
Decision Trees and Learning 
Ensembles for 
Classification/Ranking

293S  T. Yang. UCSB, 2020

1



Outlines

• Example of classification algorithms
§ Decision trees

• Training data and cross-validation
• Learning Assembles
• Random Forest
• Adaboost
• Boosting regression trees

2



3

Classification with Decision 
Trees



Decision Trees 

• Decision trees can express any function of the input attributes.
• E.g., for Boolean functions, truth table row → path to leaf:

• Trivially, there is a consistent decision tree for any training set with 
one path to leaf for each example (unless f nondeterministic in x) 
but it probably won't generalize to new examples

• Prefer to find more compact decision trees: we don’t want to 
memorize the data, we want to find structure in the data!

4



Decision Trees: Application Example

Problem: decide whether to wait for a table at a 
restaurant, based on the following attributes, or 
called features
1. Alternative: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some, 

Full)

6. Price: price range ($, $$, $$$)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, 

>60)

5



Training data: Restaurant waiting

• Examples described by attribute values or feature value (Boolean, 
discrete, continuous)

• Decision: I will/won't wait for a table:

• Classification of examples is positive (T, wait) or negative (F, not 
wait)

• Each training instance is modeled as a feature vector
6



A decision tree to decide whether to wait

• imagine someone talking a sequence of decisions.

7



Decision tree learning

If there are so many possible trees
• Aim: find a small tree consistent with the training 

examples
• Idea: (recursively) choose "most significant" attribute as 

root of (sub)tree.

• The goal is to form a tree with the highest classification accuracy

• Test metric: Classification accuracy is  the percentage of cases 
that the derived classifier prdicts correctly.

8



How to build a decision tree

• Basic idea to form a decision node
§ Pick up an attribute, and use the value range of this 

attribute as a branching condition  
§ Expand each node by adding more children

Patrons?
None Some Full

Wait LeaveLeave

Type?
French Italian Thai

Wait
Burger

Wait Wait Wait



Grow a tree by adding children to some nodes

Patrons?
None Some Full

WaitLeave

Type?
French Italian Thai Burger

WaitEstimate? Patrons?

10



Choosing an attribute for a smaller tree

• Idea: a good attribute splits the examples into 
subsets that are (ideally) "all positive" or "all 
negative"

• Patrons or type? To wait or not to wait is still at 50%.

• Probability of being positive is p.
P=0.5 is bad because it does not give any decidable information.
• Need to find a function f  to measure uncertainty such that 

f(p)= bad when p=0.5   and   f(p)=good when p=1 or 0. 11



Information theory background: Entropy

• Entropy measures uncertainty
H(p, 1-p)= -p log (p)  - (1-p) log (1-p)

Consider tossing a biased coin.
If you toss the coin VERY often,
the frequency of heads is, say, p, 

and hence the frequency of tails is 
1-p. 

Uncertainty  (entropy) is zero if p=0 or 1
and maximal if we have p=0.5.

12



Using information theory for binary 
decisions

• Imagine we have p examples which are true 
(positive) and n examples which are false 
(negative). 

• Our best estimate of true or false is given 
by: 
§ Prob(true) = p/(p+n)
§ Prov(false)=n/(p+n)

• Hence the entropy is given by:

( , ) log logp p pn n nEntropy
p n p n p n p n p n p n

» - -
+ + + + + +

13



Using information theory for more than 2 
classes

• n classes

( ) ( 1)log[ ( 1)]
( 2)log[ ( 2)]

...
( )log[ ( )]

Entropy p p s p s
p s p s

p s n p s n

= - = =

- = =

- = =

1
( ) 1

n

s
p s

=

=å

14



ID3 Algorithm: Using Information Theory 
to Choose an Attribute

• How much information do we gain if we 
disclose the value of some attribute?

• ID3 algorithm by Ross Quinlan uses 
information gained measured by maximum 
entropy reduction:
§ IG(A) =  uncertainty before – uncertainty after
§ Choose an attribute with the maximum IA

15



Before: Entropy = - ½ log(1/2) – ½ log(1/2)=log(2) = 1 bit: 
There is “1 bit of information to be discovered”. 

After: for “Type:” If we go into branch “French” we have 1 bit, similarly for the others.
French: 1bit
Italian: 1 bit
Thai: 1 bit

Burger: 1bit
On average: 1 bit and gained nothing!

Example

After: for “Patrons:” In branch “None” and “Some” entropy = 0!, 
In “Full” entropy = -1/3log(1/3)-2/3log(2/3)=0.92

So Patrons gains more information! 16



Information Gain: How to combine 
branches

•1/6 of the time we enter “None”, so we weight“None” with 1/6. 
Similarly: “Some” has weight: 1/3 and “Full” has weight ½.    

1
( ) ( , )

n
i i i i

i i i i i

p n p nEntropy A Entropy
p n p n p n=

+
=

+ + +å

weight for each branch 

entropy for each branch.

17



Choose an attribute: Restaurant Example

For the training set, p = n = 6, before split, I(6/12, 6/12) = 1 bit

Patrons has the highest IG of all attributes and so is chosen by 
the DTL algorithm as the root

bits 0)]
4
2,

4
2(

12
4)

4
2,

4
2(

12
4)

2
1,

2
1(

12
2)

2
1,

2
1(

12
2[1)(

bits 0541.)]
6
4,

6
2(

12
6)0,1(

12
4)1,0(

12
2[1)(

=+++-=

=++-=

IIIITypeIG

IIIPatronsIG

18



Example: Decision tree learned

• Decision tree learned from the 12 examples:

19



Issues and Discussion

• When there are no attributes left: 
§ Stop growing and use majority vote.

• Avoid over-fitting  training data
§ Control  tree size with pruning
§ Stop growing a tree earlier
§ Grow first, and prune later.

• Deal with continuous-valued attributes 
§ Dynamically select thresholds/intervals.

• Handle missing attribute values
§ Make up with common values

• Other tree building methods: Regression with 
square error loss function

20



Is it fair to use the training data to  report final 
classification accuracy?

• No fair. A labeled dataset is divided into two sets
§ Training set is used to form a tree that fits data
§ Test set is used to report classification errors with no bias
§ Test metric: 

– Binary classification. Accuracy is  the percentage of cases that 
the derived classifier prdicts correctly.

• How to compute the error with more than 2 classes?
§ For example, 3 Classes: class 1, class 2, class 3.
§ Sqaured error sum

– Sum (predicted class value – target value)^2
– Normalized by dividing the number of cases

§ Another way: Measure # of cases classified correctly  for 
Class 1, and # of cases classifed correctly for Case 2 
etc.  Then compute average, or weighted average. 21



How to Evaluate Accuracy with Training Data 

• The accuracy/error estimates on the training 
data are not good indicators of performance 
on future data
§ Why?

Training set

Classifier

Training set

• Because new data will probably not be exactly the 
same as the training data!

• The algorithms do well on the training data may 
overfit



Divide a dataset into 3 sets: Training set, 
validation set, and test set

• For more advanced setting, a labeled dataset is divided 
into 3 sets
§ Training set is used to form a tree under some 

parameters (e.g. when to stop tree growing)
§ Validation set is used to assess the accuracy of the 

derived classifier, and then readjust training parameters, 
and reassess again for the best validation performance

§ Test set is used to report  accuracy/error of the final 
classifier with no bias

23



Evaluation with Independent Test Data 

• Estimation with independent test data is used 
when we have plenty of data and there is a 
natural way to forming training and test data.

• For example: reported experiments for which the 
classifiers were trained on data from 2017 and 
tested on data from 2018.

Training set

Classifier

Test set



Hold-out Method

• The hold-out method splits the data into training data
and test data (usually 2/3 for train, 1/3 for test). Then we
build a classifier using the train data and test it using the
test data.

• The hold-out method is usually used when we have a
sufficient large dataset for training and testing
separately

Training set

Classifier

Test set

Data



Classification: Train, Validation, Test Split

Data

Predictions

Y N

Results Known

Training set

Validation set

+
+
-
-
+

Classifier Builder
Evaluate

+
-
+
-

ClassifierFinal Test Set

+
-
+
-

Final Evaluation

Model
Builder

The test data can’t be used for parameter tuning!



Making the Most of Available Data

• Difficult to obtain training/testing data
• Importance of more data

§ Generally, the larger the training data the better the 
classifier (but returns diminish).

§ The larger the test data the more accurate the error 
estimate.

§ Can we use all data to build the final classifier.



k-Fold Cross-Validation
• Select a subset for training and another 

subset for testing without overlapping. 
§ data is split into k subsets of equal size; select one 

testing
• Repeat above process for k times

§ each subset in turn is used for testing and the 
remainder for training or training/validation

• The estimates are averaged to 
yield an overall estimate.

Classifier

Data

train valid. test

train test Valid.

test Valid. train



k-Fold Cross-Validation: Train, Validate 
and Test



Learning Ensembles

30



31

Learning Ensembles

• Learn multiple classifiers separately
• Combine decisions (e.g. using weighted voting)
• When combing multiple decisions, random errors 

cancel each other out, correct decisions are 
reinforced. Training Data

Data1 Data mData2 × × × × × × × ×

Learner1 Learner2 Learner m× × × × × × × ×

Model1 Model2 Model m× × × × × × × ×

Model Combiner Final 
Model



Homogenous Ensembles

• Use a single, arbitrary learning algorithm 
but manipulate training data to make it 
learn multiple models.
§ Data1 ¹ Data2 ¹ … ¹ Data m
§ Learner1 = Learner2 = … = Learner m

• Methods for changing training data:
§ Bagging: Resample training data
§ Boosting: Reweight training data
§ DECORATE: Add additional artificial training data

Training Data

Data1 Data mData2 × × × × × × × ×

Learner1 Learner2 Learner m× × × × × × × ×
32



33

Bagging

• Create ensembles by repeatedly randomly 
resampling the training data (Brieman, 1996).

• Given a training set of size n, create m sample 
sets
§ Each bootstrap sample set will on average contain 

63.2% of the unique training examples, the rest are 
replicates.

§ Combine the m resulting models using majority vote

• Advantages:
§ Decreases error by decreasing the variance in the 

results due to unstable learners, algorithms (like 
decision trees) whose output can change 
dramatically when the training data is slightly 
changed.

§ Avoid overfiting training data



Random Forests

• Introduce two sources of randomness: “Bagging” 
and “Random input vectors”
§ Each tree is grown using a bootstrap sample of 

training data
§ At each node, best split is chosen from random 

sample of m variables instead of all variables  M 
(features).

§ Final result is aggregated through average or  
majority voting

• Advantages:
§ Good accuracy without over-fitting
§ Fast algorithm (can be faster than growing/pruning a 

single tree); easily parallelized
§ Handle high dimensional data without much problem 34



Random Forests

35



36

Boosting

• Yoav Freund and Robert E. Schapire. A decision-theoretic 
generalization of on-line learning and an application to boosting. 
Journal of Computer and System Sciences, 55(1):119–139, 
August 1997.
§ Simple with theoretical foundation

• Use training set re-weighting
§ Each training sample uses a weight to determine the 

probability of being selected for a training set.

• AdaBoost is an algorithm for constructing a “strong” 
classifier as linear combination of a sequence of 
“simple” “weak” classifier 

• A weak classifier is built based on  the previous weak 
classifiers



AdaBoost: An Easy Flow

Data set 1 Data set 2 Data set T

Learner1 Learner2 LearnerT… ...

… ...

… ...

training instances that are wrongly 
predicted by Learner1 will be weighted 
more for Learner2

weighted 
combination

Original training set

37



38

Adaboost Terminology

• ht(x) … “weak” or basis classifier 
§ < 50% error over any distribution

• … “strong” or final classifier
§ For binary classification: Positive vs negative
§ thresholded linear combination of weak classifier 

outputs



And in a Picture

training case
correctly
classified

training case
has large weight
in this round

this DT has 
a strong vote.

39



• Given training set X={(x1,y1),…,(xm,ym)}
• yiÎ{-1,+1} correct label of instance xiÎX
• Initialize distribution D1(i)=1/m;
• for t = 1,…,T:

• Find a weak classifier (“rule of thumb”)
ht : X ® {-1,+1}

with small error et on Dt:
• Update distribution Dt on {1,…,m} so that Dt+1(i) becomes bigger for 

wrongly classified cases and smaller for correctly classified cases

• Output final hypothesis

Key idea of AdaBoost

å =
=

T

t tt xhsignxH
1

))(()( a

• how about by a factor of 1/!t-1 

• how about by a factor of ln(1/!t-1) 

40

( weight of training cases)

• how about by a factor of sqrt(1/!t-1)) 



• Given training set X={(x1,y1),…,(xm,ym)}
• yiÎ{-1,+1} correct label of instance xiÎX
• Initialize distribution D1(i)=1/m; ( weight of training cases)
• for t = 1,…,T:

• Find a weak classifier (“rule of thumb”)
ht : X ® {-1,+1}

with small error et on Dt:
• Update distribution Dt on {1,…,m}. !t =0.5 ln(1/"t-1)

• Output final hypothesis

AdaBoost.M1

å =
=

T

t tt xhsignxH
1

))(()( a

yi * ht(xi) > 0, if correct
yi * ht(xi) < 0, if wrong

41

Namely sum of Dt+1=1



42

Reweighting 

y * h(x) = -1

y * h(x) = 1

Exp(0.5ln(1/!t-1)) = sqrt(1 /!t-1) 
Exp(-0.5ln(1/!t-1)) = 1/sqrt(1 /!t-1) 



Toy Example

43



Round 1

Weak classifier:   if h1 <0.2 à 1   else -1 44

Error rate is 30% !1 =0.5 ln(1/"t-1)=0.4236



Round 2

Weak classifier:  if  h2 <0.8 à 1 else -1 45



Round 3

Weak classifier:  if  h3 >0.7 à 1 else -1 46



Final Combination
if h1 <0.2 à 1  else -1

if  h3 >0.7 à 1 else -1

if  h2 <0.8 à 1 else -1

47



48

Pros and Cons of AdaBoost and Extension

Advantages
§ Very simple to implement
§ Does feature selection resulting in relatively simple 

classifier
§ Fairly good generalization

Disadvantages
§ Suboptimal solution
§ Sensitive to noisy data and outliers

• RankBoost extends AdaBoost for pairwise correctness 
of document ranking
§ +1: Correctly ordered for a pair of documents
§ -1: Incorrectly ordered



49

Rank Algorithms and Opensource Library

• Linear
§ RankSVM

– SVM based weight computation
§ As an extension of AdaBoost/AdaRank, AdaRank is 

optimized for ranking based on NDCG cost metrics
• Nonlinear Tree Ensembles

§ GBRT (Gradient Boosting Regression Trees)
§ LambdaMART

– Additive tree boosting
– Optimzied based on NDCG

§ RandomForest
– Bagging on top of GBRT or LambdaMART

• Opensource Rank Library
§ RankLib



50

Some References on Ranking & Boosting

• AdaRank,
• Jun Xu and Hang Li. 2007. AdaRank: a boosting algorithm for 

information retrieval. In Proceedings of the 30th annual 
international ACM SIGIR conference on Research and 
development in information retrieval (SIGIR ‘07)

• Generalization from Adaboost for NDCG optimization
• LambdaMart:

§ C.J.C. Burges, K.M. Svore, P.N. Bennett, A. Pastusiak and Q. 
Wu, Learning to Rank Using an Ensemble of Lambda-Gradient 
Models. Journal of Machine Learning Research: Workshop and 
Conference Proceedings, vol. 14, pp. 25-35, 2011

• RandomForest
– M. Ibrahim and M. Carman. Comparing pointwise and listwise 

objective functions for random-forest-based learning-to-rank. 
ACM Transactions on Information Systems (TOIS), 34(4):20, 
2016. 

• GBRT: 
§ A. Mohan, Z. Chen, K. Weinberger, Wearch Ranking with 

Initialized Gradient Boosted Regression Trees Journal of MLR, 
2011

http://www.jmlr.org/proceedings/papers/v14/mohan11a/mohan11a.pdf
http://www.jmlr.org/proceedings/papers/v14/mohan11a/mohan11a.pdf


GBRT(Gradient Boosting Regression 
Trees)

Data set 1 Data set 2 Data set T

Learner1 Learner2 LearnerT… ...

… ...

… ...

Minimize the prediction errors in matching 
category yi  of i-th training instance

weighted combination

Original training set

+ +
51



GBRT example with 4 training instances

(x1, 1) 

(x2, 2)

(x3, 1) 

(x4, 2)

Learner1 Learner2 LearnerT

… ...

… ...

… ...

Minimize prediction errors to match 
1,2,1,2

Original training set

+ +
1.5

Match -0.5, 0.5, -0.5, 0.5:  yi-T1  
called psudo-residuals

(x1,- 0.5) 

(x2, 0.5)

(x3, -0.5) 

(x4, 0.5)

T1
T2 52


