C Programming Language: Overview

UCSB CS140, T. Yang

Some of slides are modified from UCB
cs61c and Stephen Edwards’ lectures.

|IOBE Index of Language Popularity

https://www.tiobe.com/tiobe-index/

Nov 2023 Nov 2022 Change Programming Language Ratings Change
1 1 A Python 1416% -3.02%
2 2 O c N77% -3.31%
3 4 - @ C+ 10.36% -0.39%
4 3 v s, Java 8.35% -3.63%
5 5 @ c# 7.65% +3.40%
6 7 - Js JavaScript 3.21% +0.47%
7 10 A . PHP 2.30% +0.61%
8 6 v @ Visual Basic 210% 2.01%
9 9 soL 1.88% +0.07%
10 8 v @ Assembly language 1.35% -0.83%
The ratings are based on the number of skilled engineers world-
2

wide, courses and third party vendors.

’ Table of Content:
Focus on what C differs from others

 Hello world example

« Cvs.Java

 Addresses, Pointers

 Use of heap space with malloc/free
* Arrays

« Structures

« Strings

« Global/local variables
 Discussion section this Thursday

= Macro preprocessor, Makefile utility,
Valgrind, GDB, Homework issues.

Hello World in C

—— Preprocessor used to
#include <stdio.h> share information among

source files
void main()

P
«

{ —Program mostly a
printf(“Hello, world!\n”); collection of functions
} “main” function special:

the entry point

“vo1d” qualifier indicates
1/0 performed by a library functl.on does not return
function: not included in anything
the language

Similarities and Difference of C and Java

* “These structures are identicalin Javaand C
= jf statements, switch/case statements
= while, do/while loops, for loops
= standard operators
— arithmetic: +, -, *, /, %, ++, --, +=, etc.
— logical: |, && ,!,== 1= >= <=
— bitwise: |, &, ", ~
= First function to execute is main

 Difference

= C has no classes

= All work in C is done in functions
— Variables may exist outside of any functions

— Global variables seen by all functions declared after
variable declaration

Address vs. Value in C
101 102 103 104 105 ...

2

i

 Consider memory to be a single huge array
= Each cell of the array has an address associated with it
= Each cell also stores some value

= Don’t confuse the address referring to a memory

location with the value stored there

* An address refers to a particular memory location; e.g., it
points to a memory location

 Pointer: A variable that contains the address of a variable

\’ 101 102 103 104 105 ...

Location (address)

23

42

104

f X
name

y

p

' Pointer Syntax

e 1nt *x;

= Tells compiler that variable x is address of an int
* X = &y,

= Tells compiler to assign address of y to x

= & called the “address operator” in this context

e 7 = *x;
= Tells compiler to assign value at address in x to z
= * called the “dereference operator” in this context

Creating and Using Pointers

« How to create a pointer:

_ Note the “*” gets used
& operator: get address of a variable

2 different ways in this

int *p, x; example. In the
x = 3- declaration to indicate
4 p 2 % 3 that p is going to be a
~ pointer, and in the
—_ intf to get the
— X print tog
P &x; P X 3 value pointed to by p.

* How get a value pointed to?

TTOSE

(dereference operator): get the value that the pointer points to
printf (“p points to %d\n”, *p);

 How to change a variable pointed to? *p = 5;

8 P X 5

' Pointers and Parameter Passing

« Java and C pass parameters “by value”

= Procedure/function/method gets a copy of the

parameter, so changing the copy cannot change the
original

void add one (int x) {

X =x + 1;
} void add one (int *p) ({
int y = 3; *p = *p + 1;
add one (y) ; }

int y = 3;

y remains equal to 3 add one (&y) ;

y Is now equal to 4

' Types of Pointers

* Pointers are used to point to any kind of data (int,
char, a struct, a function etc.)

 Normally a pointer only points to one type

* void * is a type that can point to anything (generic
pointer)

* Function pointer example:

int addl(x){
return x+1;

}
int use addl() {

int (*fun_ptr)(int) = addil;
return (*fun_ptr)(10);

Calling use addl() returns 11 °

' Passing a function pointer

* Function pointer can be used as an argument

int addl(x){
return x+1;

}
int run(int (*func_prt)(int), int x){

func_prt(x);

}
int use_addl() {

return run(addl, 10);

}
Calling use addl1() returns 11

11

' More C Pointer Dangers

» Declaring a pointer just allocates space to hold the
pointer — it does not allocate the thing being
pointed to!

* Local variables in C are not initialized, they may
contain anything (aka “garbage”)

 |Is the following code legal?

void £ ()
{
int *ptr; .
*ptr = 5; Error: Unallocated space
}
‘{mld g() NULL means 0 in C
int *ptr=NULL; defined in <stdlib.h>
*ptr = 5; .
} Error: illegal address. .

0 1s often allocated for OS

Arrays

Array: sequence of identical
objects in memory

= 1nt a[1l0]; means space for
ten integers

» By itself, a is the address of the first integer

= *3 and a[0] mean the same thing

* Legal array declarations

int scores[20];
#define MAX LINE 80
char line[MAX _LINE]; // place 80 inside [] at compile time

 lllegal array declaration
int x =10;
float nums[x]; // using variable for array size

' More on C Arrays

« C arrays (diff from Java array)
* Declared size of a C array must be a constant
—Cannot use variables for the size. int a[5];

» May use a variable with malloc() to get
heap space.

—no .length parameter in array

—Dynamic array length is allowed after C99
standard, but we do not recommend this
feature for large arrays

int func(int size){
int a[size];

;

' More on C Arrays

 No bounds checking. You may access an
index outside of the array in C, but it is
dangerous

—int a[5]; a[6]=1;
 Arrays can be passed as parameters to
functions
= arrays are always passed-by-reference
—the address of the first element is passed

—Changes made to array in the called function
are seen in the calling function

' Dynamic Storage Allocation with malloc/free()

* Library routines for managing the heap
= Each segment allocated is contiguous in memory (no holes)
= Segments do not move once allocated
« malloc(size)
* Find a memory area large enough for segment
= Mark that memory is allocated
+ free(pointer)

= Mark the segment as unallocated | sizeof() returns # bytes
used by this data type.

int *a, k;

k=10; Must free allocated

a = (int *) malloc(sizeof(int) * k); herwi
a[5] = 3: memory space, otherwise

’ there 1s memory leak
free(a);

during execution

’ Pointers for arrays
 Example

int *p, *q, Z;
p = (int *) malloc(sizeof(int)*10);
q=p+5; /*&p[5] */

= *(p+5); /* equivalent to p[5] */

z = (int) g-p;
add1(p); /* p[0]++ */

incl(a); /* p[5]++ */ As p and q point into same array, q-p
’ is 5
void add1 (int a[]){ * the number of integer
a[0]++; elements between p and q.
} * g-p 1s NOT the number of
void incl (int *a){ bytes between them.
a[0]++;
j

' Multidimensional Arrays in C

* Array declarations read right-to-left
* Linearized representation in memory

int a[3][2];
3

A
f \

e~
2 2\2

Where 1s a[1][1]?

Compiler converts its
address as at+ 1*2 +1
which 1s a+3

int b[10][3][2];
3 3 3
4 A N [A A\ 4 \
e N o
2 2 2 2 2 2 2 2
— _/
Y
10
Where is b[0][1][0]?

Compiler converts it
as b+ 0*3%2 +1*2+0
Which 1s b+2

' Arrays passed as arguments

« PasstDarray
void examine(int c[]) {
c[5]=11;

}

 Pass 2D arrays
void examine(int a[]l[2]) {
a[1][1]=11;
}

« Compiled C code computes address of a[1][1] as a +
2%1+1

= That requires constant 2 (2nd dimension) to
be specified in the function argument.

' A programmer uses a one-dimensional

—array to represent a 2D matrix

A = (ajj) isanm x n matrix ~ @allocated as
malloc(sizeof(int)*12)

2 3 stored as
6

] 01234567891011
10 11

0 O
WO L —

Access A[1][j] with A[i*n+]]

voild addAll(int *A, int m, int n, int X){

for (int 1=0; 1<m; 1++)
for (int j=0; j<n; j++)
Ali*nH] +=x;

void main() {

int m=3, n=4;
h int * A= malloc(sizeof(int)*m™*n);
addAll(A, m, n, 1);

b

’ Strings
ABC\0

* In C, strings are just an array of characters

« C provides a standard library for copying
strings, counting characters in string,
concatenate strings, compare strings, etc.

* By convention, all strings are terminated by
the null character (\0)

Common String Mistakes
char *str1="ab”, *str2="cd’’;

if (strl ><str2) {

)
if(str1>@rz){

1

ommon String Functions

int strlen(char str[]);
= counts the number of characters up to (but not counting) the
null character and returns this number
int strcpy(char strTo[], char strFrom[]);
= copies the string in strFrom to the string in strTo
= make sure strTo is at least as big as strFrom

int strcat(char strTo[], char strFrom);
= copies the string in strFrom to the end of strTo
= again, make sure strTo is large enough to hold additional
chars
int stremp(char str1[], char str2[]);
= compares string 1 to string 2

= return values are as follows

— less than O if str1 is lexicographically less than str2
— 0O if str1 is identical to str2
— greater than O if str1 is lexicographically qreater than str2

C Structures

e C does not have classes

« However, C programmers can create their own
data types, called structures

= Structures allow a programmer to place a group of
related variables into one place. Example:
struct person {
char name[30];
int id;

. Variables can now be created by type struct
person
struct person bob;
bob.id=1234;

strcpy(bob.name. “Bob K”);
 When passed to a function, a structure 1s passed by value

' typedef

« "It can be hassle to always type struct person

 C provides a way for you to give “nicknames”
= it is the keyword typedef

 Example

Using typedef with a standard data type
typdef unsigned long ulong_t

Using typedef with a structure declaration
typdef struct person {
char name[30];
int id;
} person_t;

 Whenever a struct person is needed, just type person t

Pointers and Structures: Example

typedef struct {
int x;
int y;

} Point;

Point pl;
Point p2;
Point *paddr;

/* dot notation */
int h = pl.x;

p2.y = pl.y;

/* arrow notation */
int h = paddr->x;

int h = (*paddr) .x;

/* This works too to copy */
Pl = p2;

25

Pointers and Structures: Example in Exercise 1

struct key_action {
char *cmd;
int (*func)();

%

Int set_key action(
struct key_action *rec,
char *cmd, int (*f)()){
if(rec!=NULL) {
rec->cmd=cmd;
rec->func=f;
return 1;

}

return O;

\.

int del1(int x){
return x-1;
}

char * test(void X

Macro mu_assert () 1s
used for testing in the rest
of quarter. Read code to
learn implementation

struct key_action rec;
char *key="del1";

- int ret=set_key_ action(&rec, key, del1);

mu_assert("Error in set_key",
strcmp(key, rec.cmd)==0);

mu_assert("Error in set_action”,
rec.func ==del1);

[*All comparisons are valid so far*/

return NULL;
}

26

Pointers and Structures: Example in Exercise 1

struct key_action {
char *cmd;
int (*func)();

%

#define
mu_assert(msg,cond)
do {
if (!(cond))
return msg;
} while (0)

int del1(int x){

}

return x-1

char * test(void X

Macro mu_assert () 1s
used for testing in the rest
of quarter. Read code to
learn implementation

struct key_action rec;
char *key="del1";
int ret=set_key_ action(&rec, key, del1);

mu_assert("Error in set_key",
strcmp(key, rec.cmd)==0);

mu_assert("Error in set_action”,
rec.func == del1);

[*All comparisons are valid so far*/

return NULL;
}

27

Testing Example

int add(int x, int y){

}

return x+y+1;

char * test(void
mrcr— dd INd K

mu_assert("Error in func add", rec ==7),
int ret=add(10,3);
mu_assert("Error in func add", rec == 13);

H#define

mu_assert(msg,cond)

do {

if (!(cond))

return msg;

} while (0)

/ return NULL:
}

char * test(void v

int ret= add(4,3);

do {
if(!(ret==7))
return "Error in func add”;
} while (0);
int ret= add(10,3);
do {

if(!(ret==13))
return "Error in func add’;

} while (0);
return NULL: 2

Global & Local Variables and
____ _Constants

Variables declared outside any scope are called
global
= they can be used by any function declared after them
Local variables only exist within their scope
= must be declared at the very beginning of the scope
= stored on the stack
= destroyed when scope ends
Prefer not to use global variables if possible
= too many naming conflicts
= can be confusing to follow in large programs
Constants are usually declared globally
= use the const key word

Important concept for shared memory parallel programming
Learn where global variables are allocated by C compiler/OS

Example

/

Automatic variable
allocated on stack

int r; [*a global variaM

int add&nt m, int n)

{
int r;/*tQcal variable*/
static 1nt “sount=0;
r=m+n;
count++;
return r;

}

when function called,
released when it
returns.

Current stack

alling frame

New

stack
pointer

Where are static varilable count and global variable r located?

How does OS run a C program?

Program Source
int main ()
ﬁ‘ { ..
} .
= , ompiler
Wedlto

foo.c

Executable

Instructions

data

Load &
Execute

Memory

a.out

B Load instruction and data segments
of executable file into memory

B Create stack and heap
B “Transfer control to it”
B Provide services to it

PC:

OS
Stack ‘

HeapT

BSS/Data

registers

Processor

OxFFF...

0x000...

Space usage during execution of a C program

Stack grows from top-down.

__—

Heap grows bottom-up

Uninitialized data

Initialized data

Code

STACK

HEAP

BSS

DATA

TEXT

STACK for function call
frames

HEAP for dynamically
allocated space (malloc)

BSS segment contains
all uninitialized global
variables and static
variables or O initially

DATA segment
contains initialized
global or static
variables

Text segment contains
binary code + constants

TEXT, DATA, BSS, HEAP and STACK InC

int £3=3; /*Initialized DATA segment */
int f1; /*Unitialized BSS segment*/
char def[] = "1"\Where is def?
int main(void) {
static char abc[12]; I* BSS segment */
static float pi = 3.14159; Where is pi?
inti =3; /* Stack*/
char *cp; where is cp?
cp= malloc(10); /* HEAP for allocated chunk*/
f1= add1(i); /* code is in TEXT. f1 on STACK*/

strcpy(abc , "Test”); \yhere is “Test™

}
int add1(int f3}{ where is 37

return f3+1;

STACK

U

1P

HEAP

BSS

Uninitialized

DATA
Initialized

TEXT

33

TEXT, DATA, BSS, HEAP, and STACK in C

Int £3=3; /* Initialized DATA segment */
Int f1; *Uninitialized BSS segment®/
char def[] = "1"; /[* DATA segment */
int main(void)

{
static char abc[12], /* BSS segment */

static float pi = 3.14159; /* DATA segment */
inti =3; /* Stack®*/
char *cp; [*stack*/
cp= malloc(10); /*malloc allocates space from HEAP*/
f1= add1(i); /* code is in TEXT*/
strcpy(abc , "Test"); /* “Test” is located in TEXT */
}
int add1(int f3}{/*stack®/
return f3+1;

STACK

<

1P

HEAP

BSS
Uninitialized

DATA
Initialized

TEXT

34

C Pre-Processor (CPP)

foo.c foo.i 7

« C source files first pass through macro processor, CPP,
before compiler sees code

« CPP replaces comments with a single space
« CPP commands begin with “#”
= #include “file.h” /* Inserts file.h into output */
= #include <stdio.h> /* Looks for file in standard location */
= #define M_PI (3.14159) /* Define constant */
= #iff#gendif /* Conditional inclusion of text */

 Use —save-temps option to gcc to see result of
preprocessing

 Full documentation at: nttp://gcc.gnu.org/onlinedocs/cpp/

35

' Concluding remarks

* Pointer is a C version (abstraction) of a data address
= x “follows” a pointer to its value

= & gets the address of a value
= Arrays and strings are implemented as variations on
pointers, with linearized memory structure
= Use pointers with care: they are a common source of
bugs in programs
= Space allocation for global vs local variables. Important
for understanding data location in parallel code
= C pre-processing
» Read code of Makefile, minunit.h, and minunit.c in

Exercise 1 released soon on how C programs are tested
and graded this quarter.

36

	Slide 1: C Programming Language: Overview
	Slide 2: TIOBE Index of Language Popularity
	Slide 3: Table of Content: Focus on what C differs from others
	Slide 4: Hello World in C
	Slide 5: Similarities and Difference of C and Java
	Slide 6: Address vs. Value in C
	Slide 7: Pointer Syntax
	Slide 8: Creating and Using Pointers
	Slide 9: Pointers and Parameter Passing
	Slide 10: Types of Pointers
	Slide 11: Passing a function pointer
	Slide 12: More C Pointer Dangers
	Slide 13: Arrays
	Slide 14: More on C Arrays
	Slide 15: More on C Arrays
	Slide 16: Dynamic Storage Allocation with malloc/free()
	Slide 17: Pointers for arrays
	Slide 18: Multidimensional Arrays in C
	Slide 19: Arrays passed as arguments
	Slide 20: A programmer uses a one-dimensional array to represent a 2D matrix
	Slide 21: Strings
	Slide 22: Common String Functions
	Slide 23: C Structures
	Slide 24: typedef
	Slide 25: Pointers and Structures: Example
	Slide 26: Pointers and Structures: Example in Exercise 1
	Slide 27: Pointers and Structures: Example in Exercise 1
	Slide 28: Testing Example
	Slide 29: Global & Local Variables and Constants
	Slide 30: Example
	Slide 31: How does OS run a C program?
	Slide 32: Space usage during execution of a C program
	Slide 33: TEXT, DATA, BSS, HEAP and STACK in C
	Slide 34: TEXT, DATA, BSS, HEAP, and STACK in C
	Slide 35: C Pre-Processor (CPP)
	Slide 36: Concluding remarks

