2

System Support and Design Issues in
Query Processing

*Tao Yang 293S, 2020

' Content

« System support and design tradeoffs in online
systems and query processing

= Objective: fast response, high throughput,
and high availability

« Experience with Ask.com online architecture

’ Online Data for Search: Inverted Index
and Auxiliary Structures

* Inverted lists usually stored together in a single file for
efficiency

= Term statistics stored at start of inverted lists
 Vocabulary or lexicon

= Contains a lookup table from index terms to the byte
offset of the inverted list in the inverted file

= Either hash table in memory, key-value stores, or B-tree
for larger vocabularies

* Document-oriented information

= E.g. Document quality score, freshness indicator, page
text content

= |n-memory hashtable, key-value stores
 Other information 3
= Collection statistics. Web host information

Design Consideration of Query

Processing for Large Datasets /

= Go through all postings of ‘.@ .
queries words Ranking
= Conduct matching & ranking

 Estimate 1/0 cost

 Memory cache for storing frequently accessed
items

= Cache size requirement: Is there enough memory??
= Does program exhibit cache locality?

* Distribute data to multiple machines for parallel
processing

= Distribute disk data to p machines evenly
= Distributed memory data to p machines evenly

' System Challenges for Online Services

« Challenges/requirements for online services:

Each system needs tens or hundreds of subservices,
running on hundreds or thousands of machines if not more.

Low response time, high throughputs

Data intensive, need to consider impact of cache, memory,
disk I/O

Huge amount of data, requiring

— Large-scale clusters.

— Incremental scalability.

[x24 availability with fault tolerance:

— Operation errors, Software bugs, Hardware failures
Resource management, QoS for load spikes.

« Careful design planning in architecture and system support
choices for reliable/scalable online services 1119220 5

’ Response Time vs Concurrency for
Search Query Processing

« Backend response time requirement: ~200 ms per request

« Throughput requirement. number of requests second per
machine

= 100 Requests/second per machines
= - 10 machines 1000 requests 86 million requests/day
* Rules of thumb

= Writes are expensive. Reads are cheap (Search engine
does read most of time)

= Access HDD is expensive and a few are allowed per
query. Access SSD is better. More are allowed per query

= Minimize disk I/O by combing small I/O accesses
 Distributed processing/parallel processing is feasible
= But watch cost of network communication/latency

Jeff Dean >
r r
umbers Every M
- Control 1 < chEin§ I ' | Remot
E g ’ Second | |Main Secondary dee:,lilcle
Should Know Datavathl [E = evel ||Memory| Btorage
i WP E A ache | [DRAM)| |Disk)
(Approxmately] 1T 21| [sram)
CPU « L1 cache reference 0.5 ns ms=10"s
« L2 cache reference 7 ns ns=10"s
Memory « Memory Main memory reference 100 ns ns=107s
 Read 1 MB sequentially from memory 0.25ms
Disk
« HDD Disk seek 8ms while SSD takes 0.1ms for reading 4KB
 Read 1 MB sequentially from disk 10ms-1ms
Network

Round trip within same datacenter 0.5ms

= The part of transferring 1K bytes over 1 Gbps network 10us
Read 1 MB sequentially from network 10ms
Send packet CA->Europe->CA 150ms

’ Modeling of Response Time for Query
Processing Query—(—C >—

Components of time cost m

, &
CPU Memory Disk
Query response time = /
+#instruction*CPUCost
+#MemoryAccess*MemoryCost

+#NetworkOPs * NetworkCost v

/+ #10-OPs*|OCost

NetworkCost = Startup latency + DataSize/TransferRate

|OCost = Startup latency+ DataSize/TransferRate °

What do we learn from these numbers?

Bad for each query

1 cache reference 0.5 ns Poor L1/L.2 locality
L2 cache reference 7 ns for compute-intensive core

Memory Main memory reference 100 ns
Read 1 MB sequentially from memory 0.25ms Scan 1000MB list

HDD Disk seek 8ms while SSD takes 0.1ms for

reading 4KB Access disk 10,000 times
Read 1 MB sequentially from disk 10ms-1ms

Round trip within same datacenter 0.5ms

= Transmitting 1K bytes over 1 Gbps network 10us Remote hash
Read 1 MB sequentially from network 10ms table lookup
Send packet CA->Europe->CA 150ms for 5,000 times

Parallelism Management in a Cluster of

—Machines for Search

- Basic steps for parallel processing
= All queries sent to a coordination machine

= The coordinator then sends messages to many /index
servers

= Each index server does some portion of the query
processing

= The coordinator organizes the results and returns
them to the user

« Two main approaches coordinator]
= Document distribution LLL[¢/ L

)
Index server] o

— by far the most popular
= Term distribution

' Document-based distribution

e Document distribution

= Each index server acts as a search engine for a small
fraction of the total collection

= A coordinator sends a copy of the query to each of
the index servers, each of which returns the top-k
results

= Results are merged into a single ranked list by the
coordinator

Query }

¢ L Offline 4 - , Online
Index server]

Index server] 1

' Term-based distribution

« Single index is built for the entire cluster

« Each posting list of a term is assigned to one index

server
 During query processing,

= One of the index servers is chosen to process the query
= Usually the one holding the longest inverted list
= Other index servers send information to that server

= Final results sent to director

j Query]

Y Offline

/ A

2) . Online

Index server]

Index server]

12

’ Layout of inverted index impacted by online
algorithms

« Early termination of faster query processing
= |gnore lower priority documents at end of lists
= Fast (but unsafe) optimization
* Ordering of inverted posting lists
= |[mpact sorted index: high score documents first
= Document sorted index: increasing order of doc IDs
= How to combine the advantages?

Sort layers by impact, and then sort documents by IDs within each group

Term | Sort by IDs Sort by IDs Sort by IDs

Impact layer 1 Impact layer 2 Impact layer 3

13

' Ask.com Search Engine

Client queries

Click/logging

Traffic load balancer

11/19/20 14

' Multi-tier aggregation for query stream

Aggregator controls
degree of fan-out
parallelism

<—» 8 gigabit
<—» 1 gigabit

gregation
switch

Sept. 24-28, 2007 I

2,500

Online Architecture:
Frontends and Cache

n
o
o
o

Zipf distribution
of popular queries

-
(93]
o
o

* Front-ends

1,000 |
= Receive web queries L

= Spawn a thread to handle a
1 101 201 301 401
requeSt Popularity Rank
— Use cache if possible
— Otherwise call index matching/ranking

= Then present results to clients
(XML).

« XML cache:
= Save previously-answered searc@

results (dynamic Web content). |
= Use these results to answer new €ac
gueries.

 Result cache

= Contain all matched URLSs for a
query.

— It does not contain the description of
these URLs

Number of Searches

(93]
o
o

o

Online Architecture: Index Matching .
. Client
and Ranking .
queries
* Retriever aggregators
(Index match coordinator)

Clustering

e Gather results from online
database partitions.

e Index retrievers
* Match pages relevant to
query keywords

 Ranking server
* C(lassify pages into
topics & Rank pages

« Snippet aggregators

= Combine descriptions of URLs
 Dynamic snippet servers

= Extract proper description for a given URL.

’ Distributed Coordination on Service
Availability

 Making a remote service call is possible, but how to
coordinate information sharing?

= How does a machine know there are multiple copies of
the same remote service available?

= How does a machine know a remote service is down?

¥ Client
queries

11/19/20 18

' ZooKeeper: Open source coordination

— service for distributed-applications

Coordinating distributed systems as “zoo”
management: http://zookeeper.apache.org

Start with support for a file API:
= A tree-like directory structure (znodes)

= The znode will be deleted when the creating client's
session times out or it is explicitly deleted

= Partial writes/reads/rename by clients

Ordered updates and strong persistence guarantees
= Watches for data changes and ephemeral nodes

Distributed applications Zookeeper Service leader

= Configuration management W®“®
= Synchronization
= Group services

Clients

ookeeper Operations

2.

Operation

create

delete

exists

getACL, setACL
getChildren

getData, setData

sync

olom
) (2
Description 84 8

Creates a znode (the parent znode
must already exist)

Deletes a znode (the znode must
not have any children)

Tests whether a znode exists and
retrieves its metadata

Gets/sets the ACL (access control
list) for a znode

Gets a list of the children of a znode

Gets/sets the data associated with a
znode

Synchronizes a client’s view of a
znode with ZooKeeper 20

Exercise: Design options for fast query
— processing

Assume 3 word
queries

Query word
intersection of
postings

Rank top 1000
results

Generate 10
snippets

#1/0 Operations

3 random 1/O
operations to read
3 posting lists

List length upto
100MB

1000 random I/O
operations to
access features

1000bytes/doc

10 random |/O
operations to read
docs

Each doc -2KB

Time cost

1 or few seconds

1000*HHD
access=10
seconds

1000*SSD =100ms

10 *HHD =100ms

10*SSD=1ms

Design
options/strategies

21

Exercise

: Strategies for fast query processing

Assume 3 word
queries

Query word
intersection of
postings

Rank top 1000
results

Generate 10
snippets

#1/0 Operations

3 random 1/O
operations to read
3 posting lists.
Posting list length
upto 100MB

1000 random I/O
operations to
access features

1000bytes/doc

10 random |/O
operations to read
docs

Each doc -2KB

Time cost

1 or few seconds

1000*HHD
access=10
seconds

1000*SSD =100ms

10 *HHD =100ms

10*SSD=1ms

Design
options/strategies

Cache postings

Place the entire
index in memory

Cache features,
limited locality
Place all in
memory

Use SSD

Use SSD

22

Exercise: Data distribution for parallel computing

Assume p Key datasets and sizes Method/design options
machines for each How to assign data to p
service machines?

Query match Posting lists of terms

n documents Space cost O(n In m)

m terms 2KB/document

100M docs - 200GB

Rank top K results Features of documents

100B/document
100M docs—>10GB

Generate 10 snippets Document text

4KB/document
100M->400GB

23

Exercise: Data distribution for parallel computing

Assume p
machines for each
service

Query match

Rank top K results

Generate 10 snippets

Key datasets and
sizes

Posting lists of
terms

2KB/document
100M docs =
200GB

Features of
documents
100B/document
100M docs=>10GB

Document text

4KB/document
100M->400GB

Design options

Document-oriented: Divide/map
documents into p machines

Term oriented: Divide terms into p
machines

Distribute feature vectors by
documents to p machines?
Or maybe just use one machine

Distribute documents to p machines

24

Takeaways for Online Query Processing

A complex online system can use tens or hundreds of
services running on thousands of machines

« Consider impact of system and architecture performance
numbers in all designs:

= Think about scalability
— Data: what happens data size increases by 10x or 1000x
— Also software/machine/human aspects

= Consider the interaction of response time and throughput
« Strategies for faster performance
= Caching in memory hierarchy

= Parallel processing of query matching and ranking
= Document-based vs term based distribution
« Open source packages are available for online service
programming
= Zookeeper, Solr

B Manv compbpaniace have thair internal eanfiwara

11/19/20 25

