-

Decision Trees and Learning
Ensembles for
Classification/Ranking

293S T. Yang. UCSB, 2020

' Outlines

« Example of classification algorithms
= Decision trees

« Training data and cross-validation

 Learning Assembles

« Random Forest

 Adaboost

 Boosting regression trees

2

Classification with Decision
Trees

Decision Trees

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row — path to leaf:

A B AxorB
F F F
F T T
T F T
T T F

Trivially, there is a consistent decision tree for any training set with
one path to leaf for each example (unless f nondeterministic in x)

but it probably won't generalize to new examples

Prefer to find more compact decision trees: we don’t want to
memorize the data, we want to find structure in the data!

Decision Trees: Application Example

Problem: decide whether to wait for a table at a
restaurant, based on the following attributes, or
called features

Alternative: is there an alternative restaurant nearby?
Bar: is there a comfortable bar area to wait in?
Fri/Sat: is today Friday or Saturday?

Hungry: are we hungry?

Patrons: number of people in the restaurant (None, Some,
Full)

Price: price range (3, $%, $$9%)

Raining: is it raining outside?

Reservation: have we made a reservation?

. Type: kind of restaurant (French, Italian, Thai, Burger)

0. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60,
>60)

a bk b=

—“@.00.\'.07

Training data: Restaurant waiting

Examples described by attribute values or feature value (Boolean,

discrete, continuous)

Decision: | will/won't wait for a table:

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | Wait
X, T| F F T |[Some| $$% F T |French| 0-10 T
X T| F F T | Full $ F F | Thai |30-60 F
X3 F| T F F |[Some| $ F F | Burger| 0-10 T
Xy T F | T T | Full $ F F | Thai |10-30| T
X; T F | T F Full | $$% F T |French| >60 F
X F | T F T |[Some| $$ T T | Italian | 0-10 T
X7 F| T | F F |None| $ T F | Burger| 0-10 F
Xg F| F F T |[Some| $% T T | Thai | 0-10 T
Xy F{ T | T F Full $ T F | Burger| >60 F
X0 T| T | T T | Full | $%% F T | Italian | 10-30 F
X1 F | F F F | None| $ F F | Thai | 0-10 F
X9 T T | T T | Full $ F F | Burger|30-60 T

Classification of examples is positive (T, wait) or negative (F, not

wait)

Each training instance is modeled as a feature vector

A decision tree to decide whether to wait

« imagine someone talking a sequence of decisions.

Patrons?

No Full
aitEstimate?

ne m
W
>60 30 10

\

Alternate? Hungry?

Ws No Yes
Reservation? FriSat? Alternate?

No Yes No Yes No Yes
Bar? Raining?
No Yes No Yes

Decision tree learning

* The goal is to form a tree with the highest classification accuracy

* Test metric: Classification accuracy 1s the percentage of cases
that the derived classifier prdicts correctly.

If there are so many possible trees

« Aim: find a small tree consistent with the training
examples

 |dea: (recursively) choose "most significant" attribute as
root of (sub)tree.

' How to build a decision tree

Basic idea to form a decision node

= Pick up an attribute, and use the value range of this
attribute as a branching condition

= Expand each node by adding more children

000000 000000
000000 000000
Patrons? Type?
NoM\ull Fre ncwmrger
0000 00 o © 00 00
o0 0000 o ® 00 o0

Frep allan™\(Thaj Burge:

®
Wait | | Wait | |Wait | | Wait

Grow a tree by adding children to some nodes

000000 000000
000000 000000
Patrons? Type?
NoW‘\ull Fre ncﬂmjmer
0000 00 (&) © 00 o0
o0 0000 o ® 00 o0

Non Shme

Leave Wait

10

' Choosing an attribute for a smaller tree

* ldea: a good attribute splits the examples into
subsets that are (ideally) "all positive" or "all

negative"
000000 000000
000000 000000
Patrons? Type?

Nor%l\ull ancwmrger
000 00 o O 0O Q0
o0 0000 (o} ® 00 0
e Patrons or type? To Wwait or not to wait is still at 50%.

* Probability of being positive is p.

P=0.5 1s bad because it does not give any decidable information.

* Need to find a function f to measure uncertainty such that
f(p)= bad when p=0.5 and {(p)=good when p=1 or 0.

11

Information theory background: Entropy

- Entropy measures uncertainty
H(p, 1-p)=-p log (p) - (1-p) log (1-p)

1.0 +

Consider tossing a biased coin.
If you toss the coin VERY often,

the frequency of heads is, say, p, i
and hence the frequency of tails 1s i
1-p.
0 | 4 >
Uncertainty (entropy) is zero if p=0 or 1 0 Pr (‘\”:) 1.0

and maximal if we have p=0.5.

12

' Using information theory for binary

— decisions

* Imagine we have p examples which are true
(positive) and n examples which are false
(negative).

« Our best estimate of true or false is given
by:

= Prob(true) = p/(p+n)
= Prov(false)=n/(p+n)
* Hence the entropy is given by:

Entropy (P 7)z—Llog p__ 7 log 7

p+n' p+n p+n " p+n p+n " p+n

13

' Using information theory for more than 2

— classes
 nclasses

0.3F

Zp(s‘) — 1 0.25¢
s=1

PROBABILITY
o
2 o
()] b

(]
=

Eﬂf/‘OP)/(p) = —P(S' = 1)|09[P(5 = 1)] 0.05} 4
—p(.S' :Z)IOg[p(S :2)] 97T 02 03 04 05 08 07 08 08

P

- p(s =n)log[p(s = n)]

14

' ID3 Algorithm: Using Information Theory
— to Choose an Attribute

* How much information do we gain if we
disclose the value of some attribute?

 |ID3 algorithm by Ross Quinlan uses
information gained measured by maximum
entropy reduction:
» |G(A) = uncertainty before — uncertainty after
» Choose an attribute with the maximum IA

15

French

Before: Entropy = - 72 log(1/2) — 4 log(1/2)=log(2) = 1 bit:
There 1s “1 bit of information to be discovered”.
After: for “Type:” If we go into branch “French” we have 1 bit, similarly for the others.
French: 1bit
Italian: 1 bit
Thai: 1 bit On average: 1 bit and gained nothing!

Burger: 1bit

After: for “Patrons:” In branch “None” and “Some” entropy = 0!,
In “Full” entropy = -1/3log(1/3)-2/310g(2/3)=0.92

So Patrons gains more information! .

Information Gain: How to combine
— branches

*1/6 of the time we enter “None”, so we weight“None” with 1/6.
Similarly: “Some” has weight: 1/3 and “Full” has weight Y.

EEEEEN
BEHEHE DI

Patrons?

None Some Full

s il EE e M

@ B [

N

— S p/'+”/' p’ /7,
Entropy(A) = ; i Enfropy(n. n'p+n

/ \ entropy for each branch.

weight for each branch .

Choose an attribute: Restaurant Example

-

Patrons?

None Some Full

EEEE

@ B [

N

For the training set, »= »= 6, before split, 1(6/12, 6/12) = 1 bit

2 4 6
IG(Patrons) =1-[—1(0,1)+—1(1,0)+—
() Hz()12()12

2,002, 11 4,22
12 22 12 22 12 4 4

2 4
1(Z,5)]=.0541 bits
(66H

4 22
+—1(=,5)]=0bits
)+ 5 1))

1G(Type) =1—| 177

)+

Patrons has the highest IG of all attributes and so is chosen by
the DTL algorithm as the root

18

Example: Decision tree learned

* Decision tree learned from the 12 examples:

Patrons?

None m Full

French Burger

19

' Issues and Discussion

 When there are no attributes left:
= Stop growing and use majority vote.
« Avoid over-fitting training data
= Control tree size with pruning
= Stop growing a tree earlier
= Grow first, and prune later.
* Deal with continuous-valued attributes
= Dynamically select thresholds/intervals.
 Handle missing attribute values
= Make up with common values

« Other tree building methods: Regression with
square error loss function

20

Is it fair to use the training data to report final
classification accuracy?

* No fair. A labeled dataset is divided into two sets
= Training set is used to form a tree that fits data
= Test set is used to report classification errors with no bias

= Test metric:

— Binary classification. Accuracy is the percentage of cases that
the derived classifier prdicts correctly.

 How to compute the error with more than 2 classes?
= For example, 3 Classes: class 1, class 2, class 3.

= Sqaured error sum
— Sum (predicted class value — target value)*2
— Normalized by dividing the number of cases

= Another way: Measure # of cases classified correctly for

Class 1, and # of cases classifed correctly for Case 2
etc. Then compute average, or weighted average. 21

' How to Evaluate Accuracy with Training Data

Classifier

 The accuracy/error estimates on the training

data are not good indicators of performance
on future data

m Why?
Because new data will probably not be exactly the
same as the training data!

* The algorithms do well on the training data may

overfit

’ Divide a dataset into 3 sets: Training set,
validation set, and test set

 For more advanced setting, a labeled dataset is divided
into 3 sets

= Training set is used to form a tree under some
parameters (e.g. when to stop tree growing)

= Validation set is used to assess the accuracy of the
derived classifier, and then readjust training parameters,
and reassess again for the best validation performance

= Test set is used to report accuracy/error of the final
classifier with no bias

23

' Evaluation with Independent Test Data

« Estimation with independent test data is used
when we have plenty of data and there is a
natural way to forming training and test data.

Classifier

* For example: reported experiments for which the

classifiers were trained on data from 2017 and
tested on data from 2018.

' Hold-out Method

 The hold-out method splits the data into training data
and test data (usually 2/3 for train, 1/3 for test). Then we
buildda classifier using the train data and test it using the
test data.

Classifier

Data

 The hold-out method is usually used when we have a
sufficient large dataset for training and testing
separately

Classification: Train, Validation, Test Split

Results Known

+
+

Training set

Data =

Evaluate
~ lassifier Builder

Predictions

Model
Builder

Y

Final Test Set

+

— > v H
Validation set =

\ +

;\ -

g 5\ +

Classifier -

Final Evaluation

The test data can’t be used for parameter tuning!

' Making the Most of Available Data

« Difficult to obtain training/testing data
 Importance of more data

= Generally, the larger the training data the better the
classifier (but returns diminish).

= The larger the test data the more accurate the error
estimate.

= (Can we use all data to build the final classifier.

' k-Fold Cross-Validation

« Select a subset for training and another
subset for testing without overlapping.

= data is split into k subsets of equal size; select one
testing

 Repeat above process for k times

= each subset in turn is used for testing and the
remainder for training or training/validation

* The estimates are averaged t2 Classifier
yield an overall estimate.

Data

k-Fold Cross-Validation: Train, Validate
— and Test

Original Data ‘

Training Data Testing Data
Training Data Validation Data Testing Data
J /
— N7 '
Q:(// . QQ /
< >
Machine / A’S\Q /
Learning (gf‘f_ /
. O 7
Algorithm (@?/
&
QQ/
O
l <&
/

Model ¥

42

Learning Ensembles

30

Learning Ensembles

Learn multiple classifiers separately
Combine decisions (e.g. using weighted voting)

When combing multiple decisions, random errors
cancel each other out, correct decisions are

reinforced. Training Dat;

(Final
odct >

' Homogenous Ensembles

* Use a single, arbitrary learning algorithm
but manipulate training data to make it
learn multiple models.

= Datal #Data2 #... # Datam

= Learner1 = Learner2 = ... = Learner m

 Methods for changing training data:
= Bagging: Resample training data
= Boosting: Reweight training data
= DECORATE: Add additional artificial training data

' Bagging

Create ensembles by repeatedly randomly
resampling the training data (Brieman, 1990).

Given a training set of size n, create m sample
sets

= Each bootstrap sample set will on average contain
63.2% of the unique training examples, the rest are
replicates.

= Combine the m resulting models using majority vote

Advantages:

= Decreases error by decreasing the variance in the
results due to unstable learners, algorithms (like
decision trees) whose output can change
dramatically when the training data is slightly
changed.

= Avoid overfiting training data

33

' Random Forests

* Introduce two sources of randomness: “Bagging”
and “Random input vectors”

= Each tree is grown using a bootstrap sample of
training data

= At each node, best split is chosen from random
sample of mvariables instead of all variables M
(features).

* Final result is aggregated through average or
majority voting
« Advantages:
= Good accuracy without over-fitting

= Fast algorithm (can be faster than growing/pruning a
single tree); easily parallelized

= Handle high dimensional data without much problem

34

Random Forests

Step 1:
Original Randomize} Create random
Training data vectors
Step 2: n a o a n
Use random

amiipe | V1Y Voo

decision trees M‘ ﬁ /6>T>1\4 M

Step 3:
Combine
decision trees

Figure 5.40. Random forests. 35

Boosting

Yoav Freund and Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an application to boosting.
Journal of Computer and System Sciences, 55(1):119-139,
August 1997.

= Simple with theoretical foundation

Use training set re-weighting

= Each training sample uses a weight to determine the
probability of being selected for a training set.

AdaBoost is an algorithm for constructing a “strong”
classifier as linear combination of a sequence of
“simple” “weak” classifier
T
f(x)= Z arhy(x)

t=1
A weak classifier is built based on the previous weak
classifiers %

AdaBoost: An Easy Flow

training instances that are wrongly
predicted by Learner; will be weighted

Original training set / more for Learner,
Data set { |]:> Data set , |]:> cee e Data set 1

A A

A -

Learner; Learner, *++ >+ | Learnert >

weighted
combination

37

' Adaboost Terminology

« hx)... “weak” or basis classifier
= < 50% error over any distribution

o H(r)=sign(f(r)) ... “strong” or final classifier
= For binary classification: Positive vs negative

= thresholded linear combination of weak classifier
outputs

38

' And in a Picture

correctly

J <
\/ classified

/ . .
\/ traming case

has large weig
in this round

v
_—

this DT has
a strong vo

Key idea of AdaBoost

Given training set X={(x1,¥1)s--,(Xm:Ym)}

yie{-1,+1} correct label of instance x;e X
Initialize =1/m; (weight of training cases)
fort=1,...,T:
* Find a weak classifier (“rule of thumb”)
hy: X = {-1,+1}
with small error gon Dy

» Update distribution D; on {1,...,m} so that D, +(i) becomes bigger for
wrongly classified cases and smaller for correctly classified cases

* how about by a factor of 1/g-1
Output final hypothesis

* how about by a factor of In(1/¢-1)
* how about by a factor of sqrt(1/&-1))

H(x)=sign(y._ ah(x))

40

AdaBoost.M1

Given training set X={(x1,¥1),-s(X;s¥m)}
yie{-1,+1} correct label of instance x;e X

Initialize =1/m; (weight of training cases)
fort=1,..,T:

* Find a weak classifier (“rule of thumb”)
hy: X = {-1,+1}
with small error g on Dy

v; * h(x;) >0, 1f correct
v; * h(x;) <0, 1f wrong

~

S

« Update distribution D;on {1,...,m}. a; =0.5 In(1/&+-1)

Dy (i) exp(—apy;ihe(x;))
Zy

Deta(i) =

where Z; 1s a normalization factor (chosen so that IJ;,; will be a distribution).

Namely sum of D, =1
Output final hypothesis

H(x) = Sign(z; a,h,(x)) 41

' Reweighting

Effect on the training set

Reweighting formula:

Dy(i)exp(—onyih(x:))

Zy
y *h(x) =1
<1, yi= Myl

e.rp(—at!/-iht('l’i)){ >1, y # h't(fl""i)% y *h(x)=-1]

D7) =

= Increase (decrease) weight of wrongly
(correctly) classified examples

Exp(0.5In(1/¢-1)) = sqrt(1 /g-1) i
Exp(-0.5In(1/e-1)) = 1/sqrt(1 /&.-1)

' Toy Example

43

' Round 1

hy D,
+ +
® @~ +
+| | — + -
+ — + —
€1 =0.30
at,=0.42

Error rate is 30% a; =0.5 In(1/&-1)=0.4236
Weak classifier: ifh; <0.2 2> 1 else -1 44

' Round 2

£=0.21
0ty=0.65

Weak classifier: if h, <0.8 2 1 else -1 45

’ Round 3

€3=0.14
03=0.92

Weak classifier: if h; >0.7 2 1 else -1 46

' Final Combination

ifh; <02 > 1 else-1 if h, <0.8 > 1else-1
H_ =sign | 0.42 + 0.65 + 0.92
final

if h;>0.7 2> 1else-1

47

' Pros and Cons of AdaBoost and Extension

Advantages
= Very simple to implement

= Does feature selection resulting in relatively simple
classifier

= Fairly good generalization
Disadvantages

= Suboptimal solution

= Sensitive to noisy data and outliers

 RankBoost extends AdaBoost for pairwise correctness
of document ranking

= +1: Correctly ordered for a pair of documents
= -1: Incorrectly ordered

48

' Rank Algorithms and Opensource Library

 Linear
= RankSVM
— SVM based weight computation

= As an extension of AdaBoost/AdaRank, AdaRank is
optimized for ranking based on NDCG cost metrics

 Nonlinear Tree Ensembles
= GBRT (Gradient Boosting Regression Trees)

= LambdaMART

— Additive tree boosting
— Optimzied based on NDCG

= RandomForest
— Bagging on top of GBRT or LambdaMART

 Opensource Rank Library
= RankLib "

Some References on Ranking & Boosting

AdaRank,

« Jun Xu and Hang Li. 2007. AdaRank: a boosting algorithm for
information retrieval. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval (SIGIR ‘07)

* Generalization from Adaboost for NDCG optimization
LambdaMart:

= C.J.C. Burges, K.M. Svore, P.N. Bennett, A. Pastusiak and Q.
Wu, Learning to Rank Using an Ensemble of Lambda-Gradient
Models. Journal of Machine Learning Research: Workshop and
Conference Proceedings, vol. 14, pp. 25-35, 2011

RandomForest

— M. Ibrahim and M. Carman. Comparing pointwise and listwise
objective functions for random-forest-based learning-to-rank.
ACM Transactions on Information Systems (TOIS), 34(4):20,
2016.
GBRT:

= A.Mohan, Z. Chen, K. Weinberger, Wearch Ranking with

Initialized Gradient Boosted Regression Trees Journal of MLR, 5°
2011

http://www.jmlr.org/proceedings/papers/v14/mohan11a/mohan11a.pdf
http://www.jmlr.org/proceedings/papers/v14/mohan11a/mohan11a.pdf

GBRT(Gradient Boosting Regression
Trees)

Original training set /
Data set { |]:> Data set , |]:> e eee Data set 1

A A

Minimize the prediction errors in matching
category y; of i-th training instance

A -

Learner; Learner, *++ >+ | Learnert >

weighted combination

o + /}ﬂ. + /{‘.)

GBRT example with 4 training instances

Minimize prediction errors to match
1,2,1,2

Original training set

J Match -0.5, 05, -0.5, 0.5: Yi'Tl

called psudo-residuals

(xy, 1) i) (x1,- 0.5)
(X2/ 2) (Xz, 05)
(X3/ 1) (X3/ '05)
(X4/ 2) (X4/ 05)
i A ”
Learner, Learner, Learnerr >

® +
Tl 1.5 i TZ/.E‘ .{. 52

