
Inverted Indexing for Text
Documents

UCSB 293S, Tao Yang 2020
Some of slides from the text books of
Croft/Metzler/Strohman and
Manning/Raghavan/Schutze

1

Index Process and Table of Content

• Inverted index with positional information
• Compression
• Advanced index for fast query processing

2

Indexes

• Indexes are data structures to make search faster
• Most common data structure is inverted index

§ “inverted” because documents are associated with
words, rather than words with documents

• Inverted index: Each index term is associated with an
inverted list
§ Contains lists of documents, or lists of word

occurrences in documents, and other information
§ Each entry is called a posting or postings
§ Lists are usually document-ordered (sorted by

document number)

3

Simple inverted index for example “Collection”

4 documents:

What other information
can be added in index to help
ranking?

Inverted Index
with word counts

• Supports more
ranking features

5

Word Positions for Proximity Matches

• Matching phrases or words within a window
explicitly or implicitly.
§ e.g., "tropical fish", or “find tropical within 5

words of fish”
• Word positions in inverted lists make these types

of query features efficient
§ e.g.,

Fish appears at Positions 2 and 4 of Document 1
6

Positional indexes

• Store, for each term, entries of the form:
<number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain “to be

or not to be”?

Expensive storage space for a large collection with long documents
7

Inverted Index
with positions

• supports
proximity matches

8

Inverted Index with Fields

• Document structure is useful in search
§ Text may be divided into multiple fields
§ field restrictions, e.g., date. Field importance, e.g., title

• Options:
§ separate inverted lists for each field type
§ add information about fields to postings

– use extent lists to mark special areas in a document

• An extent is a contiguous region of a document
§ represent extents using word positions
§ e.g. 1:(1,3) à title in document 1 is from 1 to 3

Extent list

Other Issues

• Precomputed scores in inverted list
§ e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total

feature value for document 1
§ improves speed but reduces flexibility

• Score-ordered lists
§ query processing engine can focus only on the top

part of each inverted list, where the highest-scoring
documents are recorded

§ very efficient for single-word queries
• How to estimate the storage need for inverted

index?
§ Zipf distribution of word posting lengths

10

Zipf’s law on term distribution

• Study the relative frequencies of terms.
§ there are a few very frequent
terms and very many rare terms.

• Zipf’s law: The i-th most frequent term has
frequency proportional to 1/i .

• cfi is collection frequency: the number of
occurrences of the term ti
§ cfi ∝ 1/i
§ cfi = c/i where c
is a normalizing constant
log(cfi)+ log(i) = log(c)

Zipf distribution for search query traffic

12

Analyze index size with Zipf distribution

• Number of docs = n = 40M. Number of terms = m = 1M
• The inverted index only stores the document IDs that contain

a term and its frequency.
§ No positional information
§ How to estimate the size of inverted index?
§ Assume each postings record:

– 16-byte (4+8+4) records (term, doc, freq).

§ Can you use Zipf to estimate number of postings entries?

Use Zipf to estimate number of postings entries:
Most popular term appears in all n documents.
Second most popular term appears in n/2 documents.

n + n/2 + n/3 + …. + n/m ≈n ln m = 560M entries
560M*16B ≈ 9GB

13

Positional index size

• Need an entry for each occurrence, not just once
per document

• Index size depends on average document size
§ Average web page has <1000 terms
§ SEC filings, PDF files, … easily 100,000 terms

• Rules of thumb for English languages
§ Positional index size factor of 2-4 over non-positional

index
§ Positional index size 35-50% of volume of original text

14

Index Compression

• Motivation: Inverted lists are very large
§ Much higher if n-grams are indexed

• Compression of indexes saves disk and/or memory space
§ Los less compression – no information lost
§ Best compression techniques have good compression ratios

and are easy to decompress
• Basic idea: Common data elements use short codes while

uncommon data elements use longer codes
• Example: coding number sequence: 0, 1, 0, 2,0,3,0

§ Possible binary encoding:

Store 0 with a single 0: 0 01 0 10 0 11 0
How about this binary bit sequence: 0 1 0 10 0 11 0

Can you convert back to decimal numbers: 0, 1, 0, 2, 0, 3, 0?
15

Compression with unambiguous encoding

• Ambiguous encoding – not clear how to decode
when scanning a sequence of bits
§ 0 1 0 10 0 11 0
§ Can mean 0, 1, 0, 2, 0, 3, 0
§ Or another decoding: 0, 2, 2, 0, 3, 0

• unambiguous code:

– “0 1 0 1 0” uniquely gives 0, 1, 0

Another takeaway: Small numbers à use a small number of bits

16

Delta Encoding: encoding differences between
consecutive numbers

• Encode differences between consecutive numbers
§ Word count data is good candidate for compression with

many small numbers and few larger numbers
§ For a sequence of document IDs, delta encoding may also

be effective with an ordered list.

• Example:
• Delta encoding:

• Differences for a high-frequency word are easier to
compress, e.g.,

• Differences for a low-frequency word may be large, and
compression is not easy

17

Compression with Bit-Aligned Codes

• Treat compressed data as a sequence of bits and breaks
between encoded numbers can occur after any bit position
§ Pro: optimization to a bit level
§ Cons: more time cost

• Unary code
§ Encode k by k 1s followed by 0
§ 0 at end makes code unambiguous

• Unary is efficient for small numbers such as
0 and 1, but quickly becomes expensive
§ 1023 can be represented in 10 binary bits,

but requires 1024 bits in unary
• Binary representation is more efficient for

large numbers, but it may be ambiguous 18

Elias-γ Code: Combine binary/unary
representations

• To encode a number k,
decompose k into two parts.
Compute

– kd is number of binary digits,
encoded in unary

– kr is the remainder, encoded in binary

19

Cost Analysis and Elias-δ Code

• Elias-γ code uses no more bits than unary, many
fewer for k > 2
§ 1023 takes 19 bits instead of 1024 bits using unary
§ In general, takes 2⌊log2k⌋+1 bits

• To improve coding of large numbers, use Elias-δ
code
§ Apply Elias-γ recursively to the first component
§ Instead of encoding kd in unary, we encode kd + 1

using Elias-γ
§ Takes approximately 2 log2 log2 k + log2 k bits

20

Example of Elias-δ Code

• Split the first component kd into:

§ encode kdd in unary, kdr in binary, and kr in binary

21

Byte-Aligned Codes

• Variable-length bit encodings can be too complex on
processors that are more effective in handling bytes

• v-byte is a popular byte-aligned code
§ Similar to Unicode UTF-8
§ Shortest v-byte code is 1 byte
§ Numbers are 1 to 4 bytes, with high bit 1 in the last

byte, 0 otherwise

22

V-Byte Encoding

23

V-Byte Encoder and Decoder in C++

24

Compression Example with v-bye after
delta-encoding

• Given invert list with positions:
§ (Doc ID, #occurrence, positions)

• Delta encoding of document numbers and positions:

• Compress using v-byte:

25

Word-Aligned Simple-9 Code (Anh/Moffat 2004)

Can we store more numbers in a byte?
Try to pack several numbers into one word (32 bits)
• each word has 4 control bits and 28 data bits
• Assume each number requires at most 28 bits.
9 cases of data represented by 28 bits:
• - 1 28-bit number - 2 14-bit numbers
• - 3 9-bit numbers (1 bit wasted) - 4 7-bit numbers
• - 5 5-bit numbers (3 bits wasted) - 7 4-bit numbers
• - 9 3-bit numbers (1 bit wasted) - 14 2-bit numbers
• - 28 1-bit numbers
4 Control bits indicate which of these 9 cases is used

26

Word-Aligned Simple-9 Code (Anh/Moffat 2004)

Algorithm:
• do the next 28 numbers fit into one bit each?
• if no: do the next 14 numbers fit into 2 bits each?
• if no: do the next 9 numbers fit into 3 bits each?
• …
Fast decoding: only one if-decision for every 32 bits
Decent compression ratio: can use < 1 byte for small

numbers

27

Compression Performance [WWW08,
Zhang/Long/Suel]

28

Advanced Indexing for Fast Query
Processing

• Index traversal during online query processing
• Skip pointers for conjunctive queries
• Earlier termination for top K disjunctive query

processing

29

Advanced Indexing for Fast Query
Processing

• Search engines commonly separate the ranking process into
two or more phases.
§ In the first phase, a very simple and fast ranking function

such as BM25 is used to get, say, the top 1000 documents.
– Query type

§ Conjunctive (all query terms are required)
§ Disjunctive (some of terms are required)
§ Phrase or proximity

– Significant amount of computation is still spent in the first
phase. Index design is critical.

§ Then in the second and further phases, increasingly more
complicated ranking functions with more and more features
are applied to documents that pass through the earlier
phases.

30

First Phase Fast Ranking

• Simple rank formula score (d) = ∑ TermScore(t, d) for all
terms t in the query. E.g. TFIDF, BM25

• Data traversal during online query processing
§ Term-at-a-Time (TAAT) query processing

– reads posting lists for query terms successively
– maintains an accumulator for each result document with value

§ Document-at-a-time (DAAT) approach
31

…

…

First term posting list

Second term posting list

Third term posting list

Document-at-a-time (DAAT)

§ Assumes document-ordered posting lists
§ Reads posting lists for query terms concurrently
§ Computes score when same document is seen in one or more

posting lists
§ Always advances posting list with lowest current document

identifier

Start from doc d1

33

Advance to doc d4

…
Advance to d7

…

Advance to d8

…

Advance to d9 34

Intersection of posting lists for
conjunctive queries

• All query terms are required for a matching document
• Walk through the two postings simultaneously, in time

linear in the total number of postings entries

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus
Caesar2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.

35

Augment postings with skip pointers (at
indexing time)

• Why?
• To skip postings that will not be part of the

search results.

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

36

Query processing with skip pointers

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

Suppose we’ve stepped through the lists until we process 8 on
each list.

When we get to 16 on the top list, we see that its
successor is 32.
But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

37

Skip Pointers

• A skip pointer (d, p) contains a document number d
and a byte (or bit) position p
§ Means there is an inverted list posting that starts at

position p, and the posting before it was for
document d

skip pointers Inverted list

• Example for inverted list

§ D-gaps
§ Skip pointers

38

How many skip pointers?

• Tradeoff:
§ More skips ® shorter skip spans Þ more likely to

skip. But lots of comparisons to skip pointers.
§ Fewer skips ® few pointer comparison, but then long

skip spans Þ few successful skips.

• Simple heuristic: for postings of length L, use sqrt(L)
evenly-spaced skip pointers.
§ Easy if the index is relatively static; harder if L keeps

changing because of updates.
39

Earlier Termination for Fast Query Processing

• Exhaustive Search vs Earlier Termination
§ Search algorithm is exhaustive if it fully evaluates all

documents that satisfy the Boolean condition
§ Otherwise it is called earlier termination

• Earlier termination strategies
§ Stopping early, where each inverted list is arranged

from most to least promising posting and traversal is
stopped once enough good results are found,

§ Skipping, where inverted lists are sorted by document
IDs, and thus promising documents spread out over the
lists, but we can skip over uninteresting parts of a list

§ Partial scoring, where candidate documents are only
partially or approximately scored.

40

Types of Index Organization

• Document-Sorted Indexes: the postings in each inverted list are sorted by
document ID.
§ Popular. Good for DAAT traversal, skip pointer optimization, delta

encoding based compression.
§ WAND/BMW top-K algorithms for disjunctive queries

• Impact-Sorted Indexes: Postings in each list are sorted by their impact,
that is, their contribution to the score of a document.
§ Good for stopping early strategy where each inverted list is arranged

from most to least promising posting and traversal is stopped once
enough good results are found.

§ TAAT traversal is often used
§ Not easy for delta-encoding based compression

• Impact-Layered Indexes: partition the postings in each list into a number
of layers, such that all postings in layer i have a higher impact than those in
layer i + 1, and then sort the postings in each layer by document IDs.

41

Safe Earlier Termination with WAND for
Disjunctive Queries

• Safe earlier termination allows faster processing while
having the same result as exhaustive top-K search.
§ Only need top K documents with the highest scores

• Weak AND (WAND) query processing
§ Simple rank formula score (d) = ∑ TermScore(t, d) for all

terms t in the query
§ Assume document-ordered posting lists. Each i-th posting

list maintains maxscore(i)
§ Follow DAAT and read related posting lists concurrently

– Compute score when same document is seen in one or more
posting lists

§ Skip some documents which are impossible to be in top K
– Always advances posting list with lowest current document

identifier up to pivot document identifier computed from current
top-K result 42

How to Skip Low-score Documents in WAND

• Maintain a current document ID pointer at each posting list of
term t: cdid(t)

• MaxScore(t) is the maximum term score in term t’s posting list.
• Dynamically maintain minScore as minimum score to be in top K.

MaxScore(a) =1
MaxScore(b)=1
MaxScore(c)=1

cdid(a) = d7
cdid(b)=d9
cdid(c)= d3

minScore=1.5
Only top 1 result is
needed

For current cdid(a), cdid(b), cdid(c) list: d3, d7, d9 is it possible that d3
appears in the posting list of term “a” or ”b”? No. Why? 43

How to Skip Low-score Documents in WAND
• Sort posting lists in ascending order of cdid()’s document IDs

and focus on these hot documents
§ Hot list d3, d7, d9 for term order c, a, b

• Define the pivot be jth document in the above sorted hot list:
§ Any document between 1th and (j-1)th positions of the hot list

cannot qualify for top K results due to low score
§ jth document satisfies: ∑1≤i ≤j MaxScore(ti) > minScore

– j=1. MaxScore(c)=1 < 1.5 d3 is not possible to score higher than 1.5
– j=2. MaxScore(c)+ MaxScore(a) =2 > 1.5
– d7 is possible to score higher than 1.5. Thus it is the pivot for current hot

list. Advance the current lowest doc pointer to the pivot
44

WAND Reference and Block-MAX WAND

• WAND: A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Y. Zien.
Efficient query evaluation using a two-level retrieval process. ACM CIKM,
2003.

• Block-MAX WAND (BMW)
§ S. Ding and T. Suel. Faster top-k document retrieval using

block-max indexes. SIGIR 2011.
§ Motivation for improvement

– Max impact score in a term posting list can be much larger than the
average individual doc score

– Splits the inverted lists into blocks of, say, 64 or 128 docIDs such that
each block can be decompressed separately

§ Create an extra table, which stores for each block
– The max/min docID, Maximum score for each block
– Still need to compute the maximum score per term posting list

§ Leverage more accurate per-block max score while skipping
blocks of documents quickly 45

Illustration of Key Ideas in BMW

• Maintain piece-wise
upper-bound
approximation of the
impact scores in the lists.

Block max scores for posting list
blocks of dog, monkey, kangaroo.

∑1≤i ≤j BlockMax(ti) > minScore

• Naive use of block max
score is incorrect

Still use WAND idea to find a
candidate pivot.
Once a candidate pivot is found,
dynamically locate the block in
each term posting list that may
own this pivot document

Which blocks contain doc #4866 in cat&dog?

How to skip low-score documents in BMW

• Still use WAND idea to find a
pivot candidate

• Once a candidate pivot d is
found, skip any document
before d in the focused hot
list.

∑1≤i ≤j MaxScore(ti) > minScore

• Dynamically locate the block Bi in each term posting list that may
own doc d
• Use the next block max/min IDs to filter unnecessary blocks that

cannot contain d in each term posting list.

∑1≤i ≤j BlockMax(ti, Bi) > minScore
• Double check if d is a real candidate by using

Doc d=4866 is pivot candidate

• If d does not satisfy, find the next minimum doc ID to move forward
47

A Comparison of Exhaustive Search, WAND,
and BMW with DAAT/TAAT

• TREC GOV2 web page collection. TREC 2006 query log
• Query processing time in milliseconds on average and for different query

lengths: 2, 3, 4, 5, >5.
• Exhaustive OR, WAND, SC, and BMW are for disjunctive queries, while

Exhaustive AND is for conjunctive queries.
• SC is a TAAT-based algorithm (Strohman&Croft. Efficient document

retrieval in main memory, SIGIR 2007). Other algorithms follow DAAT.

The authors also propose Block-max AND (BMA), similar to
BMW, for conjunctive queries and outperforms exhaustive AND. 48

Summary

• Inverted index with positional information
§ Efficient data structure for fast online query processing
§ Zipf distribution for storage estimation

• Compression
§ Reduce storage need of a large index
§ Delta encoding
§ Bit aligned methods: Elias-γ, Elias-δ
§ Byte aligned methods: V-Byte, Simple-9

• Advanced indexing for fast query processing
§ Skip pointers
§ TAAT or DAAT order for online index traversal
§ WAND, Block MAX WAND for safe earlier termination

in top K ranking
49

