Decision Trees and Learning Ensembles for Classification/Ranking

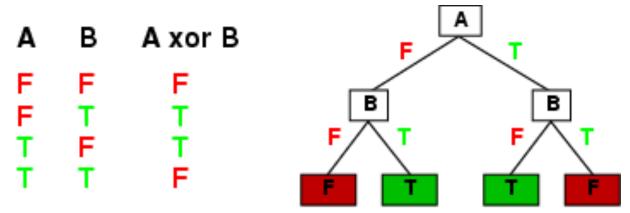
293S T. Yang. UCSB, 2020

- Example of classification algorithms
 - Decision trees
- Training data and cross-validation
- Learning Assembles
- Random Forest
- Adaboost
- Boosting regression trees

Classification with Decision Trees

Decision Trees

- Decision trees can express any function of the input attributes.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:



- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless *f* nondeterministic in *x*) but it probably won't generalize to new examples
- Prefer to find more compact decision trees: we don't want to memorize the data, we want to find structure in the data!

Decision Trees: Application Example

Problem: decide whether to wait for a table at a restaurant, based on the following attributes, or called features

- 1. Alternative: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- **10. WaitEstimate**: estimated waiting time (0-10, 10-30, 30-60, >60)

Training data: Restaurant waiting

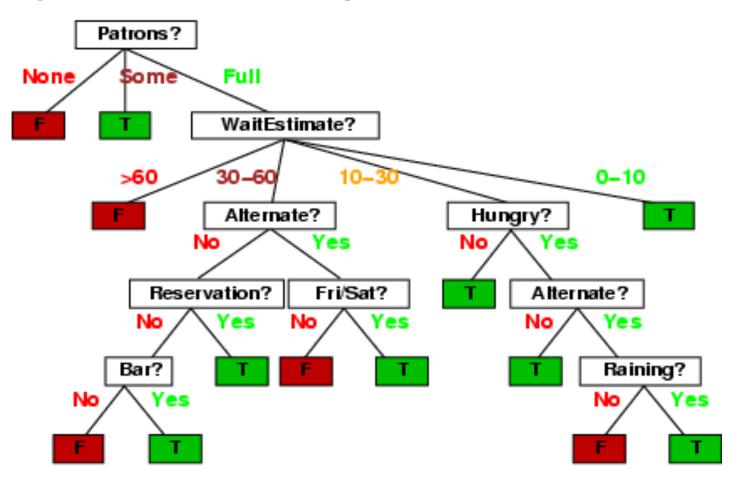
- Examples described by attribute values or feature value (Boolean, discrete, continuous)
- Decision: I will/won't wait for a table:

Example	Attributes										Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

- Classification of examples is positive (T, wait) or negative (F, not wait)
- Each training instance is modeled as a feature vector

A decision tree to decide whether to wait

• imagine someone talking a sequence of decisions.



Decision tree learning

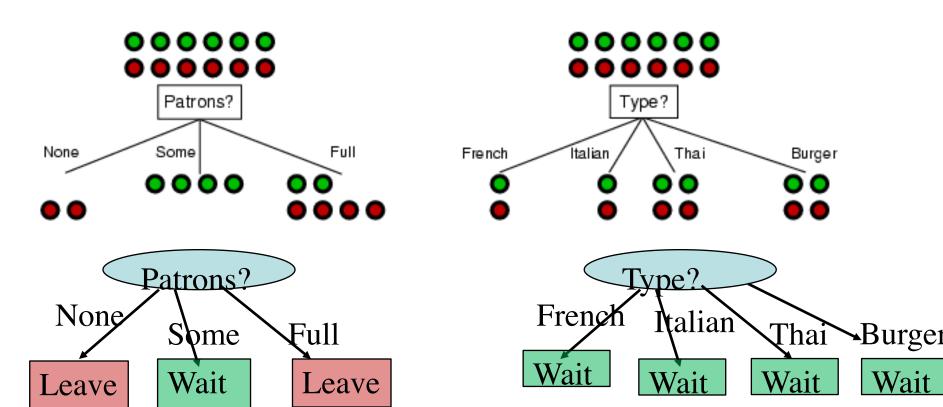
- The goal is to form a tree with the highest classification accuracy
- Test metric: Classification accuracy is the percentage of cases that the derived classifier prdicts correctly.

If there are so many possible trees

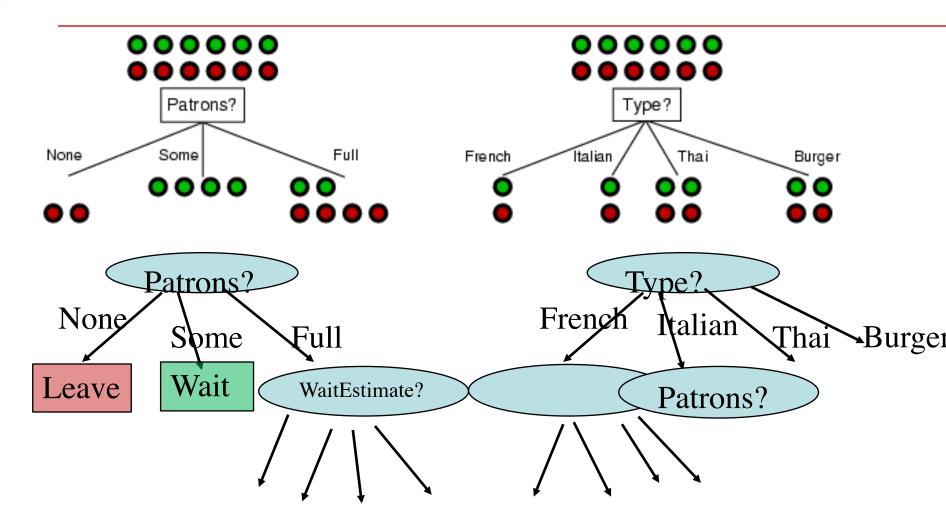
- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose "most significant" attribute as root of (sub)tree.

How to build a decision tree

- Basic idea to form a decision node
 - Pick up an attribute, and use the value range of this attribute as a branching condition
 - Expand each node by adding more children

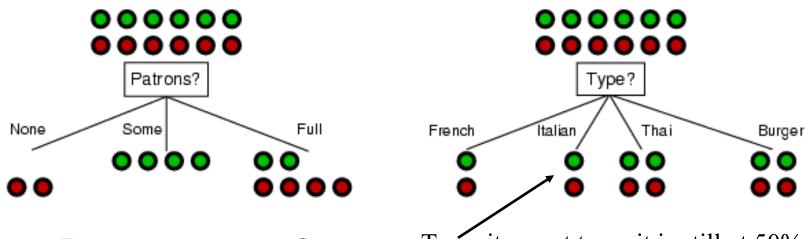


Grow a tree by adding children to some nodes



Choosing an attribute for a smaller tree

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"



• Patrons or type?

To wait or not to wait is still at 50%.

11

- Probability of being positive is p. P=0.5 is bad because it does not give any decidable information.
- Need to find a function f to measure uncertainty such that f(p)=bad when p=0.5 and f(p)=good when p=1 or 0.

Information theory background: Entropy

Entropy measures uncertainty H(p, 1-p)= -p log (p) - (1-p) log (1-p)

Consider tossing a biased coin. If you toss the coin VERY often, the frequency of heads is, say, p, and hence the frequency of tails is 1-p.

Uncertainty (entropy) is zero if p=0 or 1 and maximal if we have p=0.5. 1.0

0.5

Pr(X = 1)

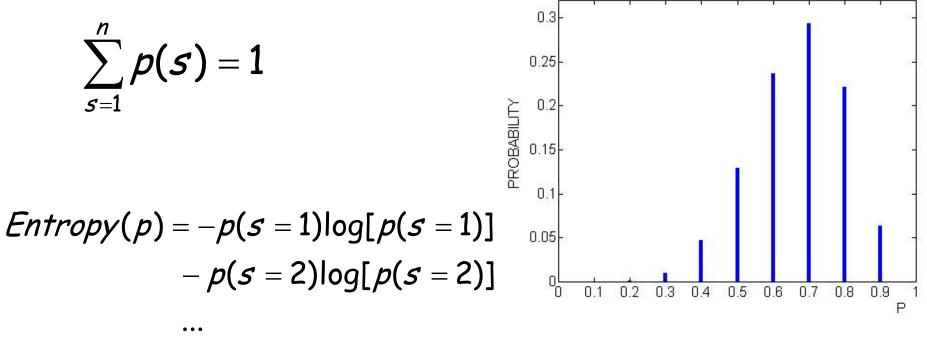
Using information theory for binary decisions

- Imagine we have p examples which are true (positive) and n examples which are false (negative).
- Our best estimate of true or false is given by:
 - Prob(true) = p/(p+n)
 - Prov(false)=n/(p+n)
- Hence the entropy is given by:

Entropy
$$(\frac{p}{p+n},\frac{n}{p+n}) \approx -\frac{p}{p+n}\log\frac{p}{p+n} - \frac{n}{p+n}\log\frac{n}{p+n}$$

Using information theory for more than 2 classes

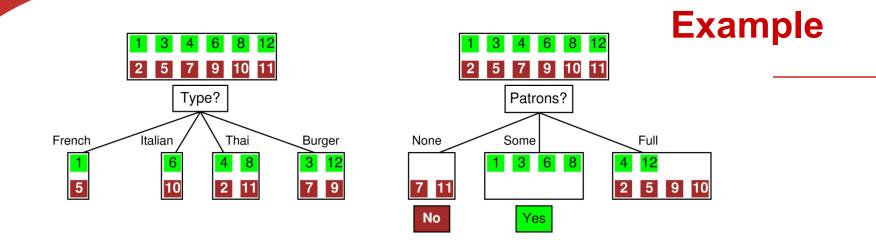
n classes



$$-p(s=n)\log[p(s=n)]$$

ID3 Algorithm: Using Information Theory to Choose an Attribute

- How much information do we gain if we disclose the value of some attribute?
- ID3 algorithm by Ross Quinlan uses information gained measured by maximum entropy reduction:
 - IG(A) = uncertainty before uncertainty after
 - Choose an attribute with the maximum IA

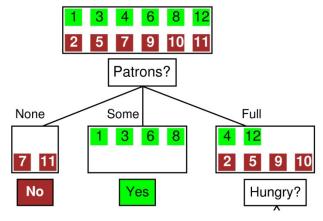


Before: Entropy = $-\frac{1}{2} \log(1/2) - \frac{1}{2} \log(1/2) = \log(2) = 1$ bit: There is "1 bit of information to be discovered". After: for "Type:" If we go into branch "French" we have 1 bit, similarly for the others. French: 1bit Italian: 1 bit Thai: 1 bit On average: 1 bit and gained nothing! Burger: 1bit

After: for "Patrons:" In branch "None" and "Some" entropy = 0!, In "Full" entropy = -1/3log(1/3)-2/3log(2/3)=0.92 So Patrons gains more information!

Information Gain: How to combine branches

•1/6 of the time we enter "None", so we weight"None" with 1/6. Similarly: "Some" has weight: 1/3 and "Full" has weight ½.

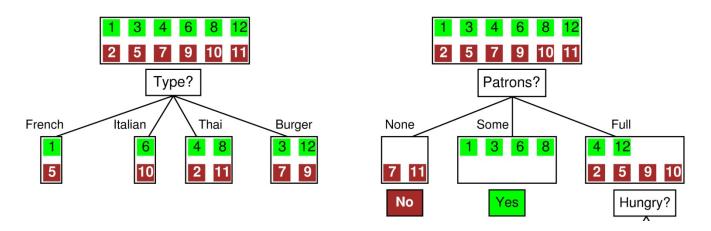


$$Entropy(A) = \sum_{i=1}^{n} \frac{p_i + n_i}{p + n} Entropy(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$

entropy for each branch.

weight for each branch

Choose an attribute: Restaurant Example



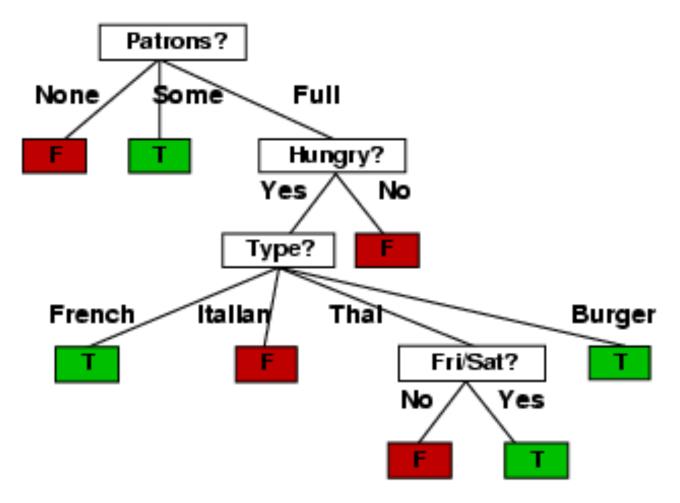
For the training set, p = n = 6, before split, l(6/12, 6/12) = 1 bit

$$IG(Patrons) = 1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I(\frac{2}{6},\frac{4}{6})\right] = .0541 \text{ bits}$$
$$IG(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2},\frac{1}{2}) + \frac{2}{12}I(\frac{1}{2},\frac{1}{2}) + \frac{4}{12}I(\frac{2}{4},\frac{2}{4}) + \frac{4}{12}I(\frac{2}{4},\frac{2}{4})\right] = 0 \text{ bits}$$

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root

Example: Decision tree learned

• Decision tree learned from the 12 examples:



Issues and Discussion

- When there are no attributes left:
 - Stop growing and use majority vote.
- Avoid over-fitting training data
 - Control tree size with pruning
 - Stop growing a tree earlier
 - Grow first, and prune later.
- Deal with continuous-valued attributes
 - Dynamically select thresholds/intervals.
- Handle missing attribute values
 - Make up with common values
- Other tree building methods: Regression with square error loss function

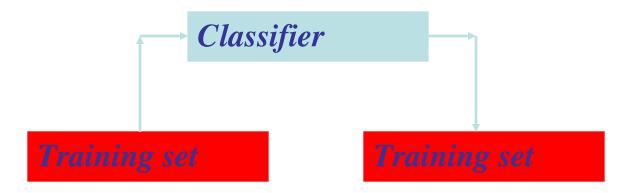
Is it fair to use the training data to report final classification accuracy?

- No fair. A labeled dataset is divided into two sets
 - Training set is used to form a tree that fits data
 - Test set is used to report classification errors with no bias
 - Test metric:
 - Binary classification. Accuracy is the percentage of cases that the derived classifier prdicts correctly.

• How to compute the error with more than 2 classes?

- For example, 3 Classes: class 1, class 2, class 3.
- Sqaured error sum
 - Sum (predicted class value target value)^2
 - Normalized by dividing the number of cases
- Another way: Measure # of cases classified correctly for Class 1, and # of cases classifed correctly for Case 2 etc. Then compute average, or weighted average.

How to Evaluate Accuracy with Training Data



- The accuracy/error estimates on the training data are *not* good indicators of performance on future data
 - Why?
 - Because new data will probably not be **exactly** the same as the training data!
 - The algorithms do well on the training data may overfit

Divide a dataset into 3 sets: Training set, validation set, and test set

- For more advanced setting, a labeled dataset is divided into 3 sets
 - Training set is used to form a tree under some parameters (e.g. when to stop tree growing)
 - Validation set is used to assess the accuracy of the derived classifier, and then readjust training parameters, and reassess again for the best validation performance
 - Test set is used to report accuracy/error of the final classifier with no bias

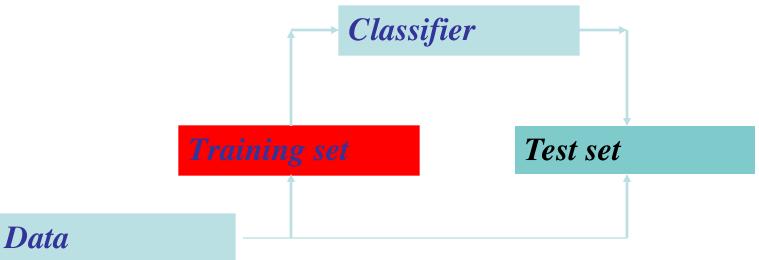
Evaluation with Independent Test Data

 Estimation with independent test data is used when we have plenty of data and there is a natural way to forming training and test data.

• For example: reported experiments for which the classifiers were trained on data from 2017 and tested on data from 2018.

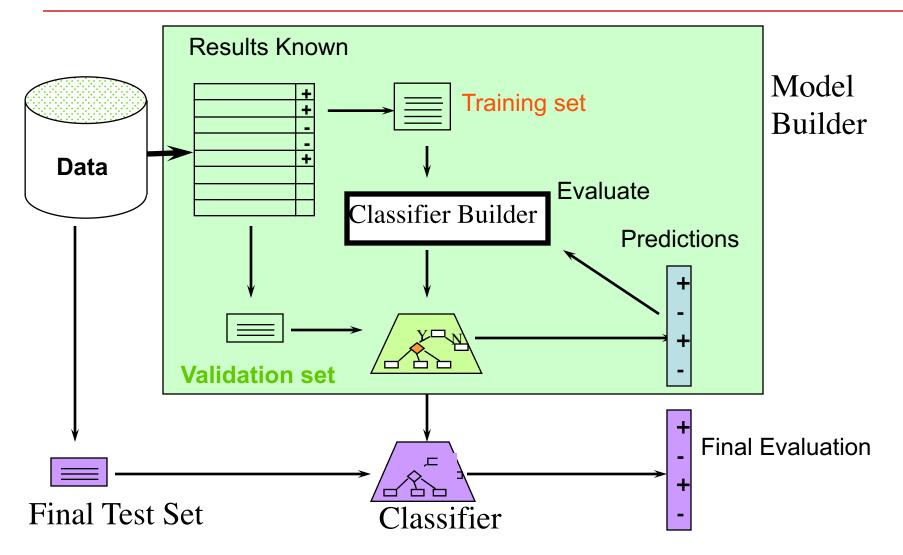
Hold-out Method

• The hold-out method splits the data into training data and test data (usually 2/3 for train, 1/3 for test). Then we build a classifier using the train data and test it using the test data.



 The hold-out method is usually used when we have a sufficient large dataset for training and testing separately

Classification: Train, Validation, Test Split



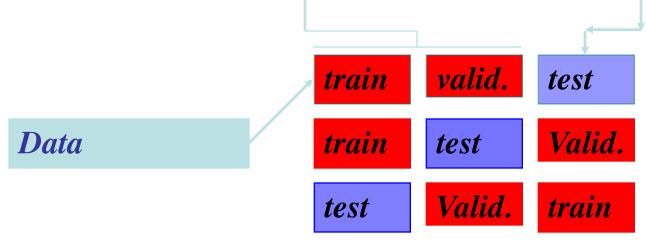
The test data can't be used for parameter tuning!

Making the Most of Available Data

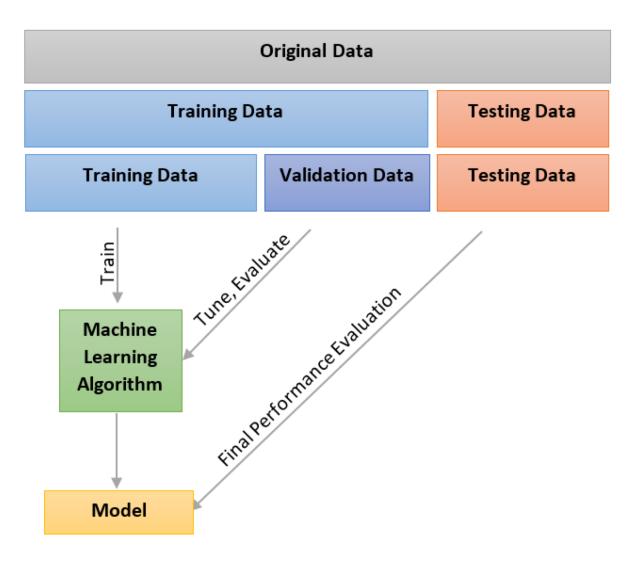
- Difficult to obtain training/testing data
- Importance of more data
 - Generally, the larger the training data the better the classifier (but returns diminish).
 - The larger the test data the more accurate the error estimate.
 - *Can we use all data* to build the final classifier.

k-Fold Cross-Validation

- Select a subset for training and another subset for testing without overlapping.
 - data is split into k subsets of equal size; select one testing
- Repeat above process for k times
 - each subset in turn is used for testing and the remainder for training or training/validation
- The estimates are averaged to <u>Classifier</u> yield an overall estimate.



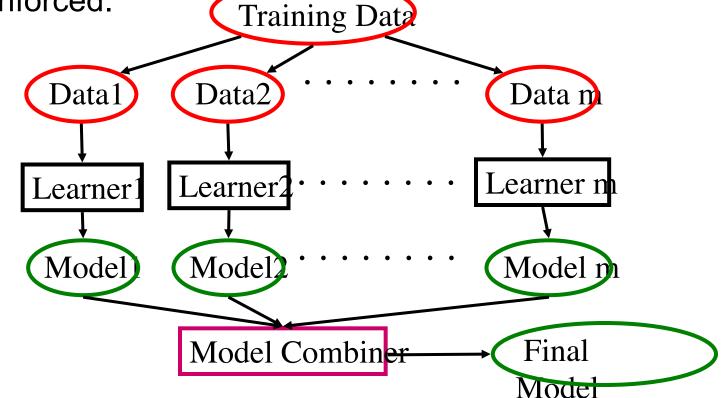
k-Fold Cross-Validation: Train, Validate and Test



Learning Ensembles

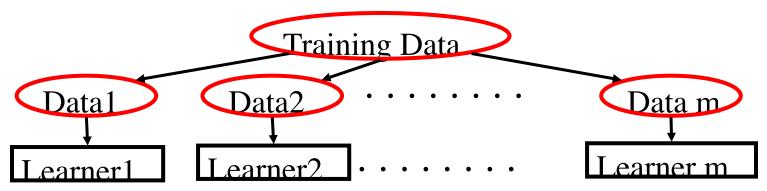
Learning Ensembles

- Learn multiple classifiers separately
- Combine decisions (e.g. using weighted voting)
- When combing multiple decisions, random errors cancel each other out, correct decisions are reinforced.



Homogenous Ensembles

- Use a single, arbitrary learning algorithm but manipulate training data to make it learn multiple models.
 - Data1 ≠ Data2 ≠ ... ≠ Data m
 - Learner1 = Learner2 = ... = Learner m
- Methods for changing training data:
 - Bagging: Resample training data
 - Boosting: Reweight training data
 - DECORATE: Add additional artificial training data



Bagging

- Create ensembles by repeatedly randomly resampling the training data (Brieman, 1996).
- Given a training set of size n, create m sample sets
 - Each bootstrap sample set will on average contain 63.2% of the unique training examples, the rest are replicates.
 - Combine the *m* resulting models using majority vote
- Advantages:
 - Decreases error by decreasing the variance in the results due to *unstable learners*, algorithms (like decision trees) whose output can change dramatically when the training data is slightly changed.
 - Avoid overfiting training data

Random Forests

- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Each tree is grown using a bootstrap sample of training data
 - At each node, best split is chosen from random sample of *m* variables instead of all variables M (features).
 - Final result is aggregated through average or majority voting
- Advantages:
 - Good accuracy without over-fitting
 - Fast algorithm (can be faster than growing/pruning a single tree); easily parallelized
 - Handle high dimensional data without much problem ³⁴

Random Forests

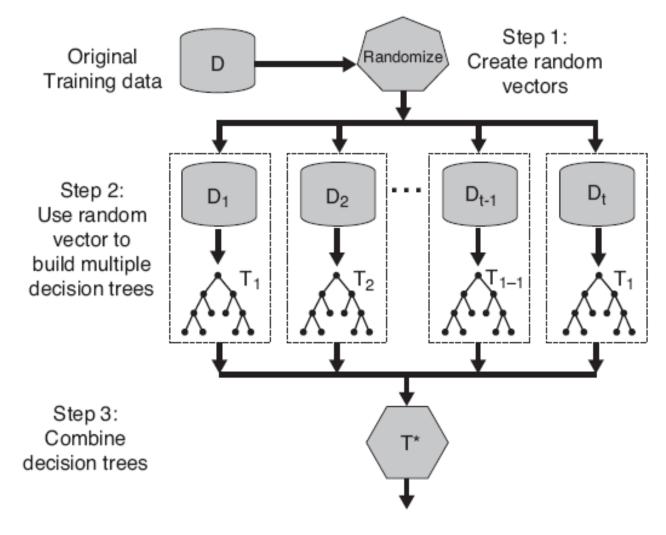


Figure 5.40. Random forests.

Boosting

- Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. *Journal of Computer and System Sciences*, 55(1):119–139, August 1997.
 - Simple with theoretical foundation

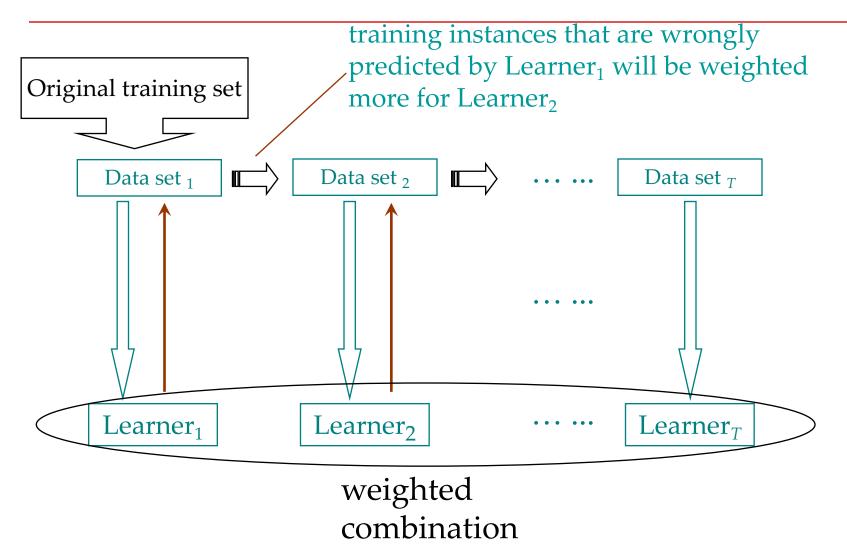
Use training set re-weighting

- Each training sample uses a weight to determine the probability of being selected for a training set.
- AdaBoost is an algorithm for constructing a "strong" classifier as linear combination of a sequence of "simple" "weak" classifier

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

 A weak classifier is built based on the previous weak classifiers

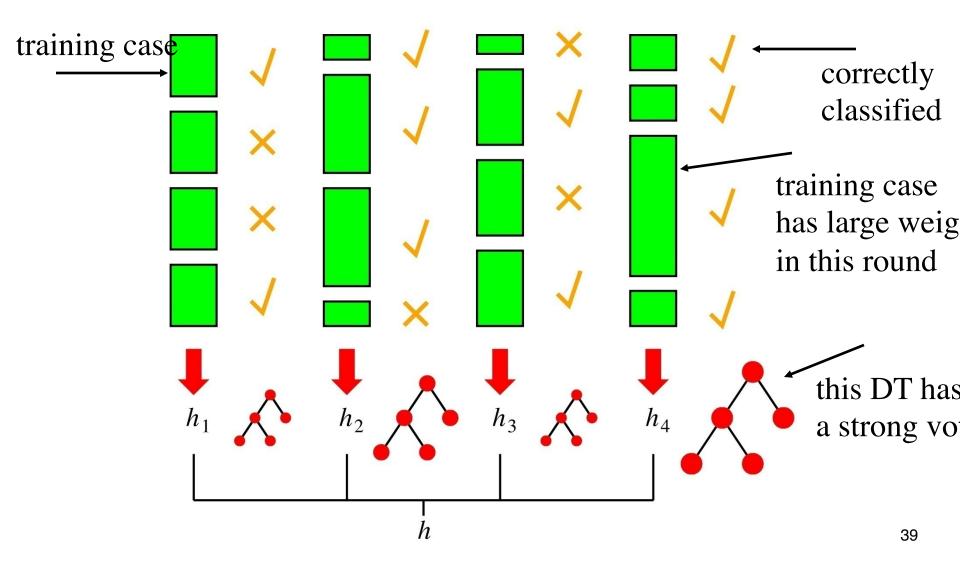
AdaBoost: An Easy Flow



Adaboost Terminology

- $h_t(x)$... "weak" or basis classifier
 - < 50% error over any distribution</p>
- $H(x) = sign(f(x)) \dots$ "strong" or final classifier
 - For binary classification: Positive vs negative
 - thresholded linear combination of weak classifier outputs

And in a Picture



Key idea of AdaBoost

- Given <u>training set</u> *X*={(*x*₁,*y*₁),...,(*x*_m,*y*_m)}
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- Initialize distribution $D_1(i)=1/m$; (
- for *t* = 1,...,*T*:
 - Find a weak classifier ("rule of thumb")

 $h_t: X \to \{-1, +1\}$

with small error ε_t on D_t :

- Update distribution D_t on {1,...,m} so that D_{t+1}(i) becomes bigger for wrongly classified cases and smaller for correctly classified cases
- Output <u>final hypothesis</u>

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

- how about by a factor of $1/\varepsilon_t$ -1
- how about by a factor of $\ln(1/\varepsilon_t-1)$
- how about by a factor of $sqrt(1/\varepsilon_t-1)$)

(weight of training cases)

AdaBoost.M1

- Given <u>training set</u> X={(x₁,y₁),...,(x_m,y_m)}
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- Initialize distribution $D_1(i)=1/m$; (weight of training cases)
- for *t* = 1,...,*T*:
 - Find a <u>weak classifier</u> ("rule of thumb")

 $h_t: X \rightarrow \{-1,+1\}$

with small error \mathcal{E}_t on D_t :

• Update distribution D_t on $\{1, ..., m\}$. $\alpha_t = 0.5 \ln(1/\varepsilon_t-1)$

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution). Namely sum of $D_{t+1}=1$

Output <u>final hypothesis</u>

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$

 $\begin{cases} y_i * h_t(x_i) > 0, \text{ if correct} \\ y_i * h_t(x_i) < 0, \text{ if wrong} \end{cases}$

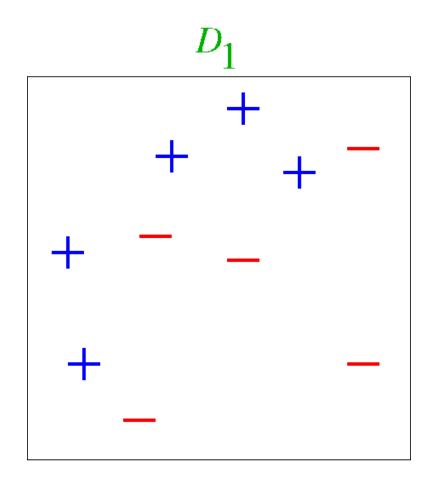
Reweighting

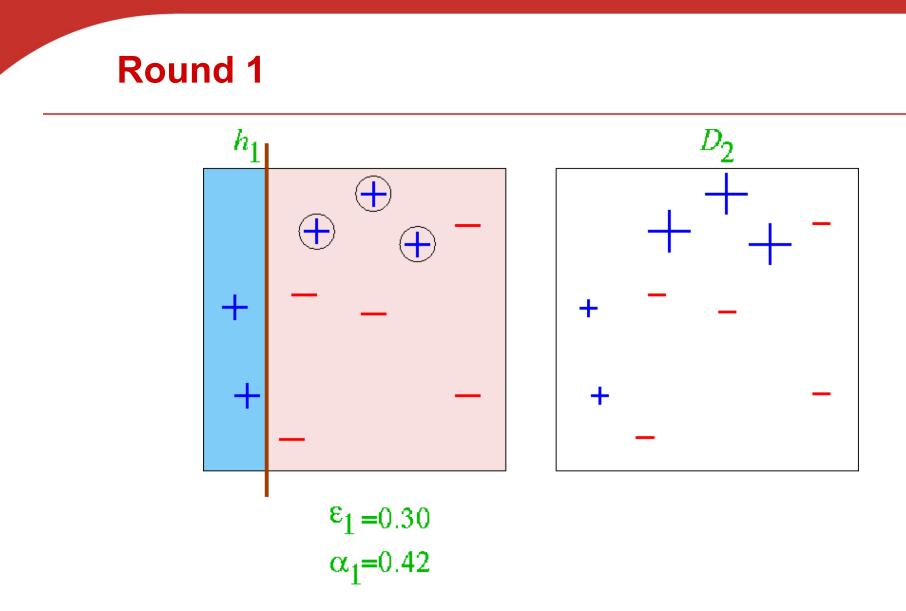
Effect on the training set

Reweighting formula:

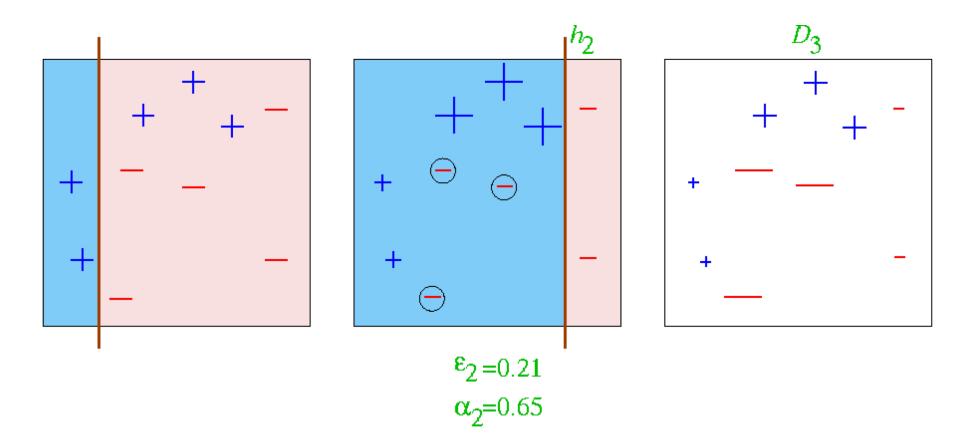
⇒ Increase (decrease) weight of wrongly (correctly) classified examples

 $Exp(0.5ln(1/\varepsilon_t-1)) = sqrt(1/\varepsilon_t-1)$ $Exp(-0.5ln(1/\varepsilon_t-1)) = 1/sqrt(1/\varepsilon_t-1)$

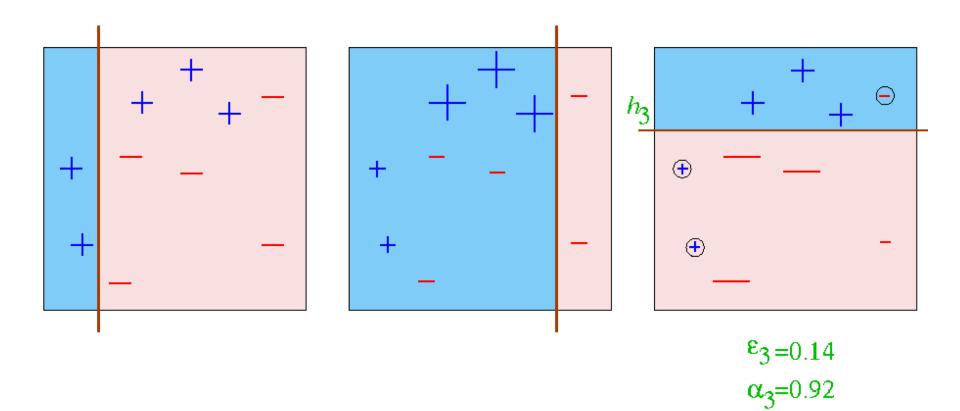




Error rate is 30% $\alpha_1 = 0.5 \ln(1/\epsilon_t - 1) = 0.4236$ Weak classifier: if $h_1 < 0.2 \rightarrow 1$ else -1



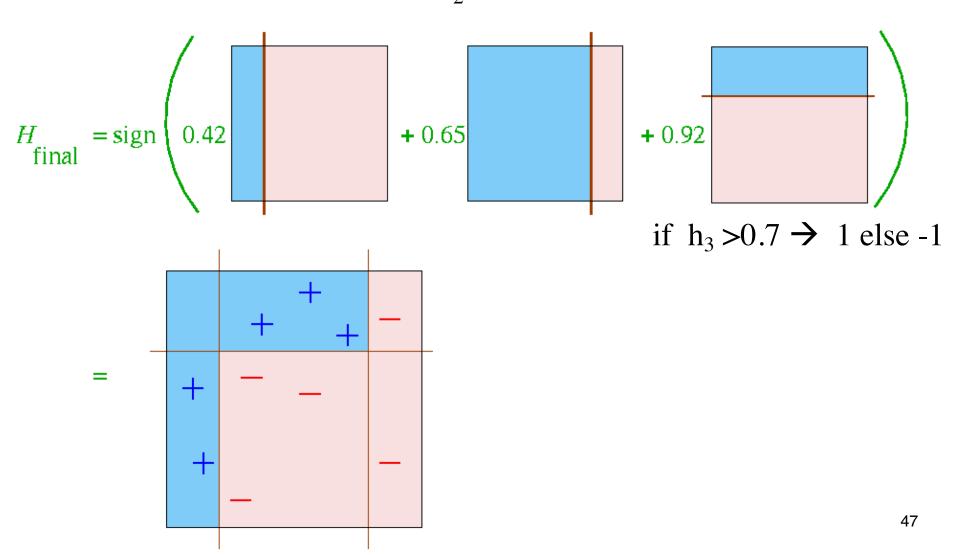
Weak classifier: if $h_2 < 0.8 \rightarrow 1$ else -1



Weak classifier: if $h_3 > 0.7 \rightarrow 1$ else -1

Final Combination

if $h_1 < 0.2 \rightarrow 1$ else -1 if $h_2 < 0.8 \rightarrow 1$ else -1



Pros and Cons of AdaBoost and Extension

Advantages

- Very simple to implement
- Does feature selection resulting in relatively simple classifier
- Fairly good generalization

Disadvantages

- Suboptimal solution
- Sensitive to noisy data and outliers
- RankBoost extends AdaBoost for pairwise correctness of document ranking
 - +1: Correctly ordered for a pair of documents
 - -1: Incorrectly ordered

Rank Algorithms and Opensource Library

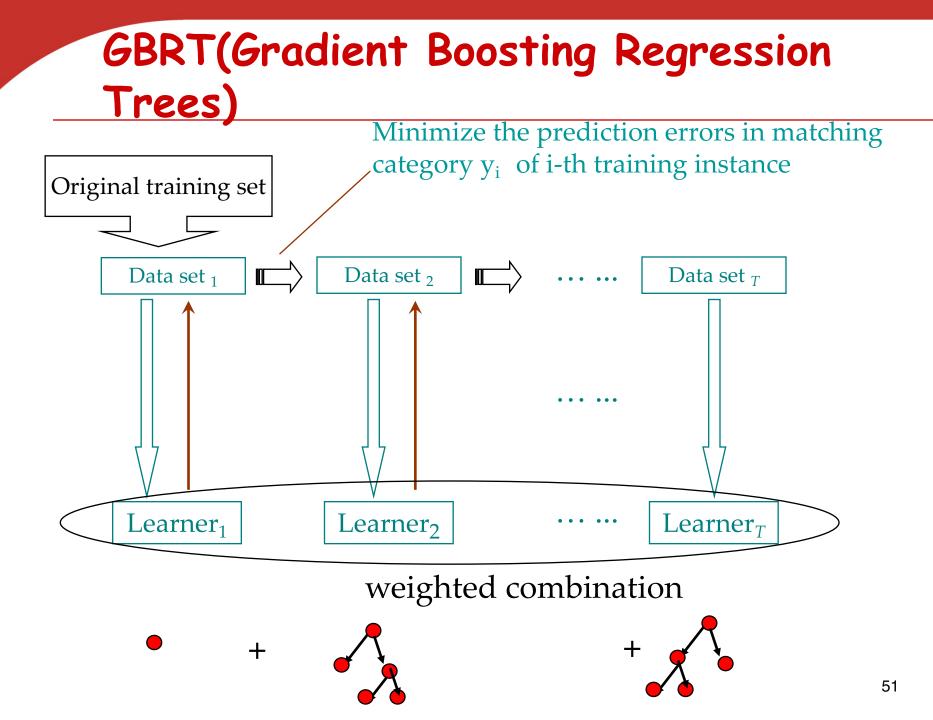
- Linear
 - RankSVM
 - SVM based weight computation
 - As an extension of AdaBoost/AdaRank, AdaRank is optimized for ranking based on NDCG cost metrics

Nonlinear Tree Ensembles

- GBRT (Gradient Boosting Regression Trees)
- LambdaMART
 - Additive tree boosting
 - Optimzied based on NDCG
- RandomForest
 - Bagging on top of GBRT or LambdaMART
- Opensource Rank Library
 - RankLib

Some References on Ranking & Boosting

- AdaRank,
 - Jun Xu and Hang Li. 2007. AdaRank: a boosting algorithm for information retrieval. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR '07)
 - Generalization from Adaboost for NDCG optimization
- LambdaMart:
 - C.J.C. Burges, K.M. Svore, P.N. Bennett, A. Pastusiak and Q. Wu, *Learning to Rank Using an Ensemble of Lambda-Gradient Models*. Journal of Machine Learning Research: Workshop and Conference Proceedings, vol. 14, pp. 25-35, 2011
- RandomForest
 - M. Ibrahim and M. Carman. Comparing pointwise and listwise objective functions for random-forest-based learning-to-rank. ACM Transactions on Information Systems (TOIS), 34(4):20, 2016.
- <u>GBRT:</u>
 - A. Mohan, Z. Chen, K. Weinberger, Wearch Ranking with Initialized Gradient Boosted Regression Trees Journal of MLR, 50 2011



GBRT example with 4 training instances

