
1

Boolean and Vector Space
Retrieval Models

• CS 293S, 2020

2

Outline
• Which results satisfy the query constraint?

§ Boolean model
– Document processing steps
– Query processing

§ Statistical vector space model
§ Neural representations with word embeddings

3

Retrieval Models
• A retrieval model specifies the details of:

§ 1) Document representation
§ 2) Query representation
§ 3) Retrieval function: how to find relevant results
§ Determines a notion of relevance.

• Classical models
§ Boolean models (set theoretic)

– Extended Boolean
§ Vector space models
§ Probabilistic models

4

Retrieval Tasks
• Ad hoc retrieval: Fixed document corpus, varied

queries.
• Filtering: Fixed query, continuous document

stream.
§ User Profile: A model of relative static preferences.
§ Binary decision of relevant/not-relevant.

News stream userQuery

5

Boolean Model
• A document is represented as a set of keywords.

• Queries are Boolean expressions of keywords, connected
by AND, OR, and NOT, including the use of brackets to
indicate scope.

§ Rio & Brazil | Hilo & Hawaii, hotel & !Hilton

• Output: Document is relevant or not. No partial matches
§ Can be extended to include ranking.

6

Incident vector representation for
Shakespeare plays

1 if play contains

word, 0 otherwise

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

• Query answer with bitwise operations (AND, negation, OR):

§ Which plays of Shakespeare contain the words Brutus
AND Caesar but NOT Calpurnia?

§ 110100 AND 110111 AND 101111 = 100100.

7

Inverted index

• Incident vectors are sparse à sparse matrix
§ Compact representation needed to save storage

• Inverted index
§ For each term T, must store a list of all documents

that contain T.

Brutus

Calpurnia

Caesar

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

8

Inverted index

• Linked lists generally preferred to arrays
§ Dynamic space allocation
§ Insertion of terms into documents easy
§ Space overhead of pointers

Brutus

Calpurnia

Caesar

2 4 8 16 32 64 128

2 3 5 8 13 21 34

13 16

1

Dictionary Postings

9

Document Preprocessing Steps
• Strip unwanted characters/markup (e.g. HTML tags,

punctuation, numbers, etc.).
• Break into tokens (keywords) on whitespace.
• Possible linguistic processing (used in some

applications, but dangerous for general web search)
§ Stemming (cards ->card)
§ Remove common stopwords (e.g. a, the, it, etc.).
§ Used sometime, but dangerous

• Build inverted index
§ keyword à list of docs containing it.
§ Common phrases may be detected first using a

domain specific dictionary.

10

Inverted index construction

Tokenizer

Token stream. Friends Romans Countrymen
Linguistic
modules

Modified tokens. friend roman countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

More on
these later.

Documents to
be indexed.

Friends, Romans, countrymen.

11

Discussions

• Which terms in a doc do we index?
§ All words or only “important” ones?

• Stopword list: terms that are so common
§ they MAY BE ignored for indexing.
§ e.g., the, a, an, of, to …
§ language-specific.

• How do we process a query?
§ What kinds of queries can we process?

12

Query processing

• Consider processing the query:
Brutus AND Caesar
§ Locate Brutus in the Dictionary;

– Retrieve its postings.
§ Locate Caesar in the Dictionary;

– Retrieve its postings.
§ “Merge” the two postings:

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

13

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

The merge

• Walk through the two postings simultaneously, in
time linear in the total number of postings entries

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar2 8

If the list lengths are m and n, the merge for sorted lists
takes O(m+n) operations.

Crucial: postings sorted by docID.

14

More general merges

• Exercise: How to handle NOT, OR?
Brutus AND NOT Caesar
Brutus OR NOT Caesar

Can we still run through the merge in time O(m+n)?

15

Boolean Models - Problems
• Very rigid: AND means all; OR means any.

§ Easy to understand. Clean formalism.
• Difficult to express complex user requests.

§ Still too complex for general web users
• Difficult to control the number of documents

retrieved.
§ All matched documents will be returned.

• Difficult to rank output.
§ All matched documents logically satisfy the query.

• Difficult to perform relevance feedback.
§ If a document is identified by the user as relevant or

irrelevant, how should the query be modified?

16

Example Application: WestLaw
http://www.westlaw.com/

• Largest commercial (paying subscribers) legal search
service (started 1975; ranking added 1992)
§ Long, precise queries; proximity operators; incrementally

developed; not like web search
§ Professional searchers (e.g., Lawyers) still like Boolean

queries: You know exactly what you’re getting.
• Example query with proximity operators:

§ What is the statute of limitations in cases involving the
federal tort claims act?

§ LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3
CLAIM

17

Outline
• Which results satisfy the query constraint?

§ Boolean model
– Document processing steps
– Query processing

§ Statistical vector space model
§ Neural representations

18

Statistical Retrieval Models
• A document is typically represented by a bag of words

(unordered words with frequencies).
• Bag = set that allows multiple occurrences of the same element.
• User specifies a set of desired terms with optional weights:

§ Weighted query terms:
Q = < database 0.5; text 0.8; information 0.2 >

§ Unweighted query terms:
Q = < database; text; information >

§ No Boolean conditions specified in the query.
• Retrieval based on similarity between query and documents.

§ Output documents are ranked by similarity to query.
• Weights in vectors

§ Similarity based on occurrence frequencies of keywords in
query and document.

19

The Vector-Space Representation

• Assume t distinct terms remain after preprocessing;
call them index terms or the vocabulary.

• Each term, i, in a document or query, j, is given a real-
valued weight, wij.

• Both documents and queries are expressed as t-
dimensional vectors:

dj = (w1j, w2j, …, wtj)

T1 T2 …. Tt
D1 w11 w21 … wt1
D2 w12 w22 … wt2
: : : :
: : : :
Dn w1n w2n … wtn

20

Example: Graphic representation

Example:
D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?
• How to measure the degree of

similarity? Distance? Angle?
Projection?

21

Issues for Vector Space Model

• How to determine important words in a
document?
§ Word n-grams (and phrases, idioms,…) à

terms
• How to determine the degree of importance of

a term within a document and within the entire
collection?

• How to determine the degree of similarity
between a document and the query?

• In the case of the web, what is a collection and
what are the effects of links, formatting
information, etc.?

22

Term Weights: Term Frequency
• More frequent terms in a document are more important, i.e.

more indicative of the topic.
fij = frequency of term i in document j

• May want to normalize term frequency (tf) across the entire
corpus:

tfij = fij / max{fij}

• Terms that appear in many different documents are less
indicative of overall topic. Less discrimination power.
df i = document frequency of term i

= number of documents containing term i
idfi = inverse document frequency of term i,

= log2 (N/ df i) N: total number of documents
• Log used to dampen the effect relative to tf.

23

TF-IDF Weighting
• A typical combined term importance indicator is tf-idf

weighting:
wij = tfij idfi = tfij log2 (N/ dfi)

• A term occurring frequently in the document but
rarely in the rest of the collection is given high weight.

Example: A document has term frequencies: A(3), B(2), C(1)
Assume collection contains 10,000 documents and
document frequencies of these terms are: A(50), B(1300), C(250)
Then:
A: tf = 3/3; idf = log(10000/50) = 5.3; tf-idf = 5.3
B: tf = 2/3; idf = log(10000/1300) = 2.0; tf-idf = 1.3
C: tf = 1/3; idf = log(10000/250) = 3.7; tf-idf = 1.2

24

Similarity Measure
• A similarity measure is a function that computes the

degree of similarity between two vectors.
• Using a similarity measure between the query and

each document:
• Similarity between vectors for the document di and query q

can be computed as the vector inner product:
sim(dj,q) = dj•q = sum wij · wiq

where wij is the weight of term i in document j and wiq is the weight of
term i in the query

Example:
§ D = 1, 1, 1, 0, 1, 1, 0

§ Q = 1, 0 , 1, 0, 0, 1, 1 sim(D, Q) = 3

ret
rie
val

da
tab
ase

arc
hit
ect
ure

com
pu
ter

tex
t

ma
na
gem
ent

inf
orm
ati
on

25

Example & Properties of Inner Product

• Properties of Inner Product
§ The inner product is unbounded.
§ Favors long documents with a large number of

unique terms.
§ Measures how many terms matched but not how

many terms are not matched.

Another example with weighted vectors:
D1 = 2T1 + 3T2 + 5T3 D2 = 3T1 + 7T2 + 1T3
Q = 0T1 + 0T2 + 2T3

sim(D1 , Q) = 2*0 + 3*0 + 5*2 = 10
sim(D2 , Q) = 3*0 + 7*0 + 1*2 = 2

26

Cosine Similarity Measure
• Cosine similarity measures the cosine of

the angle between two vectors.
• Inner product normalized by the vector

lengths.

D1 = 2T1 + 3T2 + 5T3 CosSim(D1 , Q) = 10 / Ö(4+9+25)(0+0+4) = 0.81
D2 = 3T1 + 7T2 + 1T3 CosSim(D2 , Q) = 2 / Ö(9+49+1)(0+0+4) = 0.13
Q = 0T1 + 0T2 + 2T3

q2

t3

t1

t2

D1

D2

Q

q1

D1 is 6 times better than D2 using cosine similarity but only 5 times better using
inner product.

å å

å

= =

=•

×

×
=

×
t

i

t

i

t

i

ww

ww
qd
qd

iqij

iqij

j

j

1 1

22

1
)(

!!
!!

CosSim(dj, q) =

27

Improvement: BM25

• Rank or feature score with an extension of TF-IDF
• Given document d for query q

• df: nuber of documents containing this word
• |d|: document length
• avdl: average document length
• c(w,d): term frequency in this document
• c(w,q): term frequency in this query
• Constants k1 in [1,2], b=0.75, k3 in [0, 3000]

31

3
1

(1) (,)(1) (,)() 0.5ln | |() 0.5 (,)((1)) (,)w q d

k c w qk c w dN df w
ddf w k c w qk b b c w d
avdl

Î Ç

+ ´+ ´- +
× ×

+ +- + +
å

28

Comments on Vector Space Models
• Simple, practical, and mathematically based

approach
• Provides partial matching and ranked results.
• Problems

§ Missing syntactic information (e.g. phrase structure,
word order, proximity information).

§ Missing semantic information
– word sense: multiple meanings of a word
– Assumption of term independence. ignores synonymy.

§ Lacks the control of a Boolean model (e.g., requiring
a term to appear in a document).

– Given a two-term query “A B”, may prefer a document containing A
frequently but not B, over a document that contains both A and B, but
both less frequently.

29

Outline
• Which results satisfy the query constraint?

§ Boolean model
– Document processing steps
– Query processing

§ Statistical vector space model
§ Neural representations

– Word embeddings

Word Representations

Traditional Method - Bag of Words
Model

Word Embeddings

• Uses one hot encoding

• Each word in the vocabulary is
represented by one bit position in a
HUGE vector.

• For example, if we have a vocabulary
of 10000 words, and “Hello” is the 4th

word in the dictionary, it would be
represented by: 0 0 0 1 0 0 0
0 0 0

• Context information is not utilized

• Stores each word in as a point in
space, where it is represented by a
vector of fixed number of dimensions
(generally 300)

• Unsupervised, built just by reading
huge corpus

• For example, “Hello” might be
represented as :
[0.4, -0.11, 0.55, 0.3 . . . 0.1, 0.02]

30

Word embedding: Motivation for a new word
representation

A Word Embedding format generally tries to map a word to a
numerical vector.

• Similar words tend to occur
together and will have similar
context– Orange is a fruit.
Banana is a fruit. They have a
similar context i.e fruit.

• A context may be a single word or a group of
words.

• A representation that captures
words’ meanings, semantic
relationships and the different
types of contexts they are used
in

31

Usage of Word Embeddings

• Finding the degree of similarity between two words.
similarity('woman','man')= 0.73723527

• Finding odd one out.
doesnt_match('breakfast cereal dinner lunch’) = 'cereal’

• Compute woman+king-man =queen
most_similar(positive=['woman','king'],negative=['man'])
queen: 0.508

• Similarity distance of mango, apple,
Microsoft, IBM

32

Examples on Characteristics of Word
Embeddings

vector[Queen] = vector[King] - vector[Man] + vector[Woman]

Numerical representations of contextual similarities between
words

33

Data and Software for word2vec

• Easiest way to use it is via the Gensim libarary for
Python (tends to be slowish, even though it tries
to use C optimizations like Cython, NumPy)

https://radimrehurek.com/gensim/models/word2vec.
html

• Original word2vec C code by Google
https://code.google.com/archive/p/word2vec/

34

https://radimrehurek.com/gensim/models/word2vec.html
https://code.google.com/archive/p/word2vec/

Use of word embedding in document matching:
Representation-based neural ranking

Match(query,doc)=F(Φ(query),Φ(doc))
F: scoring function
Φ: map to a document representation vector with a
sequence of word embeddings

Doc

Query

35

