
Offline Data Processing: Tasks
and Infrastructure Support

T. Yang, UCSB 293S, 2020

1

Table of Content

• Offline incremental data processing: case
study
§ Content management for large index
§ Text mining, knowledge graph
§ Example of content analysis

• Duplicate content removal
• System support for offline data processing

2

Offline Architecture for Ask.com Search

3

Content Management

• Organize the vast amount of pages crawled to
facilitate online search.
§ Data preprocessing
§ Inverted index
§ Compression
§ Classify and partition data

• Collect additional content and ranking signals.
§ Link, anchor text, log data

• Extract and structure content
• Duplicate detection
• Anti-spamming

4

Classifying and Partitioning data

• Classify
§ Content quality. Language/country etc

• Partition
§ Based on languages and countries. Geographical

distribution based on data center locations
§ Partition based on quality

– First tier --- high chance that users will access
§ Quality indicator
§ Click feedback

– Second tier – lower chance

English
Main.

English
UK

English
Australia

Tier 1

Tier 2

5

Text mining

• “Text mining” is a cover-all marketing term
• A lot of what we’ve already talked about is actually

the bread and butter of text mining:
§ Text classification, clustering, and retrieval

• But we will focus in on some of the higher-level
text applications:
§ Extracting document metadata
§ Entities/knowledge graphs
§ Topic tracking and new story detection
§ Cross document entity and event coreference
§ Text summarization

6

Knowledge Graph

A knowledge graph is represented as entities, edges and attributes

7

Knowledge Graphs and Challenges

General knowledge graphs
• Freebase Wikidata, Dbpedia
• Google Knowledge Vault,

Google KG, Microsoft Satori KG
Large vertical KGs
- Facebook (social

network), LinkedIn (people
graph)

- Amazon (product graph)
Challenges for building/maintaining
a scalable large KG

2B+ entities
130B+ Web pages
44+ languages

8

Usage of Knowledge Graphs for Search
and Other Information Systems

• Search and NLP questions
§ Give direct answers
§ Enhance ranking

• Recommendation
• Auto conversation

9

Information extraction to enhance information on
web pages and refine knowledge graphs
• Getting semantic information out of textual data

§ Understand more information on web pages
§ Refine knowledge entities and extract their relationship

§ Validation, association, duplicate removal/merging
(entity linking), error correction, content refreshing

• Look for specific types of web pages:
§ E.g. an event web page:

– What is the name of the event?
– What date/time is it?

– How much does it cost to attend

§ Home pages for persons, organizations,
• Many vertical domains: resumes, health, products, …

10

Examples of Context Extraction/Analysis

• Getting semantic information out of textual data
§ Identify key phrases that capture the meaning of this

document. For example, title, section title,
highlighted words.

§ Identify parts of a document representing the
meaning of this document.

– Many web pages contain a side-menu, which his less
relevant to the main content of the documents

§ Identify entities and their relationships, attributes
§ Capture page content through Javascript analysis.

– Page rendering and Javascript evaluation within a page

11

Example of Content
Analysis

• Identify content block related
to the main content of a page

§ Non-content text/link
material is de-prioritized
during indexing process

12

Table of Content

• Offline incremental data processing: case
study
§ Content management for large index
§ Text mining, knowledge graph
§ Example of content analysis

• Duplicate content removal
• System support

13

Redundant Content Removal in Search
Engines

• Over 1/3 of Web pages crawled are near
duplicates

• When to remove near duplicates?
§ Offline removal

§ Online removal with query-based duplicate
removal

Online index
matching &
result ranking

Duplicate
removalUser

query

Final results

Offline data
processing

Duplicate
filtering

Web
Pages

Online
index

14

Why there are so many duplicates?

• Same content, different URLs, often with different
session IDs.

• Crawling time
difference

15

Tradeoff of online vs. offline removal

Online-dominating
approach

Offline-dominating
approach

Impact to offline data
processing design

High precision
Low recall

Remove fewer
duplicates

High precision
High recall

Remove most of
duplicates

Higher offline burden
Impact to online
system design

More burden to
online deduplication

Less burden to
online deduplication

Impact to overall
cost

Higher serving cost Lower serving cost

16

Key Value Stores/Storage

• Handle huge volumes of
data, e.g., PetaBytes!
§ Store (key, value) tuples

• Simple interface
§ put(key, value);

Insert/write “value”
associated with “key”

§ value = get(key);
Get/read data associated
with “key”

Used sometimes as a
simpler but more
scalable “database”

17

Key Values: Examples

• Web search: store documents, cache results, store URL
properties
§ Document server, image server, cache server, URL server

• Amazon shopping:
§ Key: customerID
§ Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter accounts:
§ Key: UserID
§ Value: user profile (e.g., posting history, photos, friends,

…)

• iCloud/iTunes:
§ Key: Movie/song name
§ Value: Movie, Song

18

Key-Value Storage Systems in Real Life
• Amazon

§ DynamoDB: internal key value store used for
Amazon.com (cart)

§ Amazon SimpleDB. Simple Storage System (S3)
• BigTable/HBase/Hypertable: distributed, scalable data

store
• Cassandra: “distributed data management system”

(developed by Facebook)
• Memcached: in-memory key-value store for small chunks of

arbitrary data (strings, objects)
• BitTorrent distributed file location: peer-to-peer

sharing system
• Redis, Oracle NSQL Database…
• Distributed file systems: set of (file block ID, file block) 19

Key Value Store on a Cluster of Machines

• Also called Distributed Hash Tables (DHT)
• Main idea: partition set of key-values across

many machines key, value

…

20

Challenges

• Fault Tolerance: handle machine failures without
losing data and without degradation in performance

• Scalability:
§ Need to scale to thousands of machines
§ Need to allow easy addition of new machines

• Consistency: maintain data consistency in face of
node failures and message losses

• Heterogeneity (if deployed as peer-to-peer
systems):
§ Latency: 1ms to 1000ms
§ Bandwidth: 32Kb/s to 100Mb/s

…

21

Key Questions

• put(key, value): where to store a new (key,
value) tuple?

• get(key): where is the value associated with a
given “key” stored?

• And, do the above while providing
§ Fault Tolerance
§ Scalability
§ Consistency

22

Directory-Based Architecture

• Have a node maintain the mapping between
keys and the machines (nodes) that store the
values associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
put(K14, V14)

pu
t(K

14
, V

14
)

23

Directory-Based Architecture
• Have a node maintain the mapping between

keys and the machines (nodes) that store
the values associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
get(K14)

ge
t(K
14
)

V1
4

V14

24

Directory-Based Architecture
• Having the master relay the requests ®

recursive query
• Another method: iterative query (this slide)

§ Return node to requester and let requester contact
node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
put(K14, V14)

put(K14, V14)

N3

25

Directory-Based Architecture
• Having the master relay the requests ®

recursive query
• Another method: iterative query

§ Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
get(K14)

get(K14)

V14
N3

26

Distributed Processing for Indexing and
Data Analysis

• Distributed processing driven by need to index and analyze
huge amounts of data (i.e., the Web)

• Large numbers of inexpensive servers used rather than
larger, more expensive machines

• MapReduce is a distributed programming tool
§ Simplify data distribution on a cluster of machines
§ Open source code runs on Hadoop distributed file system
§ Provide fault tolerance
§ But not designed for interactive applications

Hadoop

Mapreduce Mapreduce Mapreduce…
27

MapReduce Programming Model
• Data: a set of key-value pairs to model input, intermediate

results, and output
§ Initially input data is stored in files
§ stored in Hadoop: distributed file system built on a cluster

of machinesà Looks like one machine
• Parallel computation:

§ A set of Map tasks and reduce tasks to access and
produce key-value pairs

§ Map Function: (key1, val1) → (key2, val2)
§ Reduce: (key2, [val2 list]) → [val3]

Map Tasks Reduce Tasks
Input files

Output files

Stored in Hadoop

in Hadoop

28

Inspired by LISP Function Programming
• Lisp map function

§ Input parameters: a function and a set of values
§ This function is applied to each of the values.
Example:
§ (map ‘length ‘(() (a) (ab) (abc)))
à(length(()) length(a) length(ab) length(abc)). à (0 1 2 3)

• Lisp reduce function
§ given a binary function and a set of values.
§ It combines all the values together using the binary

function.
§ Example:

§ use the + (add) function to reduce the list (0 1 2 3)
§ (reduce #'+ '(0 1 2 3)) à 6

29

MapReduce

• Mapper
§ Generally, transforms a list of

items into another list of items of
the same length

• Reducer
§ Transforms a list of items into a

single item
§ processes records in batches,

where all pairs with the same key
are processed at the same time

• Shuffle
§ Uses a hash function so that all

pairs with the same key end up
the same machine

Distributed programming
framework that simplifies on data
placement and distribution on a
cluster of machines

Suitable for large data mining jobs
Not for interactive jobs

30

MapReduce to compute document
frequency of terms

the
quick
brown

fox

the fox
ate the
mouse

how
now

brown
cow

Map

Map

Map

the, 1
brown, 1

fox, 1

the, 1
fox, 1
the, 1
ate,1

mouse,1

how, 1
now, 1

brown, 1
cow,1

Reduc
e

Reduc
e

quick, 1
brown, 1

brown, 1

Input Map Shuffle & Sort Reduce Output

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

31

.

Document Frequency: Input Example

map() gets a key, value
• key - "bytes from the beginning of the line?“
• value - the current line;

US history book
School admission records
iPADs sold in 2012

US history book

School admission records

iPADs sold in 2012

Input file
Line value Tokens

US history book

32

Inverted Indexing with Mapreduce

This page contains
so much text

My page contains
text too

Foo

Bar

contains: Bar
My: Bar
page : Bar
text: Bar
too: Bar

contains: Foo
much: Foo
page : Foo
so : Foo
text: Foo
This : Foo

contains: Foo, Bar
much: Foo
My: Bar
page : Foo, Bar
so : Foo
text: Foo, Bar
This : Foo
too: Bar

Reduced output

Foo map output

Bar map output

Input files
Stored in Hadoop

Map Tasks Reduce Tasks

Output files
in Hadoop

33

Pseudo code example for indexing with
position information

Intermediate
results in key-
value pairs
managed by the
system

A user writes a
small amount of
code without
worrying about
inter-machine
management

34

Hadoop Distributed File System

• Standard file interface as Linux
§ Open, seek, read, write, close

• Files split into 64 MB blocks
§ Blocks replicated across

several datanodes (3)
• Namenode stores metadata (file

names, locations, etc)
• Files are append-only.

Optimized for large files,
sequential reads
§ Read: use any copy
§ Write: append to 3 replicas

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

35

Hadoop Cluster with MapReduce
Daemons for MapReduce

TT – Task tracker to
manage within a node
Job Tracker –

coordinate across
machines

Daemons for
Hadoop:

NN –Name node
DN –Data node to
serve file blocks

36

Execute MapReduce on a cluster of machines
with Hadoop DFS

37

Summary

• Offline incremental data processing
§ All kinds of text mining and data transformation

– Indexing, duplicate removal, content classification, spam analysis

§ Combine information from different sources
– Web pages, entity/knowledge graph, link data, click data, database

tables

• Offline architectures and infrastructure
§ Flow control for large system components

–Pipeline, incremental update, 24x7 support
§ Examples of system software for

parallel/distributed processing
–key-value stores, map-reduce

38

