2

Boolean and Vector Space
Retrieval Models

« CS 293S, 2020

' Outline

« Which results satisfy the query constraint?

= Boolean model
— Document processing steps
— Query processing

= Statistical vector space model
= Neural representations with word embeddings

' Retrieval Models

* A retrieval model specifies the details of:
= 1) Document representation
= 2) Query representation
= 3) Retrieval function: how to find relevant results
= Determines a notion of relevance.

« Classical models
= Boolean models (set theoretic)
— Extended Boolean
= Vector space models
= Probabilistic models

' Retrieval Tasks

 Ad hoc retrieval: Fixed document corpus, varied

queries.

 Filtering: Fixed query, continuous document

stream.

= User Profile: A model of relative static preferences.
= Binary decision of relevant/not-relevant.

News stream

== Quer> Cuser D

' Boolean Model

« A document is represented as a set of keywords.

* Queries are Boolean expressions of keywords, connected

by AND, OR, and NOT, including the use of brackets to
Indicate scope.

* Rio & Brazil | Hilo & Hawaii, hotel & !Hilton

* Qutput: Document is relevant or not. No partial matches
= Can be extended to include ranking.

ncident vector representation for| 1 if play contains
Shakgspgaﬂtplays word, O otherwise

Antony and Cleopatra Julius Caesar The fempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

* Query answer with bitwise operations (AND, negation, OR):

= Which plays of Shakespeare contain the words Brutus
AND Caesar but NOT Calpurnia?

= 110100 AND 110111 AND 101111 = 100100.

' Inverted index

* Incident vectors are sparse - sparse matrix

= Compact representation needed to save storage
* Inverted index

= For each term T, must store a list of all documents

that contain T.

Brutus| ©mT——>[2] 4 16] 32] 64[128
Calpurnia™"™——>[_] ST 8 [13[21 34
Caesar| '"——>[13]16

' Inverted index

* Linked lists generally preferred to arrays
= Dynamic space allocation
* |nsertion of terms into documents easy
= Space overhead of pointers

C [Brutus| ©——=">|2—{4 81632 64—{128
Calpurniam——> |1 2135813 2134
Caesar| w©w——> |13 —16

——
Dictionary Postings

' Document Preprocessing Steps

« Strip unwanted characters/markup (e.g. HTML tags,
punctuation, numbers, etc.).

* Break into tokens (keywords) on whitespace.

* Possible linguistic processing (used in some
applications, but dangerous for general web search)

= Stemming (cards ->card)
= Remove common stopwords (e.g. a, the, it, etc.).
= Used sometime, but dangerous
* Build inverted index
= keyword -2 list of docs containing it.

= Common phrases may be detected first using a
domain specific dictionary.

Inverted index construction

Documents to
be indexed.

Friends, Romans, countrymen.

Tokenizer]
Token strea J_L Friends || Romans | | Countrymen
More on Linguistic W
these later. modules
Modified tokens. I friend | |roman| |countryman
[dex ‘fnend m——> 24—
il, roman m——> | | =2 —

Inverted index.

countrymdfﬁ’:> 13 16

' Discussions

 Which terms in a doc do we index?
= All words or only “important” ones?
« Stopword list: terms that are so common
= they MAY BE ignored for indexing.
" e.g., the, a, an, of, to ...
* language-specific.
- How do we process a query?
= What kinds of queries can we process?

11

' Query processing

« Consider processing the query:
Brutus AND Caesar
= |ocate Brutus in the Dictionary;
— Retrieve its postings.
* Locate Caesar in the Dictionary;
— Retrieve its postings.
= “Merge” the two postings:

24— 8 1632— 64— 128 Brutus

h] 12135813 21 34| Caesar

12

' The merge

 Walk through the two postings simultaneously, in
time linear in the total number of postings entries

24— 8— 16— 32— 64— 128 Brutus

2
%8 -1 1235813 k21 34| Caesar

If the list lengths are m and n, the merge for sorted lists
takes O(m+n) operations.
Crucial: postings sorted by doclID.

13

' More general merges

 Exercise: How to handle NOT, OR?
Brutus AND NOT Caesar
Brutus OR NOT Caesar

Can we still run through the merge in time O(m+n)?

14

' Boolean Models — Problems

Very rigid: AND means all; OR means any.
= Easy to understand. Clean formalism.

Difficult to express complex user requests.
= Still too complex for general web users

Difficult to control the number of documents
retrieved.

= All matched documents will be returned.
Difficult to rank output.

= All matched documents logically satisfy the query.
Difficult to perform relevance feedback.

= |f a document is identified by the user as relevant or
irrelevant, how should the query be modified?

15

' Example Application: WestLaw
http://www.westlaw.com/

« Largest commercial (paying subscribers) legal search
service (started 1975; ranking added 1992)

= Long, precise queries; proximity operators; incrementally
developed; not like web search

= Professional searchers (e.g., Lawyers) still like Boolean
queries: You know exactly what you're getting.

 Example query with proximity operators:

= What is the statute of limitations in cases involving the
federal tort claims act?

= LIMIT!/3 STATUTE ACTION /S FEDERAL /2 TORT /3
CLAIM

16

' Outline

« Which results satisfy the query constraint?

= Boolean model
— Document processing steps
— Query processing

= Statistical vector space model <
= Neural representations

17

' Statistical Retrieval Models

« A document is typically represented by a bag of words

(unordered words with frequencies).

Bag = set that allows multiple occurrences of the same element.
User specifies a set of desired terms with optional weights:
= Weighted query terms:
Q = < database 0.5; text 0.8; information 0.2 >
= Unweighted query terms:
Q = < database; text; information >
= No Boolean conditions specified in the query.
Retrieval based on similarity between query and documents.

= QOutput documents are ranked by similarity to query.
Weights in vectors

= Similarity based on occurrence frequencies of keywords in
query and document. 18

' The Vector-Space Representation

« Assume t distinct terms remain after preprocessing;
call them index terms or the vocabulary.

« Eachterm, i/, in a document or query, J, is given a real-

valued weight, w;

« Both documents and queries are expressed as
dimensional vectors:

(Wy, Wy, ..

dj=

., Wy)

T, T,
Wi1 Woi

le W22 e oo

Wi, Wop ...

{-

19

Example: Graphic representation

Example:

D,=2T, + 3T, + 5T,
D,=3T,+7T,+ T,
Q=0T,+0T,+ 2T,

D, = 2T1+ 3T2 + 5T3

D, = 3T1 + 7T, + T,

Q :0T1 +OT2 + 2T3

23 .
prat ,/, Tl

e Is D; or D, more similar to Q?
* How to measure the degree of
similarity? Distance? Angle?

Projection?

20

' Issues for Vector Space Model

 How to determine important words in a
document?

= Word n-grams (and phrases, idioms,...) =2
terms

 How to determine the degree of importance of
a term within a document and within the entire
collection?

* How to determine the degree of similarity
between a document and the query?

* |n the case of the web, what is a collection and
what are the effects of links, formatting
iInformation, etc.?

21

' Term Weights: Term Frequency

More frequent terms in a document are more important, i.e.
more indicative of the topic.

f;= frequency of term / in document j

May want to normalize term frequency (tf) across the entire
Corpus:

tfy =1; /max{f;}

Terms that appear in many different documents are less
indicative of overall topic. Less discrimination power.

df ;= document frequency of term j

= number of documents containing term i
idf; = inverse document frequency of term j,

= log, (N/ df)) N: total number of documents
Log used to dampen the effect relative to . 22

’ TF-IDF Weighting

A typical combined term importance indicator is tf-idf
weighting:

w; = tf; idf; = tf;log, (N/ dfy)
A term occurring frequently in the document but
rarely in the rest of the collection is given high weight.

Example: A document has term frequencies: A(3), B(2), C(1)
Assume collection contains 10,000 documents and

document frequencies of these terms are: A(50), B(1300), C(250)
Then:

A: tf = 3/3; idf =1og(10000/50) = 5.3; tf-idf = 5.3

B: tf = 2/3; idf =1log(10000/1300) = 2.0; tf-idf = 1.3

C. tf=1/3; idf = log(10000/250) = 3.7; tf-idf = 1.2

23

Similarity Measure

« A similarity measure is a function that computes the
degree of similarity between two vectors.

« Using a similarity measure between the query and
each document:

« Similarity between vectors for the document d; and query q
can be computed as the vector inner product:
sim(d;,q) = deq = sum w; - w,
where w; is the weight of term j in document j and w;, is the weight of
term i in the query

Exampleip” < (& oS3 ¢ ¥

- D=1 1 1,20, 1, 1, O

- Q=1 0,10 0 1, 1 sim(D, Q) =3

24

' Example & Properties of Inner Product

Another example with weighted vectors:
Dl = 2T1 + 3T2 + 5T3 D2 = 3T1 + 7T2 + 1T3
Q =0T, + 0T, + 2T3

sim(D; , Q) =2%0 +3*0 +5*2 =10
sim(D, ,Q)=3*0+7*0 + 1*2 = 2

* Properties of Inner Product
= The inner product is unbounded.

= Favors long documents with a large number of
unique terms.

= Measures how many terms matched but not how
many terms are not matched.

25

Cosine Similarity Measure

« Cosine similarity measures the cosine of s
the angle between two vectors.

* Inner product normalized by the vector 6,
lengths.

d;i-g 2wy wig)
_>. — z 2 z 2
D[Sy B,

CosSim(d;, q) =

D, = 2T, + 3T, + 5T; CosSim(D, , Q) = 10 / V(@+9+25)(0+0+4) = 0.81
D,=3T; +7T,+ 1T; CosSim(D, ,Q) = 2/V(9+49+1)(0+0+4) =0.13
Q = OTI + OT2 + 2T3

D, is 6 times better than D, using cosine similarity but only 5 times better using
inner product.

26

' Improvement: BM25

 Rank or feature score with an extension of TF-IDF
* Given document d for query g

Z lnN_df(W)"'O-S. (k +1)xc(w,d) (k5 +Dxc(w,q)
wegd df (w)+0.5 I ((l—b)-l—bm)—l—c(w J) k3 +c(w,q)
1 avdl ’

 df: nuber of documents containing this word
 |d|: document length

» avdl: average document length

« c(w,d): term frequency in this document

* c(w,q): term frequency in this query

« Constants k4 in [1,2], b=0.75, k5 in [0, 3000]

27

Comments on Vector Space Models

« Simple, practical, and mathematically based
approach

* Provides partial matching and ranked results.
* Problems

= Missing syntactic information (e.g. phrase structure,
word order, proximity information).

= Missing semantic information
— word sense: multiple meanings of a word
— Assumption of term independence. ignores synonymy.

= Lacks the control of a Boolean model (e.g., requiring

a term to appear in a document).

— Given a two-term query “A B”, may prefer a document containing A
frequently but not B, over a document that contains both A and B, but
both less frequently.
28

Outline

« Which results satisfy the query constraint?

= Boolean model
— Document processing steps
— Query processing
= Statistical vector space model
= Neural representations <
— Word embeddings

29

Word Representations

Traditional Method - Bag of Words
Model

Uses one hot encoding .

Each word in the vocabulary is
represented by one bit position in a
HUGE vector.

For example, if we have a vocabulary

of 10000 words, and “Hello” is the 4th
word in the dictionary, it would be .
represented by: 000100 0
000

Context information is not utilized

Word Embeddings

Stores each word in as a point in
space, where it is represented by a
vector of fixed number of dimensions
(generally 300)

Unsupervised, built just by reading
huge corpus

For example, “Hello” might be

represented as :
[0.4,-0.11,0.55,0.3...0.1, 0.02]

30

’ Word embedding: Motivation for a new word

representation

A Word Embedding format generally tries to map a word to a
numerical vector.

e Arepresentation that captures

words’ meanings, semantic apple
relationships and the different ,,..o®" e
types of contexts they are used

in

Similar words tend to occur "
together and will have similar rain
context- Orange is a fruit.

Banana is a fruit. They have a

similar context i.e fruit.

e A context may be a single word or a group of
words. o

juice

milk

' Usage of Word Embeddings § ICFROSOFT

® BM

®
* Similarity distance of mango, apple, vanco CRE

Microsoft, IBM

« Finding the degree of similarity between two words.
similarity(‘woman’,'man’)= 0.73723527

« Finding odd one out.
doesnt_match('breakfast cereal dinner lunch’) = ‘cereal’

« Compute woman+king-man =queen
most_similar(positive=[' woman’, king'],negative=['man’])
queen: 0.508

32

Examples on Characteristics of Word
Embeddings

Numerical representations of contextual similarities between

words

A

king

A

man

queen

woman

/'\,

Male-Female

Spain \
A Italy

___.___.~—_________--Madrid
Germany —_— Rome
walked Berlin
O Turkey \
o’ v Ankara
O ’ swam Russia
‘ Ottawa'mscc’w
walking > Canada
\'/\) Japan Tokyo
O Vietnam Hanoi
swimming China Beijing
Verb tense Country-Capital

vector[Queen] = vector[King] - vector[Man] + vector[Woman]|

33

' Data and Software for word2vec

« Easiest way to use it is via the Gensim libarary for
Python (tends to be slowish, even though it tries
to use C optimizations like Cython, NumPYy)

https://radimrehurek.com/gensim/models/word2vec.
html

* Original word2vec C code by Google
https://code.google.com/archive/p/word2vec/

34

https://radimrehurek.com/gensim/models/word2vec.html
https://code.google.com/archive/p/word2vec/

’ Ese of word embedding in document matching:
Representation-based neural ranking

Match(query,doc)=F(®P(query),P(doc))

F: scoring function

®: map to a document representation vector with a
sequence of word %ﬁlbeddings

F

- flx,y)

Input Aggregation Representation Similarity 3

