
System Support and Design Issues in
Query Processing

•Tao Yang 293S, 2020

1

Content

• System support and design tradeoffs in online
systems and query processing
§ Objective: fast response, high throughput,

and high availability
• Experience with Ask.com online architecture

2

Online Data for Search: Inverted Index
and Auxiliary Structures

• Inverted lists usually stored together in a single file for
efficiency
§ Term statistics stored at start of inverted lists

• Vocabulary or lexicon
§ Contains a lookup table from index terms to the byte

offset of the inverted list in the inverted file
§ Either hash table in memory, key-value stores, or B-tree

for larger vocabularies
• Document-oriented information

§ E.g. Document quality score, freshness indicator, page
text content

§ In-memory hashtable, key-value stores
• Other information

§ Collection statistics. Web host information
3

Design Consideration of Query
Processing for Large Datasets

• Estimate I/O cost
• Memory cache for storing frequently accessed

items
§ Cache size requirement: Is there enough memory?
§ Does program exhibit cache locality?

• Distribute data to multiple machines for parallel
processing
§ Distribute disk data to p machines evenly
§ Distributed memory data to p machines evenly

Query Processing

RankingQuery match§ Go through all postings of
queries words

§ Conduct matching & ranking

4

11/19/20 5

System Challenges for Online Services

• Challenges/requirements for online services:
§ Each system needs tens or hundreds of subservices,

running on hundreds or thousands of machines if not more.

§ Low response time, high throughputs

§ Data intensive, need to consider impact of cache, memory,
disk I/O

§ Huge amount of data, requiring

– Large-scale clusters.
– Incremental scalability.

§ 7´24 availability with fault tolerance:

– Operation errors, Software bugs, Hardware failures

§ Resource management, QoS for load spikes.

• Careful design planning in architecture and system support
choices for reliable/scalable online services

Response Time vs Concurrency for
Search Query Processing

• Backend response time requirement: ~200 ms per request
• Throughput requirement: number of requests second per

machine
§ 100 Requests/second per machines
§ à 10 machines 1000 requests à86 million requests/day

• Rules of thumb
§ Writes are expensive. Reads are cheap (Search engine

does read most of time)
§ Access HDD is expensive and a few are allowed per

query. Access SSD is better. More are allowed per query
§ Minimize disk I/O by combing small I/O accesses

• Distributed processing/parallel processing is feasible
§ But watch cost of network communication/latency

6

Numbers Every
Engineer
Should Know
(Approximately)

• L1 cache reference 0.5 ns
• L2 cache reference 7 ns
• Memory Main memory reference 100 ns
• Read 1 MB sequentially from memory 0.25ms

• HDD Disk seek 8ms while SSD takes 0.1ms for reading 4KB
• Read 1 MB sequentially from disk 10ms-1ms

• Round trip within same datacenter 0.5ms
§ The part of transferring 1K bytes over 1 Gbps network 10μs

• Read 1 MB sequentially from network 10ms
• Send packet CA->Europe->CA 150ms

CPU

Memory

Disk

Network

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Remote
device

Caching

ms=10-3s
μs=10-6s
ns=10-9s

Jeff Dean

7

Modeling of Response Time for Query
Processing

Query response time ≈
+#instruction*CPUCost

+#MemoryAccess*MemoryCost
+#NetworkOPs * NetworkCost

+ #IO-OPs*IOCost

NetworkCost = Startup latency + DataSize/TransferRate

IOCost = Startup latency+ DataSize/TransferRate

Components of time cost

Query

8

What do we learn from these numbers?

• 1 cache reference 0.5 ns
• L2 cache reference 7 ns
• Memory Main memory reference 100 ns
• Read 1 MB sequentially from memory 0.25ms

• HDD Disk seek 8ms while SSD takes 0.1ms for
reading 4KB

• Read 1 MB sequentially from disk 10ms-1ms

• Round trip within same datacenter 0.5ms
§ Transmitting 1K bytes over 1 Gbps network 10μs

• Read 1 MB sequentially from network 10ms
• Send packet CA->Europe->CA 150ms

Bad for each query
Poor L1/L2 locality
for compute-intensive core

Scan 1000MB list

Access disk 10,000 times

Remote hash
table lookup
for 5,000 times

9

Parallelism Management in a Cluster of
Machines for Search

• Basic steps for parallel processing
§ All queries sent to a coordination machine
§ The coordinator then sends messages to many index

servers
§ Each index server does some portion of the query

processing
§ The coordinator organizes the results and returns

them to the user
• Two main approaches

§ Document distribution
– by far the most popular

§ Term distribution

Index serverIndex serverIndex serverIndex server

coordinator

10

Document-based distribution

• Document distribution
§ Each index server acts as a search engine for a small

fraction of the total collection
§ A coordinator sends a copy of the query to each of

the index servers, each of which returns the top-k
results

§ Results are merged into a single ranked list by the
coordinator

Index serverIndex serverIndex serverIndex server

Document
s

Index serverIndex serverIndex serverIndex server

Query
Offline Online

11

Term-based distribution

• Single index is built for the entire cluster
• Each posting list of a term is assigned to one index

server
• During query processing,

§ One of the index servers is chosen to process the query
§ Usually the one holding the longest inverted list
§ Other index servers send information to that server
§ Final results sent to director

Index serverIndex serverIndex serverIndex server

Term posting lists

Index serverIndex serverIndex serverIndex server

Query
Offline Online

12

Layout of inverted index impacted by online
algorithms

• Early termination of faster query processing
§ Ignore lower priority documents at end of lists
§ Fast (but unsafe) optimization

• Ordering of inverted posting lists
§ Impact sorted index: high score documents first
§ Document sorted index: increasing order of doc IDs
§ How to combine the advantages?

Term Sort by IDs Sort by IDs Sort by IDs

Sort layers by impact, and then sort documents by IDs within each group

Impact layer 1 Impact layer 2 Impact layer 3
13

11/19/20 14

Ask.com Search Engine

Neptune

Document
Abstract

Cache

Frontend

Client queriesTraffic load balancer

CacheCacheCache

FrontendFrontendFrontend

Aggregator

Tier 1
Retriever

Document
Abstract
Document
Abstract
Document
description

RankingRankingRankingRankingRankingRank
Server

Click/logging

Suggestion
XML
Cache

PageInfoAggregator

PageInfo (HID)

XML
Cache

XML
Cache

Tier 2
Retriever

Multi-tier aggregation for query stream
processing

Match

Aggregator

Aggregator

Aggregator

Match

Aggregation
switchRack

switch
Cluster architecture

Aggregator controls
degree of fan-out
parallelism

15

Online Architecture:
Frontends and Cache

16

Zipf distribution
of popular queries

• Front-ends
§ Receive web queries

§ Spawn a thread to handle a

request

– Use cache if possible

– Otherwise call index matching/ranking

§ Then present results to clients

(XML).

• XML cache :
§ Save previously-answered search

results (dynamic Web content).

§ Use these results to answer new

queries.

• Result cache
§ Contain all matched URLs for a

query.

– It does not contain the description of

these URLs

Clustering
Cache

Client
queriesFrontend

Aggregator

Tier 1
Retriever

RankingRankingRankingRanking

XML
Cache

Tier 2
Retriever

17

Online Architecture: Index Matching
and Ranking

• Snippet aggregators
§ Combine descriptions of URLs

• Dynamic snippet servers
§ Extract proper description for a given URL.

Clustering

Snippet

Frontend

Client
queriesFrontendFrontend

Aggregator

Snippet

RankingRankingRanking

PageInfoAggregator

• Retriever aggregators
(Index match coordinator)
• Gather results from online

database partitions.
• Index retrievers

• Match pages relevant to
query keywords

• Ranking server
• Classify pages into

topics & Rank pages

Index
retriever

Index
retriever

11/19/20 18

Distributed Coordination on Service
Availability

• Making a remote service call is possible, but how to
coordinate information sharing?
§ How does a machine know there are multiple copies of

the same remote service available?
§ How does a machine know a remote service is down?

Clustering
Cache

Client
queriesFrontend

Aggregator

Tier 1
Retriever

RankingRankingRankingRanking

XML
Cache

Tier 2
Retriever

ZooKeeper: Open source coordination
service for distributed applications

• Coordinating distributed systems as “zoo”
management: http://zookeeper.apache.org

• Start with support for a file API:
§ A tree-like directory structure (znodes)

§ The znode will be deleted when the creating client's
session times out or it is explicitly deleted

§ Partial writes/reads/rename by clients

• Ordered updates and strong persistence guarantees
§ Watches for data changes and ephemeral nodes

• Distributed applications
§ Configuration management
§ Synchronization
§ Group services

Zookeeper Operations

Operation Description

create Creates a znode (the parent znode
must already exist)

delete Deletes a znode (the znode must
not have any children)

exists Tests whether a znode exists and
retrieves its metadata

getACL, setACL Gets/sets the ACL (access control
list) for a znode

getChildren Gets a list of the children of a znode

getData, setData Gets/sets the data associated with a
znode

sync Synchronizes a client’s view of a
znode with ZooKeeper 20

Exercise: Design options for fast query
processing

Assume 3 word
queries

#I/O Operations Time cost Design
options/strategies

Query word
intersection of
postings

3 random I/O
operations to read
3 posting lists
List length upto
100MB

1 or few seconds

Rank top 1000
results

1000 random I/O
operations to
access features

1000bytes/doc

1000*HHD
access=10
seconds
1000*SSD =100ms

Generate 10
snippets

10 random I/O
operations to read
docs

Each doc -2KB

10 *HHD =100ms

10*SSD=1ms

21

Exercise: Strategies for fast query processing

Assume 3 word
queries

#I/O Operations Time cost Design
options/strategies

Query word
intersection of
postings

3 random I/O
operations to read
3 posting lists.
Posting list length
upto 100MB

1 or few seconds • Cache postings

• Place the entire
index in memory

Rank top 1000
results

1000 random I/O
operations to
access features

1000bytes/doc

1000*HHD
access=10
seconds
1000*SSD =100ms

• Cache features,
limited locality

• Place all in
memory

• Use SSD

Generate 10
snippets

10 random I/O
operations to read
docs

Each doc -2KB

10 *HHD =100ms

10*SSD=1ms

Use SSD

22

Exercise: Data distribution for parallel computing
Assume p
machines for each
service

Key datasets and sizes Method/design options
How to assign data to p
machines?

Query match

n documents
m terms

Posting lists of terms

Space cost O(n ln m)
2KB/document
100M docs à 200GB

Rank top K results Features of documents

100B/document
100M docsà10GB

Generate 10 snippets Document text

4KB/document
100Mà400GB

23

Exercise: Data distribution for parallel computing
Assume p
machines for each
service

Key datasets and
sizes

Design options

Query match Posting lists of
terms

2KB/document
100M docs à
200GB

Document-oriented: Divide/map
documents into p machines

Term oriented: Divide terms into p
machines

Rank top K results Features of
documents
100B/document
100M docsà10GB

Distribute feature vectors by
documents to p machines?
Or maybe just use one machine

Generate 10 snippets Document text

4KB/document
100Mà400GB

Distribute documents to p machines

24

11/19/20 25

Takeaways for Online Query Processing

• A complex online system can use tens or hundreds of
services running on thousands of machines

• Consider impact of system and architecture performance
numbers in all designs:
§ Think about scalability

– Data: what happens data size increases by 10x or 1000x

– Also software/machine/human aspects

§ Consider the interaction of response time and throughput

• Strategies for faster performance
§ Caching in memory hierarchy

§ Parallel processing of query matching and ranking
§ Document-based vs term based distribution

• Open source packages are available for online service
programming
§ Zookeeper, Solr

§ Many companies have their internal software

