
C Programming Language: Overview

UCSB CS140, T. Yang

Some of slides are modified from UCB

cs61c and Stephen Edwards’ lectures.

TIOBE Index of Language Popularity

2

https://www.tiobe.com/tiobe-index/

The ratings are based on the number of skilled engineers world-

wide, courses and third party vendors.

Table of Content:

Focus on what C differs from others

• Hello world example

• C vs. Java

• Addresses, Pointers

• Use of heap space with malloc/free

• Arrays

• Structures

• Strings

• Global/local variables

• Discussion section this Thursday

▪ Macro preprocessor, Makefile utility,
Valgrind, GDB, Homework issues.

Hello World in C

#include <stdio.h>

void main()
{
 printf(“Hello, world!\n”);
}

Program mostly a

collection of functions

“main” function special:

the entry point

“void” qualifier indicates

function does not return

anything
I/O performed by a library

function: not included in

the language

Preprocessor used to

share information among

source files

Similarities and Difference of C and Java
• These structures are identical in Java and C

▪ if statements, switch/case statements

▪ while, do/while loops, for loops

▪ standard operators

– arithmetic: +, -, *, /, %, ++, --, +=, etc.

– logical: || , && , ! , == , != , >= , <=

– bitwise: | , & , ^ , ~

▪ First function to execute is main

• Difference

▪ C has no classes

▪ All work in C is done in functions

– Variables may exist outside of any functions

– Global variables seen by all functions declared after

variable declaration

Address vs. Value in C

• Consider memory to be a single huge array

▪ Each cell of the array has an address associated with it

▪ Each cell also stores some value

▪ Don’t confuse the address referring to a memory

location with the value stored there

6

23 42
101 102 103 104 105 ...

• An address refers to a particular memory location; e.g., it

points to a memory location

• Pointer: A variable that contains the address of a variable

23 42
101 102 103 104 105 ...

x y

Location (address)

name

p

104

Pointer Syntax

• int *x;

▪ Tells compiler that variable x is address of an int

• x = &y;

▪ Tells compiler to assign address of y to x

▪ & called the “address operator” in this context

• z = *x;

▪ Tells compiler to assign value at address in x to z

▪ * called the “dereference operator” in this context

7

Creating and Using Pointers

8

• How to create a pointer:

& operator: get address of a variable

int *p, x;

x = 3;
p ? x 3

p = &x;
p x 3

• How get a value pointed to?

“*” (dereference operator): get the value that the pointer points to

 printf(“p points to %d\n”,*p);

Note the “*” gets used

2 different ways in this

example. In the

declaration to indicate
that p is going to be a

pointer, and in the
printf to get the

value pointed to by p.

• How to change a variable pointed to? *p = 5;

p x 5

Pointers and Parameter Passing

• Java and C pass parameters “by value”

▪ Procedure/function/method gets a copy of the
parameter, so changing the copy cannot change the
original

void add_one (int x) {

 x = x + 1;

}

int y = 3;

add_one(y);

y remains equal to 3

9

void add_one (int *p) {

 *p = *p + 1;

}

int y = 3;

add_one(&y);

y is now equal to 4

Types of Pointers

• Pointers are used to point to any kind of data (int,

char, a struct, a function etc.)

• Normally a pointer only points to one type

▪ void * is a type that can point to anything (generic

pointer)

• Function pointer example:

10

int add1(x){
 return x+1;
}
int use_add1() {

int (*fun_ptr)(int) = add1;
 return (*fun_ptr)(10);

}
Calling use_add1() returns 11

Passing a function pointer

• Function pointer can be used as an argument

11

int add1(x){
 return x+1;
}
int run(int (*func_prt)(int), int x){
 func_prt(x);
}
int use_add1() {

 return run(add1, 10);
}

Calling use_add1() returns 11

More C Pointer Dangers

• Declaring a pointer just allocates space to hold the
pointer – it does not allocate the thing being
pointed to!

• Local variables in C are not initialized, they may
contain anything (aka “garbage”)

• Is the following code legal?

12

void f()

{

 int *ptr;

 *ptr = 5;

}

Error: Unallocated space

void g()

{

 int *ptr=NULL;

 *ptr = 5;

}

NULL means 0 in C

defined in <stdlib.h>

Error: illegal address.

0 is often allocated for OS

Arrays

• Array: sequence of identical

objects in memory

▪ int a[10]; means space for

ten integers

▪ By itself, a is the address of the first integer

▪ *a and a[0] mean the same thing

• Legal array declarations

 int scores[20];

 #define MAX_LINE 80

 char line[MAX_LINE]; // place 80 inside [] at compile time

• Illegal array declaration

 int x = 10;

 float nums[x]; // using variable for array size

More on C Arrays

• C arrays (diff from Java array)

▪ Declared size of a C array must be a constant

–Cannot use variables for the size. int a[5];

▪May use a variable with malloc() to get

heap space.

–no .length parameter in array

–Dynamic array length is allowed after C99

standard, but we do not recommend this

feature for large arrays

int func(int size){

 int a[size];

}

More on C Arrays

• No bounds checking. You may access an

index outside of the array in C, but it is

dangerous

– int a[5]; a[6]=1;

• Arrays can be passed as parameters to

functions

▪ arrays are always passed-by-reference

– the address of the first element is passed

–Changes made to array in the called function

are seen in the calling function

Dynamic Storage Allocation with malloc/free()

• Library routines for managing the heap

▪ Each segment allocated is contiguous in memory (no holes)

▪ Segments do not move once allocated

• malloc(size)

▪ Find a memory area large enough for segment

▪ Mark that memory is allocated

• free(pointer)

▪ Mark the segment as unallocated

int *a, k;

k=10;

a = (int *) malloc(sizeof(int) * k);

a[5] = 3;

free(a);

sizeof() returns # bytes

used by this data type.

Must free allocated

memory space, otherwise

there is memory leak

during execution

Pointers for arrays
• Example

int *p, *q, z;

p = (int *) malloc(sizeof(int)*10);

q=p+5; /*&p[5] */

z= *(p+5); /* equivalent to p[5] */

z = (int) q-p;

add1(p); /* p[0]++ */

inc1(q); /* p[5]++ */

void add1 (int a[]){

 a[0]++;

}

void inc1 (int *a){

 a[0]++;

}

As p and q point into same array, q-p

is 5

• the number of integer

elements between p and q.

• q-p is NOT the number of

bytes between them.

Multidimensional Arrays in C

• Array declarations read right-to-left

• Linearized representation in memory

2 2 2

3

2 2 2

3

2 2 2

3

...

10

int b[10][3][2];
int a[3][2];

2 2 2

3

Where is a[1][1]?
Where is b[0][1][0]?

Compiler converts its

address as a+ 1*2 +1

which is a+3

Compiler converts it

as b+ 0*3*2 +1*2+0

Which is b+2

Arrays passed as arguments

• Pass 1D array

void examine(int c[]) {

 c[5]=11;

 }

• Pass 2D arrays

void examine(int a[][2]) {

 a[1][1]=11;

 }

• Compiled C code computes address of a[1][1] as a +
2*1+1

▪ That requires constant 2 (2nd dimension) to
be specified in the function argument.

A programmer uses a one-dimensional

array to represent a 2D matrix

stored as

Access A[i][j] with A[i*n+j]

void addAll(int *A, int m, int n, int x){

 for (int i=0; i<m; i++)

 for (int j=0; j<n; j++)

 A[i*n+j] +=x;

}

void main(){

 int m=3, n=4;

 int *A= malloc(sizeof(int)*m*n);

 addAll(A, m, n, 1);

}

allocated as

malloc(sizeof(int)*12)

Strings

• In C, strings are just an array of characters

• C provides a standard library for copying

strings, counting characters in string,

concatenate strings, compare strings, etc.

• By convention, all strings are terminated by

the null character (\0)

A B C \0

Common String Mistakes

char *str1=“ab”, *str2=“cd”;

if (str1 ==str2) {

 …

}

if(str1 <str2){

 …

}

Common String Functions

• int strlen(char str[]);

▪ counts the number of characters up to (but not counting) the

null character and returns this number

• int strcpy(char strTo[], char strFrom[]);

▪ copies the string in strFrom to the string in strTo

▪ make sure strTo is at least as big as strFrom

• int strcat(char strTo[], char strFrom);

▪ copies the string in strFrom to the end of strTo

▪ again, make sure strTo is large enough to hold additional

chars

• int strcmp(char str1[], char str2[]);

▪ compares string 1 to string 2

▪ return values are as follows

– less than 0 if str1 is lexicographically less than str2

– 0 if str1 is identical to str2

– greater than 0 if str1 is lexicographically greater than str2

C Structures

• C does not have classes

• However, C programmers can create their own

data types, called structures

▪ Structures allow a programmer to place a group of

related variables into one place. Example:

 struct person {

 char name[30];

 int id;

 };
• Variables can now be created by type struct

person

 struct person bob;

 bob.id=1234;

 strcpy(bob.name. “Bob K”);

• When passed to a function, a structure is passed by value

typedef

• It can be hassle to always type struct person

• C provides a way for you to give “nicknames”

▪ it is the keyword typedef

• Example

• Using typedef with a standard data type

 typdef unsigned long ulong_t

• Using typedef with a structure declaration

 typdef struct person {

 char name[30];

 int id;

 } person_t;

• Whenever a struct person is needed, just type person_t

Pointers and Structures: Example

typedef struct {

 int x;

 int y;

} Point;

Point p1;

Point p2;

Point *paddr;

/* dot notation */

int h = p1.x;

p2.y = p1.y;

/* arrow notation */

int h = paddr->x;

int h = (*paddr).x;

/* This works too to copy */

p1 = p2;

25

Pointers and Structures: Example in Exercise 1

26

Int set_key_action(

 struct key_action *rec,

 char *cmd, int (*f)()){
if(rec!=NULL) {

rec->cmd=cmd;

rec->func=f;
 return 1;

}
 return 0;
}

struct key_action {
char *cmd;

int (*func)();

};

int del1(int x){
return x-1;

}

char * test(void){

 struct key_action rec;

 char *key="del1";

 int ret=set_key_action(&rec, key, del1);

 mu_assert("Error in set_key",

 strcmp(key, rec.cmd)==0);

 mu_assert("Error in set_action",

 rec.func == del1);

 /*All comparisons are valid so far*/

 return NULL;

}

Macro mu_assert () is

used for testing in the rest

of quarter. Read code to

learn implementation

Pointers and Structures: Example in Exercise 1

27

struct key_action {
char *cmd;

int (*func)();

};

int del1(int x){
return x-1;

}

char * test(void){

 struct key_action rec;

 char *key="del1";

 int ret=set_key_action(&rec, key, del1);

 mu_assert("Error in set_key",

 strcmp(key, rec.cmd)==0);

 mu_assert("Error in set_action",

 rec.func == del1);

 /*All comparisons are valid so far*/

 return NULL;

}

Macro mu_assert () is

used for testing in the rest

of quarter. Read code to

learn implementation

#define
mu_assert(msg,cond)
do {
 if (!(cond))
 return msg;
} while (0)

char * test(void){

 int ret= add(4,3);

 do {

 if(!(ret==7))

 return "Error in func add”;

 } while (0);

 int ret= add(10,3);

 do {

 if(!(ret==13))

 return "Error in func add”;

 } while (0);

 return NULL;

}

Testing Example

28

int add(int x, int y){
return x+y+1;

}

char * test(void){

 int ret= add(4,3);

 mu_assert("Error in func add", rec == 7);

 int ret= add(10,3);

 mu_assert("Error in func add", rec == 13);

 return NULL;

}
#define
mu_assert(msg,cond)
do {
 if (!(cond))
 return msg;
} while (0)

Global & Local Variables and

Constants
• Variables declared outside any scope are called

global

▪ they can be used by any function declared after them

• Local variables only exist within their scope

▪ must be declared at the very beginning of the scope

▪ stored on the stack

▪ destroyed when scope ends

• Prefer not to use global variables if possible

▪ too many naming conflicts

▪ can be confusing to follow in large programs

• Constants are usually declared globally

▪ use the const key word

Important concept for shared memory parallel programming

Learn where global variables are allocated by C compiler/OS

Example

int r ; /* a global variable*/

int add(int m, int n)
{
 int r;/*local variable*/
 static int count=0;
 r=m+n;
 count++;
 return r;
}

Automatic variable

allocated on stack

when function called,

released when it

returns.

n=3
m=6

ret. addr.
r

Calling frame

New

stack

pointer

z=add(6,3);

Current stack

Where are static varilable count and global variable r located?

How does OS run a C program?

◼ Load instruction and data segments

of executable file into memory

◼ Create stack and heap

◼ “Transfer control to it”

◼ Provide services to it

int main()

{ … ;

 }

editor compiler

Program Source
Executable

foo.c a.out

Load &
Execute

0x000…

0xFFF…

instructions

data

Stack

Heap

BSS/Data

Text

Memory

Processor

registers

PC:

OS

Space usage during execution of a C program

Stack grows from top-down.

Heap grows bottom-up

Uninitialized data

STACK

HEAP

BSS

DATA

TEXT

Initialized data

Code

DATA segment

contains initialized

global or static

variables

BSS segment contains

all uninitialized global

variables and static

variables or 0 initially

STACK for function call

frames

 HEAP for dynamically

allocated space (malloc)

Text segment contains

binary code + constants

33

TEXT, DATA, BSS, HEAP and STACK in C

int f3=3; /*Initialized DATA segment */

int f1; /*Unitialized BSS segment*/

char def[] = "1";

int main(void) {

static char abc[12]; /* BSS segment */

static float pi = 3.14159;

int i = 3; /* Stack*/

 char *cp;

 cp= malloc(10); /* HEAP for allocated chunk*/

 f1= add1(i); /* code is in TEXT. f1 on STACK*/

 strcpy(abc , "Test");

}

int add1(int f3}{

 return f3+1;

}

Where is def?

Where is pi?

where is cp?

Where is “Test”?

STACK

HEAP

BSS
Uninitialized

DATA
Initialized

TEXT

where is f3?

34

TEXT, DATA, BSS, HEAP, and STACK in C

Int f3=3; /* Initialized DATA segment */

Int f1; /*Uninitialized BSS segment*/

char def[] = "1"; /* DATA segment */

int main(void)

{

static char abc[12], /* BSS segment */

static float pi = 3.14159; /* DATA segment */

int i = 3; /* Stack*/

 char *cp; /*stack*/

 cp= malloc(10); /*malloc allocates space from HEAP*/

 f1= add1(i); /* code is in TEXT*/

 strcpy(abc , "Test"); /* “Test” is located in TEXT */

}

int add1(int f3}{/*stack*/

 return f3+1;

}

STACK

HEAP

BSS
Uninitialized

DATA
Initialized

TEXT

C Pre-Processor (CPP)

• C source files first pass through macro processor, CPP,
before compiler sees code

• CPP replaces comments with a single space

• CPP commands begin with “#”

▪ #include “file.h” /* Inserts file.h into output */

▪ #include <stdio.h> /* Looks for file in standard location */

▪ #define M_PI (3.14159) /* Define constant */

▪ #if/#endif /* Conditional inclusion of text */

• Use –save-temps option to gcc to see result of
preprocessing

• Full documentation at: http://gcc.gnu.org/onlinedocs/cpp/
35

foo.c CPP foo.i Compiler

Concluding remarks

• Pointer is a C version (abstraction) of a data address

▪ * “follows” a pointer to its value

▪ & gets the address of a value

▪ Arrays and strings are implemented as variations on

pointers, with linearized memory structure

▪ Use pointers with care: they are a common source of

bugs in programs

▪ Space allocation for global vs local variables. Important

for understanding data location in parallel code

▪ C pre-processing

▪ Read code of Makefile, minunit.h, and minunit.c in

Exercise 1 released soon on how C programs are tested

and graded this quarter.
36

	Slide 1: C Programming Language: Overview
	Slide 2: TIOBE Index of Language Popularity
	Slide 3: Table of Content: Focus on what C differs from others
	Slide 4: Hello World in C
	Slide 5: Similarities and Difference of C and Java
	Slide 6: Address vs. Value in C
	Slide 7: Pointer Syntax
	Slide 8: Creating and Using Pointers
	Slide 9: Pointers and Parameter Passing
	Slide 10: Types of Pointers
	Slide 11: Passing a function pointer
	Slide 12: More C Pointer Dangers
	Slide 13: Arrays
	Slide 14: More on C Arrays
	Slide 15: More on C Arrays
	Slide 16: Dynamic Storage Allocation with malloc/free()
	Slide 17: Pointers for arrays
	Slide 18: Multidimensional Arrays in C
	Slide 19: Arrays passed as arguments
	Slide 20: A programmer uses a one-dimensional array to represent a 2D matrix
	Slide 21: Strings
	Slide 22: Common String Functions
	Slide 23: C Structures
	Slide 24: typedef
	Slide 25: Pointers and Structures: Example
	Slide 26: Pointers and Structures: Example in Exercise 1
	Slide 27: Pointers and Structures: Example in Exercise 1
	Slide 28: Testing Example
	Slide 29: Global & Local Variables and Constants
	Slide 30: Example
	Slide 31: How does OS run a C program?
	Slide 32: Space usage during execution of a C program
	Slide 33: TEXT, DATA, BSS, HEAP and STACK in C
	Slide 34: TEXT, DATA, BSS, HEAP, and STACK in C
	Slide 35: C Pre-Processor (CPP)
	Slide 36: Concluding remarks

