- Support Vector Machines (VAPNIK, 1995)
 - Very good classifier
 - Can be adapted to ranking and multiclass problems
- Neural Nets
 - RankNet (BURGES et al., 2006)
- Tree Ensembles
 - Random Forests (BREIMAN and SCHAPIRE, 2001)
 - Boosted Decision Trees
 - Multiple Additive Regression Trees (FRIEDMAN, 1999)
 - LambdaMART (BURGES, 2010)
 - Used by AltaVista, Yahoo!, Bing, Yandex, ...

All top teams of the *Yahoo! Learning to Rank Challenge (2010)* used combinations of Tree Ensembles!

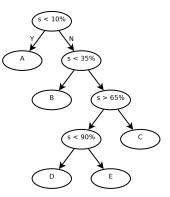
- Yahoo! Webscope dataset (CHAPELLE and CHANG, 2011): 36,251 queries, 883 k documents, 700 features, 5 ranking levels
 - set-1:
 - 473,134 feature vectors
 - 519 features
 - 19,944 queries
 - set-2:
 - 34,815 feature vectors
 - 596 features
 - 1,266 queries
- Winner used a combination of 12 models:
 - 8 Tree Ensembles (LambdaMART)
 - 2 Tree Ensembles (Additive Regression Trees)
 - 2 Neural Nets

Characteristics of a tree:

- Graph based model
- Consists of a root, nodes, and leaves

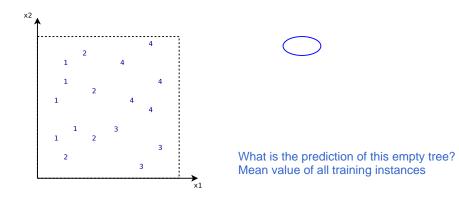
Advantages:

- Simple to understand and interpret
- White box model
- Can be combined with other techniques



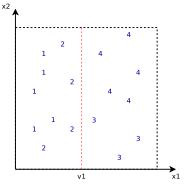
Decision trees are basic learners for machine learning, e.g. *classification* or *regression trees*.

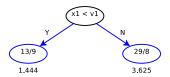
Learning a Regression Tree (I)



Consider a 2-dimensional space consisting of data points of the indicated values. We start with an empty root node (blue).

Learning a Regression Tree (II)



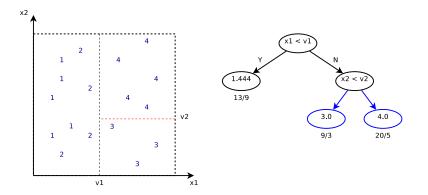


Use mean value of training instances on left leave as prediction: (5*1+4*2)/9=1.444 For right leave, (4*5+3*3)/8=3.625.

Try all possible v1 thresholds.

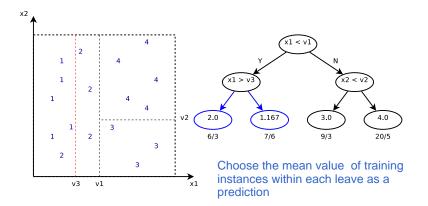
The algorithm searches for split variables and split points, x_1 and v_1 , that predict values minimizing the predicted error, e.g. $\sum (y_i - f(x_i))^2$.

Learning a Regression Tree (III)



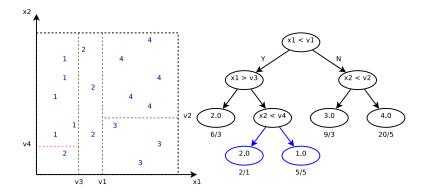
Here we examine the right side first: find a split variable and a split value that minimize the predicted error, i.e. x_2 and v_2 .

Learning a Regression Tree (IV)



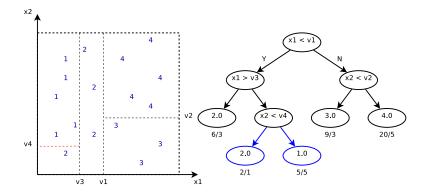
Now to the left side: Again, find a split variable and a split value that minimize the predicted error, i.e. x_1 and v_3 .

Learning a Regression Tree (V)



Once again, find a split variable and a split value that minimize the predicted error, here x_2 and v_4 .

Learning a Regression Tree (V)



Once again, find a split variable and a split value that minimize the predicted error, here x_2 and v_4 . The tree perfectly fits the data! Problem?

Formal Definition of a Decision Tree

A decision tree partitions the parameter space into disjoint regions R_k , $k \in \{1, ..., K\}$, K = number of leaves. Formally, the regression model (1) predicts a value using a constant γ_k for each region R_k :

$$T(\mathbf{x};\Theta) = \sum_{k=1}^{K} \gamma_k \mathbf{1}(\mathbf{x} \in R_k)$$
(1)

Prediction:

 $\Theta = \{R_k, \gamma_k\}_1^K$ describes the model parameters, $1(\cdot)$ is the *characteristic* function (1 if argument is true, 0 otherwise), and $\hat{\gamma}_k = \text{mean}(y_i | \mathbf{x}_i \in R_k)$. Optimal parameters $\hat{\Theta}$ are found minimizing the empirical risk:

$$\hat{\Theta} = \arg\min_{\Theta} \sum_{k=1}^{K} \sum_{\mathbf{x}_i \in R_k} L(y_i, \gamma_k)$$
(2)

Loss function

The combinatorial optimization problem (2) is usually split into two parts: (i) finding R_k and (ii) finding γ_k given R_k .

Idea

Combine multiple weak learners to build a strong learner. A weak learner is a learner with an error rate slightly better than random guessing. A strong learner is a learner with high accuracy.

Approach:

- Apply a weak learner to iteratively modified data
- Generate a sequence of learners
- For classification tasks: use majority vote
- For regression tasks: build weighted values

Loss function is sum of squared error for all instances

Find a function $F^*(\mathbf{x})$ that maps \mathbf{x} to y, s.t. the expected value of some loss function $L(y, F(\mathbf{x}))$ is minimized:

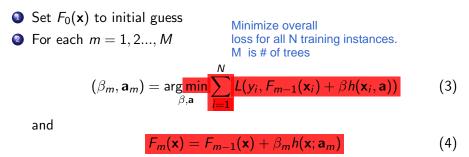
$$F^*(\mathbf{x}) = \arg\min_{F(\mathbf{x})} \mathbb{E}_{y,\mathbf{x}} \left[L(y, F(\mathbf{x})) \right]$$

Boosting approximates $F^*(\mathbf{x})$ by an additive expansion

where $h(\mathbf{x}; \mathbf{a})$ are simple functions of \mathbf{x} with parameters $\mathbf{a} = \{a_1, a_2, ..., a_n\}$ defining the function h, and β are expansion coefficients.

 $F(\mathbf{x}) = \sum_{m=1}^{M} \beta_m h(\mathbf{x}; \mathbf{a}_m)$

For boosting trees, F(x) is sum of tree classifiers. M is the number of trees. Expansion coefficient tyically includes a learning rate factor Expansion coefficients $\{\beta_m\}_0^M$ and the function parameters $\{\mathbf{a}_m\}_0^M$ are iteratively fit to the training data:



For each iteration, we only determine one tree classifor h(). How to minimize loss for one tree? Try to find a function close to residual yi-F

Gradient Boosting

Gradient boosting approximately solves (3) for differentiable loss functions:

() Fit the function $h(\mathbf{x}; \mathbf{a})$ by least squares

$$\mathbf{a}_{m} = \arg\min \sum_{i=1}^{N} [\tilde{y}_{im} - h(\mathbf{x}_{i}, \mathbf{a})]^{2}$$
(5)
to the "pseudo"-residuals
$$\tilde{y}_{im} = -\left[\frac{\partial L(y_{i}, F(\mathbf{x}_{i}))}{\partial F(\mathbf{x}_{i})}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}$$
(6)
Given $h(\mathbf{x}; \mathbf{a}_{m})$, the β_{m} are
$$\beta_{m} = \arg\min \sum_{i=1}^{N} L(y_{i}, F_{m-1}(\mathbf{x}_{i}) + \beta h(\mathbf{x}_{i}; \mathbf{a}_{m}))$$
(7)

 \Rightarrow Gradient boosting simplifies the problem to least squares (5).

Gradient Tree Boosting

Gradient tree boosting applies this approach on functions $h(\mathbf{x}; \mathbf{a})$ representing K-terminal node regression trees.

$$h(\mathbf{x}; \{R_{km}\}_{1}^{K}) = \sum_{k=1}^{K} \overline{y}_{km} \mathbf{1}(\mathbf{x} \in R_{km})$$
(8)

With $\bar{y}_{km} = \text{mean}_{\mathbf{x}_i \in R_{km}}(\tilde{y}_{im})$ the tree (8) predicts a constant value \bar{y}_{km} in region R_{km} . Equation (7) becomes a prediction of a γ_{km} for each R_{km} :

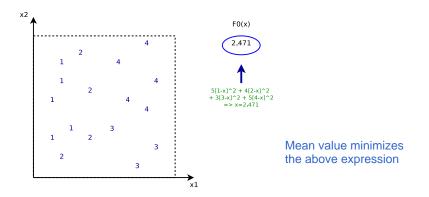
$$\gamma_{km} = \arg\min_{\gamma} \sum_{\mathbf{x}_i \in R_{km}} L(y_i, F_{m-1}(\mathbf{x}_i) + \gamma)$$
(9)

The approximation for F in stage m is then:

$$F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \eta \cdot \gamma_{km} \mathbf{1}(\mathbf{x}_i \in R_{km})$$
(10)

The parameter η controls the *learning rate* of the procedure.

Learning Boosted Regression Trees (I)



First, learn the most simple predictor that predicts a constant value minimizing the error for all training data.

Calculating Optimal Leaf Value for F_0

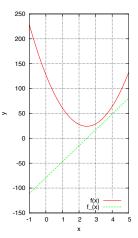
Recall the exp. coefficient: $\gamma_{km} = \arg \min_{\gamma} \sum_{\mathbf{x}_i \in R_{km}} L(y_i, F_{m-1}(\mathbf{x}_i) + \gamma)$

• Quadratic loss for the leaf (red):

$$f(x) = 5 \cdot (1-x)^2 + 4 \cdot (2-x)^2 + 3 \cdot (3-x)^2 + 5 \cdot (4-x)^2$$

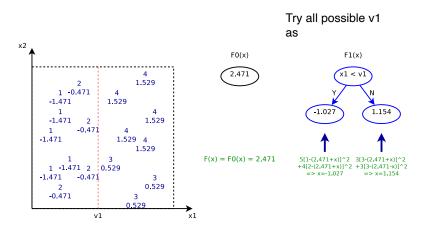
f(x) is quadratic, convex
 ⇒ Optimum at f'(x) = 0 (green)

$$\frac{\partial f(x)}{\partial x} = 5 \cdot (-2 + 2x) + 4 \cdot (-4 + 2x)^2 + 3 \cdot (-6 + 2x)^2 + 5 \cdot (-8 + 2x)^2 = -84 + 34x = 32(x - 2.471)$$



Mean value minimizes the square error loss

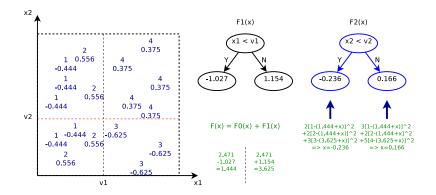
Learning Boosted Regression Trees (II)



Split root node based on least squares criterion to build a tree predicting the "pseudo"-residuals. Psudo-residuals are: target value - previous prediction = yi - F0(x).

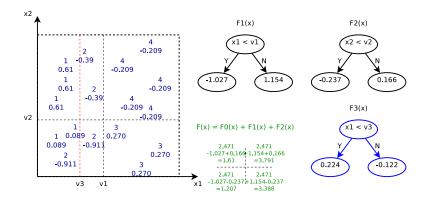
For example, target 1, residual = 1-2.471

Learning Boosted Regression Trees (III)



In the next stage, another tree is created to fit the actual "pseudo"-residuals predicted by the first tree.

Learning Boosted Regression Trees (IV)



This is iteratively continued: in each stage, the algorithm builds a new tree based on the "pseudo"-residuals predicted by the previous tree ensemble.

Multiple Additive Regression Trees (MART)

Algorithm 1 Multiple Additive Regression Trees.

1: Initialize
$$F_0(\mathbf{x}) = \arg \min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$$

2: for $m = 1, ..., M$ do
3: for $i = 1, ..., N$ do
4: $\tilde{y}_{im} = -\left[\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}$ Pseudo-residual for each instance
5: end for
6: $\{R_{km}\}_{k=1}^{K}$ // Fit a regression tree to targets \tilde{y}_{im} Build a regression
6: $\{R_{km}\}_{k=1}^{K}$ // Fit a regression tree to targets \tilde{y}_{im} Build a regression
7: for $k = 1, ..., K_m$ do
8: $\gamma_{km} = \arg \min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, F_{m-1}(\mathbf{x}_i) + \gamma)$ Compute the best
9: end for
10: $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \eta \sum_{k=1}^{K_m} \gamma_{km} 1(\mathbf{x}_i \in R_{km})$
11: end for
12: Return $F_M(\mathbf{x})$

- BREIMAN, LEO and E. SCHAPIRE (2001). Random forests. In Machine Learning, pp. 5–32.
- BURGES, CHRISTOPHER J. C. (2010). From RankNet to LambdaRank to LambdaMART: An Overview.
- BURGES, CHRISTOPHER J. C., R. RAGNO and Q. V. LE (2006). Learning to Rank with Nonsmooth Cost Functions.. In SCHÖLKOPF, BERNHARD, J. PLATT and T. HOFFMAN, eds.: NIPS, pp. 193–200. MIT Press.
- CHAPELLE, OLIVIER and Y. CHANG (2011). Yahoo! Learning to Rank Challenge Overview.. Journal of Machine Learning Research -Proceedings Track, 14:1–24.
- CROFT, W.B., D. METZLER and T. STROHMANN (2010). Search Engines: Information Retrieval in Practice. Pearson, London, England.

References II

- FRIEDMAN, JEROME H. (1999). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 29(5):1189–1232.
- GANJISAFFAR, YASSER (2011). *Tree Ensembles for Learning to Rank*. PhD thesis, University of California, Irvine.
- HASTIE, TREVOR, R. TIBSHIRANI and J. FRIEDMAN (2002). *The Elements of Statistical Learning*. Springer, New York.
- LIU, TIE-YAN (2010). Learning to Rank for Information Retrieval.. Springer-Verlag New York Inc.
- MANNING, CHRISTOPHER D., P. RAGHAVAN and H. SCHÜTZE (2008). Introduction to Information Retrieval. Cambridge University Press.
- VAPNIK, VLADIMIR N. (1995). The Nature of Statistical Learning Theory. Springer New York Inc., New York, NY, USA.
- WU, QIANG, C. J. C. BURGES, K. M. SVORE and J. GAO (2008). *Ranking, Boosting, and Model Adaptation.*