Boolean and Vector Space Retrieval Models

• CS 293S, 2020

Outline

- Which results satisfy the query constraint?
 - Boolean model
 - Document processing steps
 - Query processing
 - Statistical vector space model
 - Neural representations with word embeddings

Retrieval Models

- A retrieval model specifies the details of:
 - 1) Document representation
 - 2) Query representation
 - 3) Retrieval function: how to find relevant results
 - Determines a notion of relevance.
- Classical models
 - Boolean models (set theoretic)
 - Extended Boolean
 - Vector space models
 - Probabilistic models

Retrieval Tasks

- Ad hoc retrieval: Fixed document corpus, varied queries.
- Filtering: Fixed query, continuous document stream.
 - User Profile: A model of relative static preferences.
 - Binary decision of relevant/not-relevant.

Boolean Model

- A document is represented as a set of keywords.
- Queries are Boolean expressions of keywords, connected by AND, OR, and NOT, including the use of brackets to indicate scope.
 - Rio & Brazil | Hilo & Hawaii, hotel & !Hilton
- Output: Document is relevant or not. No partial matches
 - Can be extended to include ranking.

Incident vector representatio	n for	1 if play contains
Shakespeare plays		word, 0 otherwise

	Antony and Cleopatra	Julius Caesar	i ne rempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

• Query answer with bitwise operations (AND, negation, OR):

- Which plays of Shakespeare contain the words Brutus AND Caesar but NOT Calpurnia?
- 110100 AND 110111 AND 101111 = 100100.

Inverted index

- Incident vectors are sparse \rightarrow sparse matrix
 - Compact representation needed to save storage
- Inverted index
 - For each term *T*, must store a list of all documents that contain *T*.

Linked lists generally preferred to arrays

- Dynamic space allocation
- Insertion of terms into documents easy
- Space overhead of pointers

Document Preprocessing Steps

- Strip unwanted characters/markup (e.g. HTML tags, punctuation, numbers, etc.).
- Break into tokens (keywords) on whitespace.
- **Possible linguistic processing** (used in some applications, but dangerous for general web search)
 - Stemming (cards ->card)
 - Remove common stopwords (e.g. a, the, it, etc.).
 - Used sometime, but dangerous
- Build inverted index
 - keyword \rightarrow list of docs containing it.
 - Common phrases may be detected first using a domain specific dictionary.

Inverted index construction

Discussions

- Which terms in a doc do we index?
 - All words or only "important" ones?
- <u>Stopword</u> list: terms that are so common
 - they MAY BE ignored for indexing.
 - e.g., **the, a, an, of, to** ...
 - Ianguage-specific.
- How do we process a query?
 - What kinds of queries can we process?

Query processing

- Consider processing the query:
 Brutus AND Caesar
 - Locate Brutus in the Dictionary;
 - Retrieve its postings.
 - Locate Caesar in the Dictionary;
 - Retrieve its postings.
 - "Merge" the two postings:

• Walk through the two postings simultaneously, in time linear in the total number of postings entries

If the list lengths are m and n, the merge for sorted lists takes O(m+n) operations. Crucial: postings sorted by docID.

Exercise: How to handle NOT, OR? Brutus AND NOT Caesar Brutus OR NOT Caesar

Can we still run through the merge in time O(m+n)?

Boolean Models – Problems

- Very rigid: AND means all; OR means any.
 - Easy to understand. Clean formalism.
- Difficult to express complex user requests.
 - Still too complex for general web users
- Difficult to control the number of documents retrieved.
 - All matched documents will be returned.
- Difficult to rank output.
 - *All* matched documents logically satisfy the query.
- Difficult to perform relevance feedback.
 - If a document is identified by the user as relevant or irrelevant, how should the query be modified?

Example Application: WestLaw http://www.westlaw.com/

- Largest commercial (paying subscribers) legal search service (started 1975; ranking added 1992)
 - Long, precise queries; proximity operators; incrementally developed; not like web search
 - Professional searchers (e.g., Lawyers) still like Boolean queries: You know exactly what you're getting.
- Example query with proximity operators:
 - What is the statute of limitations in cases involving the federal tort claims act?
 - LIMIT! /3 STATUTE ACTION /S FEDERAL /2 TORT /3 CLAIM

Outline

- Which results satisfy the query constraint?
 - Boolean model
 - Document processing steps
 - Query processing
 - Statistical vector space model
 - Neural representations

Statistical Retrieval Models

- A document is typically represented by a bag of words (unordered words with frequencies).
- Bag = set that allows multiple occurrences of the same element.
- User specifies a set of desired terms with optional weights:
 - Weighted query terms:
 - Q = < database 0.5; text 0.8; information 0.2 >
 - Unweighted query terms:
 - Q = < database; text; information >
 - No Boolean conditions specified in the query.
- Retrieval based on *similarity* between query and documents.
 - Output documents are ranked by similarity to query.
- Weights in vectors
 - Similarity based on occurrence *frequencies* of keywords in query and document.

The Vector-Space Representation

- Assume t distinct terms remain after preprocessing; call them index terms or the vocabulary.
- Each term, *i*, in a document or query, *j*, is given a realvalued weight, *w_{ij}*.
- Both documents and queries are expressed as tdimensional vectors:

$$d_{j} = (w_{1j}, w_{2j}, \dots, w_{tj})$$

$$T_{1} T_{2} \dots T_{t}$$

$$D_{1} w_{11} w_{21} \dots w_{t1}$$

$$D_{2} w_{12} w_{22} \dots w_{t2}$$

$$\vdots \vdots \vdots \vdots \vdots$$

$$D_{n} w_{1n} w_{2n} \dots w_{tn}$$

Example: Graphic representation

Issues for Vector Space Model

- How to determine important words in a document?
 - Word n-grams (and phrases, idioms,...) → terms
- How to determine the degree of importance of a term within a document and within the entire collection?
- How to determine the degree of similarity between a document and the query?
- In the case of the web, what is a collection and what are the effects of links, formatting information, etc.?

Term Weights: Term Frequency

• More frequent terms in a document are more important, i.e. more indicative of the topic.

 f_{ij} = frequency of term *i* in document *j*

May want to normalize *term frequency* (*tf*) across the entire corpus:

 $tf_{ij} = f_{ij} / max\{f_{ij}\}$

• Terms that appear in many *different* documents are *less* indicative of overall topic. *Less discrimination* power.

*df*_{*i*} = document frequency of term *i*

= number of documents containing term *i*

*idf*_{*i*} = **inverse document frequency** of term *i*,

= $\log_2 (N/df_i)$ N: total number of documents

• Log used to dampen the effect relative to *tf*.

TF-IDF Weighting

• A typical combined term importance indicator is *tf-idf* weighting:

 $w_{ij} = tf_{ij} idf_i = tf_{ij} \log_2 (N/df_i)$

- A term occurring frequently in the document but rarely in the rest of the collection is given high weight.
 - Example: A document has term frequencies: A(3), B(2), C(1) Assume collection contains 10,000 documents and document frequencies of these terms are: A(50), B(1300), C(250) Then:
 - A: tf = 3/3; idf = log(10000/50) = 5.3; tf-idf = 5.3
 - B: tf = 2/3; idf = log(10000/1300) = 2.0; tf-idf = 1.3
 - C: tf = 1/3; idf = log(10000/250) = 3.7; tf-idf = 1.2

Similarity Measure

- A similarity measure is a function that computes the *degree of similarity* between two vectors.
- Using a similarity measure between the query and each document:
- Similarity between vectors for the document *d_i* and query *q* can be computed as the vector inner product:

 $sim(d_i,q) = d_i \cdot q = sum \quad w_{ii} \cdot w_{iq}$

where w_{ij} is the weight of term *i* in document *j* and w_{iq} is the weight of term *i* in the query

Example: atabase at the computer mation promotest of the second product of the second

sim(D, Q) = 3

Example & Properties of Inner Product

Another example with weighted vectors: $D_1 = 2T_1 + 3T_2 + 5T_3$ $D_2 = 3T_1 + 7T_2 + 1T_3$ $Q = 0T_1 + 0T_2 + 2T_3$ $sim(D_1, Q) = 2*0 + 3*0 + 5*2 = 10$

 $sim(D_2, Q) = 3*0 + 7*0 + 1*2 = 2$

- Properties of Inner Product
 - The inner product is unbounded.
 - Favors long documents with a large number of unique terms.
 - Measures how many terms matched but not how many terms are *not* matched.

Cosine Similarity Measure

- Cosine similarity measures the cosine of the angle between two vectors.
- Inner product normalized by the vector lengths.

$$\operatorname{CosSim}(\mathbf{d}_{j},\mathbf{q}) = \frac{\vec{d}_{j}\cdot\vec{q}}{\left|\vec{d}_{j}\right|\cdot\left|\vec{q}\right|} = \frac{\sum_{i=1}^{t} (w_{ij}\cdot w_{iq})}{\sqrt{\sum_{i=1}^{t} w_{ij}^{2}\cdot\sum_{i=1}^{t} w_{iq}^{2}}} \int_{\mathbf{D}_{2}} \frac{\theta_{2}}{\mathbf{D}_{2}}$$

 $\begin{array}{ll} D_1 = 2T_1 + 3T_2 + 5T_3 & CosSim(D_1, Q) = 10 \ / \ \sqrt{(4+9+25)(0+0+4)} = 0.81 \\ D_2 = 3T_1 + 7T_2 + 1T_3 & CosSim(D_2, Q) = 2 \ / \ \sqrt{(9+49+1)(0+0+4)} = 0.13 \\ Q = 0T_1 + 0T_2 + 2T_3 \end{array}$

 D_1 is 6 times better than D_2 using cosine similarity but only 5 times better using inner product.

 t_3

 θ_1

Improvement: BM25

- Rank or feature score with an extension of TF-IDF
- Given document d for query q

$$\sum_{w \in q \cap d} \ln \frac{N - df(w) + 0.5}{df(w) + 0.5} \cdot \frac{(k_1 + 1) \times c(w, d)}{k_1((1 - b) + b\frac{|d|}{avdl}) + c(w, d)} \cdot \frac{(k_3 + 1) \times c(w, q)}{k_3 + c(w, q)}$$

- df: nuber of documents containing this word
- |d|: document length
- avdl: average document length
- c(w,d): term frequency in this document
- c(w,q): term frequency in this query
- Constants k₁ in [1,2], b=0.75, k₃ in [0, 3000]

Comments on Vector Space Models

- Simple, practical, and mathematically based approach
- Provides partial matching and ranked results.
- Problems
 - Missing syntactic information (e.g. phrase structure, word order, proximity information).
 - Missing semantic information
 - word sense: multiple meanings of a word
 - Assumption of term independence. ignores synonymy.
 - Lacks the control of a Boolean model (e.g., *requiring* a term to appear in a document).
 - Given a two-term query "A B", may prefer a document containing A frequently but not B, over a document that contains both A and B, but both less frequently.

Outline

- Which results satisfy the query constraint?
 - Boolean model
 - Document processing steps
 - Query processing
 - Statistical vector space model
 - Neural representations
 - Word embeddings

Word Representations

	Traditional Method - Bag of Words Model		Word Embeddings
•	Uses one hot encoding Each word in the vocabulary is represented by one bit position in a HUGE vector.	•	Stores each word in as a point in space, where it is represented by a vector of fixed number of dimensions (generally 300)
•	For example, if we have a vocabulary of 10000 words, and "Hello" is the 4 th word in the dictionary, it would be represented by: 0001000 000	•	Unsupervised, built just by reading huge corpus For example, "Hello" might be represented as : [0.4, -0.11, 0.55, 0.3 0.1, 0.02]
•	Context information is not utilized		

Word embedding: Motivation for a new word representation

A Word Embedding format generally tries to map a word to a numerical vector.

- A representation that captures words' *meanings*, *semantic relationships* and the different types of contexts they are used in
- Similar words tend to occur together and will have similar context- Orange is a fruit.
 Banana is a fruit. They have a similar context i.e fruit.
- A context may be a single word or a group of words.

Usage of Word Embeddings

• Similarity distance of mango, apple, Microsoft, IBM

- Finding the degree of similarity between two words. similarity('woman', 'man')= 0.73723527
- Finding odd one out. doesnt_match('breakfast cereal dinner lunch') = 'cereal'
- Compute woman+king-man =queen most_similar(positive=['woman','king'],negative=['man']) queen: 0.508

Examples on Characteristics of Word Embeddings

Numerical representations of contextual similarities between words

vector[Queen] = vector[King] - vector[Man] + vector[Woman]

Data and Software for word2vec

 Easiest way to use it is via the Gensim libarary for Python (tends to be slowish, even though it tries to use C optimizations like Cython, NumPy)

https://radimrehurek.com/gensim/models/word2vec. html

 Original word2vec C code by Google <u>https://code.google.com/archive/p/word2vec/</u>

Use of word embedding in document matching: Representation-based neural ranking

Match(query,doc)= $F(\Phi(query),\Phi(doc))$ F: scoring function

 Φ : map to a document representation vector with a sequence of word embeddings

