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Index Process and Table of Content

• Inverted index with positional information
• Compression
• Advanced index  for fast query processing
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Indexes

• Indexes are data structures to make search faster
• Most common data structure is inverted index

§ “inverted” because documents are associated with 
words, rather than words with documents

• Inverted index: Each index term is associated with an 
inverted list
§ Contains lists of documents, or lists of word 

occurrences in documents, and other information
§ Each entry is called a posting or postings
§ Lists are usually document-ordered (sorted by 

document number)
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Simple inverted index for example “Collection”

4 documents:

What other information
can be added in index to help
ranking?



Inverted Index
with word counts

• Supports more 
ranking features
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Word Positions for Proximity Matches

• Matching phrases or words within a window 
explicitly or implicitly.
§ e.g., "tropical fish", or “find tropical within 5 

words of fish”
• Word positions in inverted lists make these types 

of query features efficient
§ e.g.,

Fish appears at Positions 2 and 4 of Document 1
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Positional indexes

• Store, for each term, entries of the form:
<number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Expensive storage space for a large collection with long documents
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Inverted Index
with positions

• supports 
proximity matches
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Inverted Index with Fields

• Document structure is useful in search
§ Text may be divided into multiple fields
§ field restrictions,  e.g., date.  Field importance, e.g., title

• Options:
§ separate inverted lists for each field type
§ add information about fields to postings

– use extent lists to mark special areas in a document

• An extent is a contiguous region of a document
§ represent extents using word positions
§ e.g.   1:(1,3)  à title in document 1 is from 1 to 3 

Extent list



Other Issues

• Precomputed scores in inverted list
§ e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total 

feature value for document 1
§ improves speed but reduces flexibility

• Score-ordered lists
§ query processing engine can focus only on the top 

part of each inverted list, where the highest-scoring 
documents are recorded

§ very efficient for single-word queries
• How to estimate the storage need for inverted 

index?
§ Zipf distribution of word posting lengths
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Zipf’s law on term distribution

• Study the relative frequencies of terms.
§ there are a few very frequent 
terms and very many rare terms.

• Zipf’s law: The i-th most frequent term has 
frequency proportional to 1/i .

• cfi is collection frequency: the number of 
occurrences of the term ti
§ cfi ∝ 1/i 
§ cfi = c/i where c
is a normalizing constant
log(cfi )+ log(i) = log(c)



Zipf distribution for search query traffic
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Analyze index size with Zipf  distribution

• Number of docs = n = 40M. Number of terms = m = 1M
• The inverted index only stores the document IDs that contain 

a term and its frequency.
§ No positional information
§ How to estimate the size of inverted index?
§ Assume each postings record:

– 16-byte (4+8+4) records (term, doc, freq).

§ Can you use Zipf to estimate number of postings entries?

Use Zipf to estimate number of postings entries:
Most popular term appears in all n documents.
Second most popular term appears in n/2 documents.

n + n/2 + n/3 + …. + n/m ≈n ln m = 560M entries
560M*16B ≈ 9GB
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Positional index size

• Need an entry for each occurrence, not just once 
per document

• Index size depends on average document size
§ Average web page has <1000 terms
§ SEC filings, PDF files, … easily 100,000 terms

• Rules of thumb for English  languages
§ Positional index size factor of 2-4 over non-positional 

index
§ Positional index size 35-50% of volume of original text
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Index Compression

• Motivation:  Inverted lists are very large
§ Much higher if n-grams are indexed

• Compression of indexes saves disk and/or memory space
§ Los less compression – no information lost
§ Best compression techniques have good compression ratios

and are easy to decompress
• Basic idea: Common data elements use short codes while 

uncommon data elements use longer codes
• Example: coding number sequence: 0, 1, 0, 2,0,3,0

§ Possible binary encoding:

Store 0 with a single 0:   0 01 0 10 0 11 0
How about this binary bit sequence: 0    1   0   10   0   11  0

Can you convert back to decimal numbers:  0, 1, 0, 2, 0, 3, 0?
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Compression with unambiguous encoding

• Ambiguous encoding – not clear how to decode 
when scanning a sequence of bits
§ 0    1   0   10   0   11  0
§ Can mean  0, 1, 0, 2, 0, 3, 0
§ Or another decoding: 0, 2, 2, 0, 3, 0

• unambiguous code:

– “0 1 0 1 0”  uniquely gives 0,  1,  0 

Another takeaway: Small numbers à use a small number of bits
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Delta Encoding: encoding differences between 
consecutive  numbers 

• Encode differences between consecutive  numbers 
§ Word count data is good candidate for compression with 

many small numbers and few larger numbers
§ For a sequence of document  IDs, delta encoding may also 

be effective with an ordered list.

• Example: 
• Delta encoding: 

• Differences for a high-frequency word  are easier to 
compress, e.g.,

• Differences for a low-frequency word may be large, and 
compression is not easy
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Compression with Bit-Aligned Codes

• Treat compressed data as a sequence of bits and breaks 
between encoded numbers can occur after any bit position
§ Pro: optimization to a bit level
§ Cons: more time cost 

• Unary code
§ Encode k by k 1s followed by 0
§ 0 at end makes code unambiguous

• Unary is efficient for small numbers such as 
0 and 1, but quickly becomes expensive
§ 1023 can be represented in 10 binary bits, 

but requires 1024 bits in unary
• Binary representation  is more efficient for 

large numbers, but it may be ambiguous 18



Elias-γ Code: Combine binary/unary 
representations

• To encode a number k, 
decompose k into two parts. 
Compute

– kd is number of binary digits, 
encoded in unary

– kr is the remainder, encoded in binary
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Cost Analysis and Elias-δ Code

• Elias-γ code uses no more bits than unary, many 
fewer for k > 2
§ 1023 takes 19 bits instead of 1024 bits using unary
§ In general, takes 2⌊log2k⌋+1 bits

• To improve coding of large numbers, use Elias-δ 
code
§ Apply  Elias-γ recursively to the first component
§ Instead of encoding kd in unary, we encode kd + 1 

using Elias-γ
§ Takes approximately 2 log2 log2 k + log2 k bits
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Example of Elias-δ Code

• Split the first component kd into:

§ encode kdd in unary, kdr in binary, and kr in binary
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Byte-Aligned Codes

• Variable-length bit encodings can be too complex on 
processors that are more effective in handling bytes

• v-byte is a popular byte-aligned code
§ Similar to Unicode UTF-8
§ Shortest v-byte code is 1 byte
§ Numbers are 1 to 4 bytes, with high bit 1 in the last 

byte, 0 otherwise
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V-Byte Encoding
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V-Byte Encoder and Decoder in C++
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Compression Example with v-bye after 
delta-encoding

• Given  invert list with positions: 
§ (Doc ID, #occurrence, positions)

• Delta encoding of  document numbers and positions:

• Compress using v-byte:
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Word-Aligned Simple-9 Code (Anh/Moffat 2004)

Can we store more numbers in a byte?
Try to pack several numbers into one word (32 bits)
• each word has 4 control bits and 28 data bits
• Assume each number requires at most 28 bits.
9 cases of data represented by 28 bits:
• - 1 28-bit number                             - 2 14-bit numbers
• - 3 9-bit numbers (1 bit wasted)       - 4 7-bit numbers
• - 5 5-bit numbers (3 bits wasted)      - 7 4-bit numbers
• - 9 3-bit numbers (1 bit wasted)        - 14 2-bit numbers
• - 28 1-bit numbers
4  Control bits indicate which of these 9 cases is used
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Word-Aligned Simple-9 Code (Anh/Moffat 2004)

Algorithm:
• do the next 28 numbers fit into one bit each?
• if no: do the next 14 numbers fit into 2 bits each?
• if no: do the next 9 numbers fit into 3 bits each?
• …
Fast decoding: only one if-decision for every 32 bits
Decent compression ratio: can use < 1 byte for small 

numbers
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Compression Performance [WWW08, 
Zhang/Long/Suel]
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Advanced Indexing for Fast Query 
Processing

• Index traversal during online query processing
• Skip pointers for conjunctive queries
• Earlier termination for top K disjunctive query 

processing
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Advanced  Indexing for Fast Query 
Processing

• Search engines commonly separate the ranking process into 
two or more phases. 
§ In the first phase, a very simple and fast ranking function 

such as BM25 is used to get, say, the top 1000 documents. 
– Query type

§ Conjunctive (all query terms are required)
§ Disjunctive (some of terms are required)
§ Phrase or proximity 

– Significant amount of computation is still spent in the first 
phase. Index design is critical.

§ Then in the second and further phases, increasingly more 
complicated ranking functions with more and more features 
are applied to documents that pass through the earlier 
phases. 
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First Phase Fast Ranking

• Simple rank formula score (d) =  ∑ TermScore(t, d) for all 
terms t in the query. E.g. TFIDF,  BM25

• Data traversal during online query processing
§ Term-at-a-Time (TAAT) query processing 

– reads posting lists for query terms successively 
– maintains an accumulator for each result document with value

§ Document-at-a-time (DAAT) approach 
31



…

…

First term posting  list

Second term posting  list

Third term posting  list



Document-at-a-time (DAAT)

§ Assumes document-ordered posting lists
§ Reads posting lists for query terms  concurrently 
§ Computes score when same document is seen in one or more 

posting lists 
§ Always advances posting list with lowest current document 

identifier 

Start from  doc d1
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Advance to doc  d4

…
Advance to d7

…

Advance to d8

…

Advance to d9 34



Intersection of posting lists for 
conjunctive queries

• All query terms are required for a matching document
• Walk through the two postings simultaneously, in time 

linear in the total number of postings entries

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus
Caesar2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.
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Augment postings with skip pointers (at 
indexing time)

• Why?
• To skip postings that will not be part of the 

search results.

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128
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Query processing with skip pointers

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

Suppose we’ve stepped through the lists until we process 8 on 
each list.

When we get to 16 on the top list, we see that its
successor is 32.
But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.
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Skip Pointers

• A skip pointer (d, p) contains a document number d
and a byte (or bit) position p
§ Means there is an inverted list posting that starts at 

position p, and the posting before it was for 
document d

skip pointers Inverted list

• Example for inverted list

§ D-gaps
§ Skip pointers
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How many skip pointers?

• Tradeoff:
§ More skips ® shorter skip spans Þ more likely to 

skip.  But lots of comparisons to skip pointers.
§ Fewer skips ® few pointer comparison, but then long 

skip spans Þ few successful skips.

• Simple heuristic: for postings of length L, use sqrt(L) 
evenly-spaced skip pointers.
§ Easy if the index is relatively static; harder if L keeps 

changing because of updates.
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Earlier Termination for Fast Query Processing

• Exhaustive Search vs Earlier Termination
§ Search algorithm is exhaustive if it fully evaluates all 

documents that satisfy the Boolean condition 
§ Otherwise it is called earlier termination

• Earlier termination strategies
§ Stopping early, where each inverted list is arranged 

from most to least promising posting and traversal is 
stopped once enough good results are found, 

§ Skipping, where inverted lists are sorted by  document 
IDs, and thus promising documents spread out over the 
lists, but we can skip over uninteresting parts of a list

§ Partial scoring, where candidate documents are only 
partially or approximately scored. 
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Types of Index Organization

• Document-Sorted Indexes: the postings in each inverted list are sorted by 
document ID.  
§ Popular. Good for DAAT traversal, skip pointer optimization, delta 

encoding based compression.
§ WAND/BMW top-K algorithms for disjunctive queries

• Impact-Sorted Indexes: Postings in each list are sorted by their impact, 
that is, their contribution to the score of a document. 
§ Good for stopping early strategy where each inverted list is arranged 

from most to least promising posting and traversal is stopped once 
enough good results are found. 

§ TAAT traversal is often used
§ Not easy for delta-encoding based compression

• Impact-Layered Indexes: partition the postings in each list into a number 
of layers, such that all postings in layer i have a higher impact than those in 
layer i + 1, and then sort the postings in each layer by document IDs.
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Safe Earlier Termination with WAND for 
Disjunctive Queries

• Safe earlier termination allows faster processing while 
having the same result as exhaustive top-K  search.
§ Only need top K documents with the highest scores

• Weak AND (WAND) query processing
§ Simple rank formula score (d) =  ∑ TermScore(t, d) for all 

terms t in the query
§ Assume document-ordered posting lists. Each i-th posting 

list maintains maxscore(i)
§ Follow DAAT and read related  posting lists concurrently 

– Compute score when same document is seen in one or more 
posting lists 

§ Skip some documents which are impossible to be in top K
– Always advances posting list with lowest current document 

identifier up to pivot document identifier computed from current 
top-K result 42



How to Skip Low-score  Documents in WAND

• Maintain a current document ID pointer at each posting list of 
term t: cdid(t)

• MaxScore(t) is the maximum term score in term t’s posting list.
• Dynamically maintain minScore as minimum score to be in top K.

MaxScore(a) =1
MaxScore(b)=1
MaxScore(c)=1

cdid(a) = d7
cdid(b)=d9
cdid(c )= d3

minScore=1.5 
Only top 1 result is 
needed

For current cdid(a), cdid(b), cdid(c) list: d3,  d7, d9   is it possible that d3
appears in the posting list of term “a” or ”b”?   No. Why? 43



How to Skip Low-score  Documents in WAND
• Sort posting lists in ascending order of cdid()’s document IDs 

and focus on these hot documents
§ Hot list d3,  d7, d9  for term order c, a, b

• Define the pivot  be jth document in the above sorted hot list:
§ Any document between 1th and (j-1)th positions of the hot list 

cannot qualify for top K results due to low score
§ jth document satisfies: ∑1≤i ≤j MaxScore(ti) > minScore

– j=1. MaxScore(c)=1 < 1.5        d3 is not possible to score higher than 1.5
– j=2. MaxScore(c)+ MaxScore(a) =2 > 1.5
– d7 is possible to score higher than 1.5. Thus it is the pivot for current hot 

list.  Advance the current lowest doc pointer to the pivot
44



WAND Reference and Block-MAX WAND

• WAND: A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Y. Zien. 
Efficient query evaluation using a two-level retrieval process. ACM CIKM, 
2003. 

• Block-MAX WAND (BMW)
§ S. Ding and T. Suel. Faster top-k document retrieval using 

block-max indexes. SIGIR 2011. 
§ Motivation for improvement

– Max impact score in a term posting list can be much larger than the 
average  individual doc score

– Splits the inverted lists into blocks of, say, 64 or 128 docIDs such that 
each block can be decompressed separately 

§ Create an extra table, which stores for each block 
– The max/min docID, Maximum score for each block
– Still need to compute the maximum score per term posting list

§ Leverage more accurate per-block max score while skipping 
blocks of documents quickly 45



Illustration of Key Ideas in BMW

• Maintain piece-wise 
upper-bound 
approximation of the 
impact scores in the lists. 

Block max scores for posting list 
blocks  of dog, monkey, kangaroo.

∑1≤i ≤j BlockMax(ti) > minScore

• Naive use of block max 
score is incorrect 

Still use WAND idea to find a 
candidate pivot.
Once a candidate pivot is found, 
dynamically locate the block in 
each term posting list  that may 
own this pivot document

Which blocks contain doc #4866 in cat&dog?



How to skip low-score documents in BMW

• Still use WAND idea to find a 
pivot candidate

• Once a candidate pivot d is 
found, skip any document 
before d in the focused hot 
list.

∑1≤i ≤j MaxScore(ti) > minScore

• Dynamically locate the block Bi in each term posting list that may 
own doc d
• Use the next block max/min IDs to filter unnecessary blocks that 

cannot contain d in each term posting list.

∑1≤i ≤j BlockMax(ti, Bi) > minScore
• Double check if d is a real candidate by using

Doc d=4866 is pivot candidate

• If d does not satisfy, find the next minimum doc ID  to move forward 
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A Comparison of Exhaustive Search, WAND, 
and BMW with DAAT/TAAT

• TREC GOV2 web page collection. TREC 2006 query log
• Query processing time in milliseconds on average and for different query 

lengths: 2, 3, 4, 5, >5. 
• Exhaustive OR, WAND, SC, and BMW are for disjunctive queries, while 

Exhaustive AND is for conjunctive queries.
• SC is a  TAAT-based algorithm (Strohman&Croft. Efficient document 

retrieval in main memory, SIGIR 2007). Other algorithms follow DAAT.

The authors also propose Block-max AND (BMA), similar to 
BMW,  for conjunctive queries and outperforms exhaustive AND. 48



Summary

• Inverted index with positional information
§ Efficient data structure for fast online query processing
§ Zipf distribution for storage estimation

• Compression
§ Reduce storage need of a large index
§ Delta encoding
§ Bit aligned methods: Elias-γ, Elias-δ 
§ Byte aligned methods: V-Byte, Simple-9

• Advanced indexing for fast query processing
§ Skip pointers
§ TAAT or  DAAT order  for online index traversal
§ WAND, Block MAX WAND for safe earlier termination 

in top K ranking
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