thread A Thread B Thread C

their logical I

flows overlapin |- b I

tme == 00 |-g

- Examples: |

= Concurrent: I
A&B,A&C e
= Sequential:
B&C

3 cores

Difference between Threads and Processes

Processes: Nothing is shared between two processes
Separate address spaces
Inter-process communication: message sending/receiving

code data files code data files code data files
registers stack registers stack registers ||| registers ||| registers
stack stack stack
thread —> thread —> <«

single-threaded process

single-threaded process

multithreaded process

Thread: Shared memory access for code/global variables/heap space
Inter-thread communication: through shared global variables
Separate thread control flow by using separate stack/registers

' A Programmer’ s View of OpenMP

« Whatis OpenMP?
= “Standard” API for multi-threaded shared-memory programs

= openmp.org — Talks, examples, forums, etc.

« OpenMP is a portable, threaded, shared -memory
programming specification with ¢ ‘light” syntax

= Allow a programmer to separate a program into serial regions
and parallel regions, rather than explicitly define concurrently-
executing threads.

Fork - Join Threa
parallelism model

hread

Sequential — e—

master

code thread

{ parallel region } { parallel region }

http://www.openmp.org/
http://www.openmp.org/

' Hello World Example with OpenMP
int main() {
omp set num threads(4);
// Do this part in parallel

?pragma omp parallel Printf | | Printf | | Printf | | Printf

printf("Hello, World!'\n");!___L___L_J

} I
return 0,’
}

« Add special preprocessor instructions to C
= All OpenMP directives begin with #pragma
= Compilers that don’t support the pragmas ignore them

* How to compile and run in CSIL:

gcc —O —fopenmp hello.c —o hello
/hello 6

' OpenMP parallel region construct

 (C/C++ syntax in SPMD style
#pragma omp parallel [clause [clause] ...] new-line
structured-block

* Clause is the text that modifies a directive, and can include
private (list) or shared (list)

= Private data, visible to a single thread (often stack-allocated)

= Shared data within a scope, visible to all threads. Default
setting.

#pragma omp parallel private (x,y)

Data Sharing: OpenMP /

SLACK
int b[1024]; //sha global U
void* foo(int bar) =
int x; /shared among threa ithin foo HEAP
#fpragma omp paralle BSS
{ int jJ=1;
x=x+3+b[1]; foo PATA
| /TN
\ Thread 1 Thread 2 TEXT

x=x+J+b[1]; x=x+J+b[1];

o
1. Treat each thread as a dynamically-created
function call

2. Figure out data sharing among functions

Parallel Pragma

| STAK
int y; //globally shared N
void foo(int x) { 4
#pragma omp parallel num_threads(2) private(x) HEAR
{ //same as declaring "int x;” local x here BSS

x=1;

! DATA
y=3;
#pragma omp parallel num threads(3) TEXT

{ [IIx is shared among all threads
x=x+1;
y=1+X;

b

Parallel Pragma

int y; //globally shared
void foo(int x) {

#pragma omp parallel num_threads(2) private(x)

{ //same as declaring "int x;” local x here

x=1;
h
y=3;
#pragma omp parallel num threads(3)
{ /Ix is shared among all threads
x=x+1;
y=1+X;

;

x=1;

Thread O/ \Thread 1

x=1;

x=x+1
v=1+x;

x=x+1;

v=1+x;

10

Loop Parallelization with Explicit
Computation-to-Thread Mapping
for (int 1=0; 1<8; 1++)

x[1]=0; //Run on multiple threads with cyclic mapping

-

#pragma omp parallel
{ // Assume number of threads=4

int numt=omp get num _thread();
intid = omp get thread num(); //1d=0, 1, 2, or 3
for (int 1=1d; 1<8; 1 +=numt)

x[1]=0;
}
Thread 0 Thread 1 Thread 2 Thread 3
Id=0; Id=1; Id=2; Id=3;
x[0]=0; x[1]1=0; x[2]=0; x[3]1=0;
X[41=0; X[5]1=0; X[61=0; X[71=0;

11

for (1nt 1=0; 1<§; 1++)
x[1]=0;

d

)

Use “pragma parallel for “

for (1=0; 1<§; 1++)

x[i]=0

Id
[
[

> X
SN O
I_II_IO
o

OO

-

#pragma omp parallel for schedule(static,1)

I

I_ll_l'_\

RO
o =l
o9

I

o N |

I

J w |l

OpenMP parallelizes iterations of the first loop below “parallel for”
OpenMP make iteration variable i private automatically for each thread.

12

' Parallel region vs. parallel for

#pragma omp parallel This is the

d / only directive
#pragma omp for in the parallel
section

for(1=0;1<max;1++) { ... }

h

can be shortened to:

#pragma omp parallel for
for(1=0;1<max;1++) { ... }

\This index variable is private 13

’ Parallel region vs parallel for: More flexibility

#pragma omp parallel

d

Preprocessing...

#pragma omp for
for(1=0;1<max;1++) { ... }
Postprocessing. ..
h
CANNOT be shortened to:
#pragma omp parallel for
for(1=0;1<max;1++) { ... }

14

' Parallel for with collapse directive

#pragma omp parallel collapse(2)
o . Apply #pragma omp parallel for
for(1=0;1< m;1++) collapse(2),
for(j=0;)< n;j++) the compiler mathematically
a[1][j]=1+3; "flattens" the two loops to
exploit more parallelism
@ Same as * It calculates a single total
iteration count (NxM) and
#pragma omp parallel for then divides that total across
for(k=0;k< m*n; k++) { the available threads
int1=k /n;
int j = k%n;
a[1][j]=1+3;

} 15

Example: Calculating 1

Numerical Iintegration
Mathematically, we know that:

1

I 4.0
(14x2) dx=17C
0

We can approximate the
integral as a sum of
rectangles:

&
X
+

=

S

<«
I

L

T

Where each rectangle has
width Ax and height F(x) at
the middle of interval i.

Sequential Calculation of mrin C

#include <stdio.h> /* Serial Code */
static long num steps = 100000;
double step;
void main () {
int i;
double x, pi, sum = 0.0;
step = 1.0/ (double)num steps;
for (1 = 1; 1 <= num steps; i++)
x = (1 - 0.5) * step;
sum = sum + 4.0 / (1.0 + x*x);
}
pi = sum / num steps;
printf ("pi = %6.12f\n", pi);

17

Parallel OpenMP Version (1)
include <omp.h>

#define NUM-THREADS 4
static long num steps = 100000; double step;

void main () {
int 1i; double x, pi, sum[NUM THREADS] ;
step = 1.0/ (double) num steps;
#pragma omp parallel private (i, x)
{
int id = omp get thread num();
for (i=id, sum[id]=0.0; i< num steps; i=i+NUM THREADS)
{ \
x = (1+0.5)*step; Consider “Parallel for”

sum[id] += 4.0/ (1.0+x*x); Can we also do global sum

}
} / in parallel?

for (i=1; i<NUM THREADS; i++)
sum[0] += sum[i]; pi = sum[0] / num steps

printf ("pi = %6.12f\n", pi); o

' Reduction clause

A reduction clause can be added to a parallel directive.
reduction(<operator>: <variable list>)

L >+, % - &, |, 7, &&, ||

« Variable list: specifies that 1 or more variables
that are private to each thread are subject of
reduction operation at end of parallel region:

#pragma omp for reduction(+ : sum)
for (1 = 0, 1 < MAX ; 1++) l i
sum += A[i]; Sum+—A[8J_] _AIZ]'AJ
[3]
(Sum+=A[1 =
 Initial value for reduction i [Q)/‘m
-0 bitwise | O logical | O

* 1 bitwise » 0

Calculating 1 Version 2 with
parallel for, reduction

include <omp.h>
#include <stdio h>

/static long num steps = 100000;
double step;
void main ()
{ int 1i; double x, pi, sum = 0.0;
step = 1.0/ (double) num steps;
#pragma omp parallel for private(x) reduction (+:sum)
for (i=1; i<= num steps; i++) {
X = (1-0.5) *step;
sum = sum + 4.0/ (1.0+x*x);
}
pi = sum / num steps;
printf ("pi = %6.8f\n", pi);

20

-

Race Conditions and Synchronization

Race Conditions: Example

Count=5

Thread 1 Thread 2

Count++; Count--;

v Is count still 52 ¥

Race Conditions: two or more threads are
reading and writing on shared data and the
final result depends on who runs precisely &
when

Review compiled code

Count=35
Thread 1 | Thread 2 ‘
Count++: Count—:
register]l = count register2 = count
register] = registerl + 1 register2 = register2 - 1

count = regilsterl count = mg]Terz

Count can be 4,5.6

Thread Synchronization in OMP

OMP barrier: any thread must stop at this point and cannot proceed
until all other threads reach this barrier.

Implicit barrier
= End of parallel region
= End of parallel-for (removed with nowait clause)
= End of OMP single

OMP single specifies that a section of code should be executed by
single thread (not necessarily the master thread)

OMP atomic specifies that a statement below with a certain operator
can be executed only in an atomic manner by one thread at a time

OMP critical specifies that code is executed by one thread at a time

Explicit lock functions .
#fpragma omp critical

{

omp_set_lock(lock 1)7 /* Critical code here */

sum=sum+x; sum=sum+x;

omp unset lock(lock 1); }

24

int x;
#pragma omp parallel
{

/*Initialize with one thread
#pragma omp single

Example: Serial Tasks Inside Parallel
Reqi ith Exolicit Barri

{

x=4;

}
printf (“Hello %d\n”, x);
#pragma barrier
fpragma omp single
{

printf (“Done\n”); }

X=4
Implicit
barrier
Printf | |Printf Printf Printf
1 Explicit
barrier
Print “Done” ..
Implicit
barrier

Where are OMP Implicit Barriers?

#pragma omp parallel shared(s1, s2) PARALLEL
{ rm 1 1 1
#pragma omp for reduction(+: s1) FOR
for (inte = 0; & < 250; e++) { 1111 o

s1 += fetch (e,1); T < BARRIER
} SINGLE

#pragma omp single N
{ 1 1] e SINGLE

TIME

BARRIER
printf("%d\n” s1); T
} FOR
#pragma omp for reduction(+: s2) ., ' . , '. FOR

for (inte =0; e <250; e++) { I S — < BARRER

P 1 1 1
s2 += fetch (e,2); [+ ' ' |g-PARALLEL
(- BARRIER
ST v
TJARASCORNER.COM

http://jakascorner.com/blog/2016/07/omp-barrier.html 26

' OMP Parallel-for loop with schedule clause

#pragma parallel for schedule (type, chunksize)

« Type can be:

= static: the iterations are assigned to the threads at
compiler time before the code is executed.

— Each thread receives chunksize Iterations,
rounding as necessary to account for all iterations
—Default chunksize is

" ceil (#iterations /# threads)

= dynamic or guided: the iterations are assigned to the
threads based on dynamic workload during run-time

= runtime: the schedule for mapping iterations is
determined at run-time

’ Examples of the Static Schedule
Determined at Compile-Time

12 iterations, 0, 1, . . ., 11, and three threads
schedule(static, 1) Thread 0: 0.3.6.9
Thread 1: 1.4,7,10
Thread 2: 2.5,8,11

schedule (static, 2) Thread O: | 0, 1,6.7
Thread 1: |2.38.9
Thread 2: |4.5)10.11

schedule (static, 4) Thread 0: 0.1.2.3

Thread 1: 4.5.6.7
Thread 2: §8.9.10,11

Which one is better?

Assigning loop scheduling type at runtime
voild omp set schedule(omp sched tkind, int chunk size)

Defined in omp.h /

typedef enum omp sched t {
omp sched static = 1,
omp_sched dynamic = 2,
omp sched guided = 3,
omp sched auto =4}
omp sched t;

schedule(runtime) means
scheduling type is
not known at compile-time

#include <omp.h>

Example: omp sched t schedtype=omp sched static;

for(1=0;1<n;1++)

f(1);

omp_set schedule(schedtype, 16);
#pragma parallel for schedule (runtime)

' False Sharing: Cache line/block movement
between CPU cache and memory

 Example of #pragma omp parallel for schedule(static,1)
for (int i=0; i<n; i++)

false sharing

with cyclic mapping yli] = yli] +1
Thread 0 y[0]+_|_ Thread 1 Y[l]‘H‘
CPU 0 y[2]+ CPU1 y[3]+

CPUO: Get cache line of y[0] I I

Cache Line il Cache Line
CPU1: Get cache line of y[1]. #
Invalidate CPUOQ’s cache line Cache _/X Cache

CPUO: Get cache line of y[2].
Invalidate CPU1’s cache line

CPUI: Get cache line of y[3]. Memory
Invalidate CPUQ’s cache line

How to Avoid False Sharing

« Example of #pragma omp parallel for schedule(static,1)
false sharing for (int i=0; i<n; i++)
ylil = ylil+1

#pragma omp parallel for schedule(static,32)
for (int i=0; i<n; i++)
yli] = yli]+1;

Block mapping
or block cyclic

mapping

Array padding #tpragma omp parallel for schedule(static,1)
for (int i=0; i<n; i++)
yli][O] ++;

Make shared

variables private >

' OpenMP Summary

OpenMP is a compiler-based technique to create concurrent
code from (mostly) serial code

OpenMP can enable (easy) parallelization of loop-based
code with fork-join thread parallelism

" #pragma omp parallel

" #pragma omp parallel for

" #pragma omp parallel private (1, X))
" #pragma omp critical

" #pragma omp for reduction(+ : sum)

By default most systems use a block-partitioning of the
iterations in a parallelized for loop.

= OpenMP offers several loop scheduling options

Make sure parallel region 1s thread-safe >

	Slide 1: Shared Memory Parallel Programming with OpenMP
	Slide 2: Shared Memory Programming with Threads
	Slide 3: Thread Execution on Single/Multiple Cores
	Slide 4: Difference between Threads and Processes
	Slide 5: A Programmer’s View of OpenMP
	Slide 6: Hello World Example with OpenMP
	Slide 7: OpenMP parallel region construct
	Slide 8: Data Sharing: OpenMP
	Slide 9: Parallel Pragma
	Slide 10: Parallel Pragma
	Slide 11: Loop Parallelization with Explicit Computation-to-Thread Mapping
	Slide 12: Use “pragma parallel for “
	Slide 13: Parallel region vs. parallel for
	Slide 14: Parallel region vs parallel for: More flexibility
	Slide 15: Parallel for with collapse directive
	Slide 16: Example: Calculating π
	Slide 17: Sequential Calculation of π in C
	Slide 18: Parallel OpenMP Version (1)
	Slide 19
	Slide 20: Calculating π Version 2 with parallel for, reduction
	Slide 21
	Slide 22: Race Conditions: Example
	Slide 23: Review compiled code
	Slide 24: Thread Synchronization in OMP
	Slide 25: Example: Serial Tasks Inside Parallel Regions with Explicit Barrier
	Slide 26: Where are OMP Implicit Barriers?
	Slide 27: OMP Parallel-for loop with schedule clause
	Slide 28: Examples of the Static Schedule Determined at Compile-Time
	Slide 29: Assigning loop scheduling type at runtime
	Slide 30: False Sharing: Cache line/block movement between CPU cache and memory
	Slide 31: How to Avoid False Sharing
	Slide 32: OpenMP Summary

