
CS140, T. Yang

1

Shared Memory Parallel Programming

with OpenMP

2

Shared Memory Programming with Threads

Several Thread Libraries/systems

• OpenMP standard for application level programming

▪ Support for scientific programming on shared memory

• Pthreads is the POSIX Standard: Relatively low level

• Java threads: Built on top of POSIX threads

• Python packages often use multiple CPU cores with

OpenMP and GPU threads when GPU is attached

Targeted platform: shared

memory architecture

Thread Execution on Single/Multiple Cores

• Two threads run

concurrently if

their logical

flows overlap in

time

• Examples:

▪ Concurrent:

A & B, A&C

▪ Sequential:

B & C

Time

Thread A Thread B Thread C

Time

Thread A Thread B Thread C

1 core

3 cores

Difference between Threads and Processes

Thread: Shared memory access for code/global variables/heap space

 Inter-thread communication: through shared global variables

 Separate thread control flow by using separate stack/registers

Processes: Nothing is shared between two processes

 Separate address spaces

 Inter-process communication: message sending/receiving

5

A Programmer’s View of OpenMP

• What is OpenMP?

▪ “Standard” API for multi-threaded shared-memory programs

▪ openmp.org – Talks, examples, forums, etc.

• OpenMP is a portable, threaded, shared-memory
programming specification with “light” syntax

▪ Allow a programmer to separate a program into serial regions
and parallel regions, rather than explicitly define concurrently-
executing threads.

• Fork - join

parallelism model

Sequential

code

Thread 1

Thread 0

Thread 1

Thread 0

http://www.openmp.org/
http://www.openmp.org/

6

Hello World Example with OpenMP

 int main() {

 omp_set_num_threads(4);

 // Do this part in parallel

 #pragma omp parallel

 {

 printf("Hello, World!\n");

 }

 return 0;

 }

Printf Printf Printf Printf

• Add special preprocessor instructions to C

▪ All OpenMP directives begin with #pragma

▪ Compilers that don’t support the pragmas ignore them

• How to compile and run in CSIL:

 gcc –O –fopenmp hello.c –o hello

 ./hello

OpenMP parallel region construct

• C/C++ syntax in SPMD style

 #pragma omp parallel [clause [clause] ...] new-line

 structured-block

• Clause is the text that modifies a directive, and can include

private (list) or shared (list)

▪ Private data, visible to a single thread (often stack-allocated)

▪ Shared data within a scope, visible to all threads. Default

setting.

 #pragma omp parallel private (x,y)

8

Data Sharing: OpenMP

int b[1024]; //shared, global

void* foo(int bar) {

 int x; //shared among threads within foo

 #pragma omp parallel

 { int j=1;

 x=x+j+b[1];

 }

}

STACK

HEAP

BSS

DATA

TEXT

x=x+j+b[1]; x=x+j+b[1];

Thread 1 Thread 2

foo

1. Treat each thread as a dynamically-created

function call

2. Figure out data sharing among functions

Parallel Pragma

int y; //globally shared

void foo(int x) {

#pragma omp parallel num_threads(2) private(x)

{

 x=1;

}

y=3;

 #pragma omp parallel num_threads(3)

{

 x=x+1;

 y=1+x;

}

9

//x is shared among all threads

//same as declaring ”int x;” local x here

STACK

HEAP

BSS

DATA

TEXT

Parallel Pragma

int y; //globally shared

void foo(int x) {

#pragma omp parallel num_threads(2) private(x)

{

 x=1;

}

y=3;

 #pragma omp parallel num_threads(3)

{

 x=x+1;

 y=1+x;

}

10

//x is shared among all threads

//same as declaring ”int x;” local x here

x=1; x=1;

Thread 0 Thread 1

y=3

x=x+1

y=1+x;

x=x+1;

y=1+x;
x=x+1;

y=1+x;

Loop Parallelization with Explicit

Computation-to-Thread Mapping

for (int i=0; i<8; i++)

 x[i]=0; //Run on multiple threads with cyclic mapping

#pragma omp parallel

 {

 int numt=omp_get_num_thread();

 int id = omp_get_thread_num(); //id=0, 1, 2, or 3

 for (int i=id; i<8; i +=numt)

 x[i]=0;

 }

11

Id=0;

x[0]=0;

X[4]=0;

Id=1;

x[1]=0;

X[5]=0;

Id=2;

x[2]=0;

X[6]=0;

Id=3;

x[3]=0;

X[7]=0;

// Assume number of threads=4

Thread 0 Thread 1 Thread 2 Thread 3

Use “pragma parallel for “

for (int i=0; i<8; i++)

 x[i]=0;

#pragma omp parallel for schedule(static,1)

{

 for (i=0; i<8; i++)

 x[i]=0;

}

12

Id=0;

x[0]=0;

X[4]=0;

Id=1;

x[1]=0;

X[5]=0;

Id=2;

x[2]=0;

X[6]=0;

Id=3;

x[3]=0;

X[7]=0;

OpenMP parallelizes iterations of the first loop below “parallel for”

OpenMP make iteration variable i private automatically for each thread.

Parallel region vs. parallel for

#pragma omp parallel

{

 #pragma omp for

 for(i=0;i<max;i++) { … }

}

can be shortened to:

#pragma omp parallel for

 for(i=0;i<max;i++) { … }

13

This is the

only directive

in the parallel

section

This index variable is private

Parallel region vs parallel for: More flexibility

#pragma omp parallel

{

 Preprocessing…

 #pragma omp for

 for(i=0;i<max;i++) { … }

 Postprocessing…

}

CANNOT be shortened to:

#pragma omp parallel for

 for(i=0;i<max;i++) { … }

14

Parallel for with collapse directive

#pragma omp parallel collapse(2)

 for(i=0;i< m;i++)

 for(j=0;j< n;j++)

 a[i][j]=i+j;

15

Apply #pragma omp parallel for

collapse(2),
• the compiler mathematically

"flattens" the two loops to
exploit more parallelism

• It calculates a single total
iteration count (N×M) and
then divides that total across
the available threads

#pragma omp parallel for

 for(k=0;k< m*n; k++) {

 int i = k /n;

 int j = k%n;

 a[i][j]=i+j;

}

Same as

Example: Calculating π

16

Sequential Calculation of π in C

#include <stdio.h> /* Serial Code */

static long num_steps = 100000;

double step;

void main () {

 int i;

 double x, pi, sum = 0.0;

 step = 1.0/(double)num_steps;

 for (i = 1; i <= num_steps; i++) {

 x = (i - 0.5) * step;

 sum = sum + 4.0 / (1.0 + x*x);

 }

 pi = sum / num_steps;

 printf ("pi = %6.12f\n", pi);

} 17

Parallel OpenMP Version (1)
#include <omp.h>

#define NUM_THREADS 4

static long num_steps = 100000; double step;

void main () {

 int i; double x, pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;

 #pragma omp parallel private (i, x)

 {

 int id = omp_get_thread_num();

 for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS)

 {

 x = (i+0.5)*step;

 sum[id] += 4.0/(1.0+x*x);

 }

 }

 for(i=1; i<NUM_THREADS; i++)

 sum[0] += sum[i]; pi = sum[0] / num_steps

 printf ("pi = %6.12f\n", pi);

}
18

Consider “Parallel for”

Can we also do global sum

 in parallel?

A reduction clause can be added to a parallel directive.

+, *, -, &, |, ˆ, &&, ||

• Variable list: specifies that 1 or more variables
that are private to each thread are subject of
reduction operation at end of parallel region:

#pragma omp for reduction(+ : sum)

for (i = 0; i < MAX ; i++)
 sum += A[i];

Reduction clause

• Initial value for reduction

- 0 bitwise | 0 logical | 0

* 1 bitwise ^ 0

19
Sum+=A[0]

Sum+=A[1]

Sum+=A[2]

Sum+=A[3]

Calculating π Version 2 with

parallel for, reduction
#include <omp.h>

#include <stdio.h>

/static long num_steps = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

 for (i=1; i<= num_steps; i++){

 x = (i-0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = sum / num_steps;

 printf ("pi = %6.8f\n", pi);

}

20

Race Conditions and Synchronization

Race Conditions: Example

Count--;

Thread 1 Thread 2

Count++;

Count=5

Is count still 5?

Race Conditions: two or more threads are

reading and writing on shared data and the

final result depends on who runs precisely &

when

Review compiled code

Count—:

 register2 = count

 register2 = register2 - 1

 count = register2

Thread 1 Thread 2

Count++:

 register1 = count

 register1 = register1 + 1

 count = register1

Count=5

Count can be 4,5,6

Thread Synchronization in OMP

• OMP barrier: any thread must stop at this point and cannot proceed

until all other threads reach this barrier.

• Implicit barrier

▪ End of parallel region

▪ End of parallel-for (removed with nowait clause)

▪ End of OMP single

• OMP single specifies that a section of code should be executed by

single thread (not necessarily the master thread)

• OMP atomic specifies that a statement below with a certain operator

can be executed only in an atomic manner by one thread at a time

• OMP critical specifies that code is executed by one thread at a time

• Explicit lock functions

24

#pragma omp critical

{

 /* Critical code here */

 sum=sum+x;

}

omp_set_lock(lock l);

 sum=sum+x;

omp_unset_lock(lock l);

Example: Serial Tasks Inside Parallel

Regions with Explicit Barrier

int x;

#pragma omp parallel

{

 /*Initialize with one thread */

 #pragma omp single

 {

 x=4;

 }

 printf(“Hello %d\n”,x);

 #pragma barrier

 #pragma omp single

 {

 printf(“Done\n”); }

 }

}

Printf Printf Printf Printf

X=4

Print “Done”

Explicit

barrier

Implicit

barrier

Implicit

barrier

Where are OMP Implicit Barriers?

#pragma omp parallel shared(s1, s2)

{

 #pragma omp for reduction(+: s1)

 for (int e = 0; e < 250; e++) {

 s1 += fetch (e,1);

 }

 #pragma omp single

 {

 printf(”%d\n” s1);

 }

 #pragma omp for reduction(+: s2)

 for (int e = 0; e < 250; e++) {

 s2 += fetch (e,2);

 }

}

26http://jakascorner.com/blog/2016/07/omp-barrier.html

OMP Parallel-for loop with schedule clause

• Type can be:

▪ static: the iterations are assigned to the threads at

compiler time before the code is executed.

– Each thread receives chunksize iterations,

rounding as necessary to account for all iterations

– Default chunksize is

▪ ceil(#iterations /# threads)

▪ dynamic or guided: the iterations are assigned to the

threads based on dynamic workload during run-time

▪ runtime: the schedule for mapping iterations is

determined at run-time

#pragma parallel for schedule (type, chunksize)

Examples of the Static Schedule

Determined at Compile-Time

12 iterations, 0, 1, . . . , 11, and three threads

Which one is better?

Assigning loop scheduling type at runtime

void omp_set_schedule(omp_sched_t kind, int chunk_size)

#include <omp.h>

omp_sched_t schedtype=omp_sched_static;

omp_set_schedule(schedtype, 16);

#pragma parallel for schedule (runtime)

 for(i=0;i<n;i++)

 f(i);

Defined in omp.h

typedef enum omp_sched_t {

omp_sched_static = 1,

omp_sched_dynamic = 2,

omp_sched_guided = 3,

omp_sched_auto = 4 }

omp_sched_t;

schedule(runtime) means

scheduling type is

not known at compile-time

Example:

30

False Sharing: Cache line/block movement

between CPU cache and memory

• Example of

false sharing

with cyclic mapping

#pragma omp parallel for schedule(static,1)
for (int i=0; i<n; i++)
 y[i] = y[i] + 1I;

y[0]++ y[1]++

y[2]++ y[3]++

CPU0: Get cache line of y[0]

CPU1: Get cache line of y[1].

Invalidate CPU0’s cache line

CPU0: Get cache line of y[2].

Invalidate CPU1’s cache line

CPU1: Get cache line of y[3].

Invalidate CPU0’s cache line

31

How to Avoid False Sharing

• Example of

false sharing

#pragma omp parallel for schedule(static,1)
for (int i=0; i<n; i++)
 y[i] = y[i]+ 1I;

Array padding #pragma omp parallel for schedule(static,1)
for (int i=0; i<n; i++)
 y[i][0] ++; I;

Block mapping

or block cyclic

mapping

#pragma omp parallel for schedule(static,32)
for (int i=0; i<n; i++)
 y[i] = y[i]+1; I;

Make shared

variables private

32

OpenMP Summary

• OpenMP is a compiler-based technique to create concurrent

code from (mostly) serial code

• OpenMP can enable (easy) parallelization of loop-based

code with fork-join thread parallelism

▪ #pragma omp parallel

▪ #pragma omp parallel for

▪ #pragma omp parallel private (i, x)

▪ #pragma omp critical

▪ #pragma omp for reduction(+ : sum)

• By default most systems use a block-partitioning of the

iterations in a parallelized for loop.

▪ OpenMP offers several loop scheduling options

• Make sure parallel region is thread-safe

	Slide 1: Shared Memory Parallel Programming with OpenMP
	Slide 2: Shared Memory Programming with Threads
	Slide 3: Thread Execution on Single/Multiple Cores
	Slide 4: Difference between Threads and Processes
	Slide 5: A Programmer’s View of OpenMP
	Slide 6: Hello World Example with OpenMP
	Slide 7: OpenMP parallel region construct
	Slide 8: Data Sharing: OpenMP
	Slide 9: Parallel Pragma
	Slide 10: Parallel Pragma
	Slide 11: Loop Parallelization with Explicit Computation-to-Thread Mapping
	Slide 12: Use “pragma parallel for “
	Slide 13: Parallel region vs. parallel for
	Slide 14: Parallel region vs parallel for: More flexibility
	Slide 15: Parallel for with collapse directive
	Slide 16: Example: Calculating π
	Slide 17: Sequential Calculation of π in C
	Slide 18: Parallel OpenMP Version (1)
	Slide 19
	Slide 20: Calculating π Version 2 with parallel for, reduction
	Slide 21
	Slide 22: Race Conditions: Example
	Slide 23: Review compiled code
	Slide 24: Thread Synchronization in OMP
	Slide 25: Example: Serial Tasks Inside Parallel Regions with Explicit Barrier
	Slide 26: Where are OMP Implicit Barriers?
	Slide 27: OMP Parallel-for loop with schedule clause
	Slide 28: Examples of the Static Schedule Determined at Compile-Time
	Slide 29: Assigning loop scheduling type at runtime
	Slide 30: False Sharing: Cache line/block movement between CPU cache and memory
	Slide 31: How to Avoid False Sharing
	Slide 32: OpenMP Summary

