
Algorithms for Ranking

Support Vector Machines (Vapnik, 1995)
Very good classifier
Can be adapted to ranking and multiclass problems

Neural Nets
RankNet (Burges et al., 2006)

Tree Ensembles
Random Forests (Breiman and Schapire, 2001)
Boosted Decision Trees

Multiple Additive Regression Trees (Friedman, 1999)
LambdaMART (Burges, 2010)
Used by AltaVista, Yahoo!, Bing, Yandex, ...

All top teams of the Yahoo! Learning to Rank Challenge (2010) used
combinations of Tree Ensembles!
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Yahoo! Learning to Rank Challenge

Yahoo! Webscope dataset (Chapelle and Chang, 2011):
36,251 queries, 883 k documents, 700 features, 5 ranking levels

set-1:
473,134 feature vectors
519 features
19,944 queries

set-2:
34,815 feature vectors
596 features
1,266 queries

Winner used a combination of 12 models:
8 Tree Ensembles (LambdaMART)
2 Tree Ensembles (Additive Regression Trees)
2 Neural Nets
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Decision Trees

Characteristics of a tree:

Graph based model

Consists of a root, nodes, and leaves

Advantages:

Simple to understand and interpret

White box model

Can be combined with other techniques

Decision trees are basic learners for machine learning, e.g. classification or
regression trees.
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Learning a Regression Tree (I)

Consider a 2-dimensional space consisting of data points of the indicated
values. We start with an empty root node (blue).
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Learning a Regression Tree (II)

The algorithm searches for split variables and split points, x1 and v1, that
predict values minimizing the predicted error, e.g.

∑

(yi − f (xi))2.

Hiko Schamoni (Universität Heidelberg) Ranking with Boosted Decision Trees January 16, 2012 21 / 49

tyang
Typewriter
Use mean value of training instanceson left leave as prediction:(5*1+4*2)/9=1.444For right leave, (4*5+3*3)/8=3.625.Try all possible v1 thresholds.

tyang
Typewriter
How to determine split threshold v1?How to find the prediction for each leave?



Learning a Regression Tree (III)

Here we examine the right side first: find a split variable and a split value
that minimize the predicted error, i.e. x2 and v2.
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Learning a Regression Tree (IV)

Now to the left side: Again, find a split variable and a split value that
minimize the predicted error, i.e. x1 and v3.
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Learning a Regression Tree (V)

Once again, find a split variable and a split value that minimize the
predicted error, here x2 and v4.
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Learning a Regression Tree (V)

Once again, find a split variable and a split value that minimize the
predicted error, here x2 and v4. The tree perfectly fits the data! Problem?
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Formal Definition of a Decision Tree

A decision tree partitions the parameter space into disjoint regions Rk ,
k ∈ {1, ...,K}, K = number of leaves. Formally, the regression model (1)
predicts a value using a constant γk for each region Rk :

T (x;Θ) =
K
∑

k=1

γk1(x ∈ Rk) (1)

Θ = {Rk , γk}K1 describes the model parameters, 1(·) is the characteristic
function (1 if argument is true, 0 otherwise), and γ̂k = mean(yi |xi ∈ Rk).
Optimal parameters Θ̂ are found minimizing the empirical risk:

Θ̂ = argmin
Θ

K
∑

k=1

∑

xi∈Rk

L(yi , γk) (2)

The combinatorial optimization problem (2) is usually split into two parts:
(i) finding Rk and (ii) finding γk given Rk .
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Boosting

Idea

Combine multiple weak learners to build a strong learner.
A weak learner is a learner with an error rate slightly better than random
guessing. A strong learner is a learner with high accuracy.

Approach:

Apply a weak learner to iteratively modified data

Generate a sequence of learners

For classification tasks: use majority vote

For regression tasks: build weighted values
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Function Estimation

Find a function F ∗(x) that maps x to y , s.t. the expected value of some
loss function L(y ,F (x)) is minimized:

F ∗(x) = arg min
F (x)

Ey ,x [L(y ,F (x))]

Boosting approximates F ∗(x) by an additive expansion

F (x) =
M
∑

m=1

βmh(x; am)

where h(x; a) are simple functions of x with parameters a = {a1, a2, ..., an}
defining the function h, and β are expansion coefficients.
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Finding Parameters

Expansion coefficients {βm}M0 and the function parameters {am}M0 are
iteratively fit to the training data:

1 Set F0(x) to initial guess

2 For each m = 1, 2...,M

(βm, am) = argmin
β,a

N
∑

i=1

L(yi ,Fm−1(xi ) + βh(xi , a)) (3)

and
Fm(x) = Fm−1(x) + βmh(x; am) (4)
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Gradient Boosting

Gradient boosting approximately solves (3) for differentiable loss functions:

1 Fit the function h(x; a) by least squares

am = argmin
a

N
∑

i=1

[ỹim − h(xi , a)]
2 (5)

to the “pseudo”-residuals

ỹim = −

[

∂L(yi ,F (xi ))

∂F (xi )

]

F (x)=Fm−1(x)

(6)

2 Given h(x; am), the βm are

βm = arg min
N
∑

i=1

L(yi ,Fm−1(xi ) + βh(xi ; am)) (7)

⇒ Gradient boosting simplifies the problem to least squares (5).
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Gradient Tree Boosting

Gradient tree boosting applies this approach on functions h(x; a)
representing K -terminal node regression trees.

h(x; {Rkm}
K
1 ) =

K
∑

k=1

ȳkm1(x ∈ Rkm) (8)

With ȳkm = meanxi∈Rkm
(ỹim) the tree (8) predicts a constant value ȳkm in

region Rkm. Equation (7) becomes a prediction of a γkm for each Rkm:

γkm = argmin
γ

∑

xi∈Rkm

L(yi ,Fm−1(xi ) + γ) (9)

The approximation for F in stage m is then:

Fm(x) = Fm−1(x) + η · γkm1(xi ∈ Rkm) (10)

The parameter η controls the learning rate of the procedure.
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Learning Boosted Regression Trees (I)

First, learn the most simple predictor that predicts a constant value
minimizing the error for all training data.
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Calculating Optimal Leaf Value for F0

Recall the exp. coefficient: γkm = argminγ
∑

xi∈Rkm
L(yi ,Fm−1(xi ) + γ)

Quadratic loss for the leaf (red):

f (x) =5 · (1− x)2 + 4 · (2− x)2

+ 3 · (3− x)2 + 5 · (4− x)2

f (x) is quadratic, convex
⇒ Optimum at f ′(x) = 0 (green)

∂f (x)

∂x
=5 · (−2 + 2x) + 4 · (−4 + 2x)2

+ 3 · (−6 + 2x)2 + 5 · (−8 + 2x)2

=− 84 + 34x = 32(x − 2.471) -150
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Learning Boosted Regression Trees (II)

Split root node based on least squares criterion to build a tree predicting
the “pseudo”-residuals.
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Learning Boosted Regression Trees (III)

In the next stage, another tree is created to fit the actual
“pseudo”-residuals predicted by the first tree.
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Learning Boosted Regression Trees (IV)

This is iteratively continued: in each stage, the algorithm builds a new tree
based on the “pseudo”-residuals predicted by the previous tree ensemble.
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Multiple Additive Regression Trees (MART)

Algorithm 1 Multiple Additive Regression Trees.

1: Initialize F0(x) = argminγ
∑N

i=1 L(yi , γ)
2: for m = 1, ...,M do

3: for i = 1, ...,N do

4: ỹim = −
[

∂L(yi ,F (xi ))
∂F (xi )

]

F (x)=Fm−1(x)

5: end for

6: {Rkm}Kk=1 // Fit a regression tree to targets ỹim
7: for k = 1, ...,Km do

8: γkm = argminγ
∑

xi∈Rjm
L(yi ,Fm−1(xi ) + γ)

9: end for

10: Fm(x) = Fm−1(x) + η
∑Km

k=1 γkm1(xi ∈ Rkm)
11: end for

12: Return FM(x)
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