Ranking and Learning

293S UCSB, Tao Yang, 2020 Partially based on Manning, Raghavan, and Schütze's text book.

Table of Content

- Weighted scoring for ranking
 - Ranking Features
- Learning to rank:
 - A simple example
 - Generalization
 - Type of learning-to-rank methods
- Learning to ranking as classification
 - Iearning-to-rank strategies
 - Convert ranking as SVM based classification

Aspects of Ranking Marching User Intent

Relevance

- Documents need to be relevant to a user query.
- Authoritativeness.
 - High quality content is normally preferred since users rely on trustful information to learn or make a decision.
- Freshness.
 - Latest information is desired for time-sensitive queries.
- Preference
 - Personal or geographical preference can impact the choices

Weighted Scoring

- Scoring with weighted features
 - Consider each document has subscores in each feature
 - Special case: Dot-product similarity of query and document
- Example:
 - A simple weighted scoring method: use a linear combination of subscores:
 - E.g.,

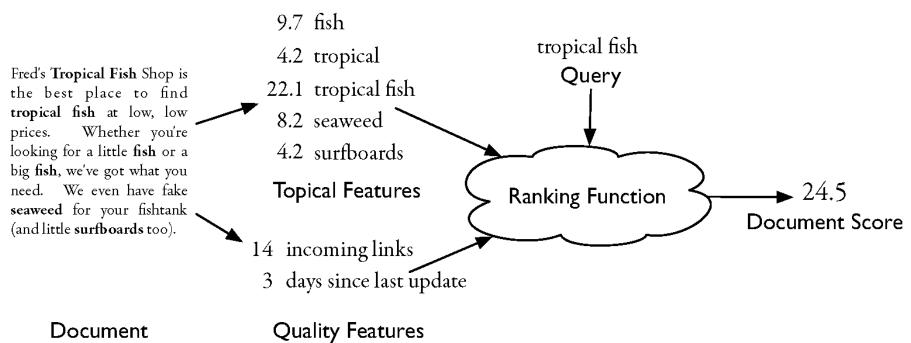
Score = 0.6*< <u>Title score></u> + 0.3*<<u>Abstract score></u> + 0.1*<<u>Body score</u>>

Example with binary subscores

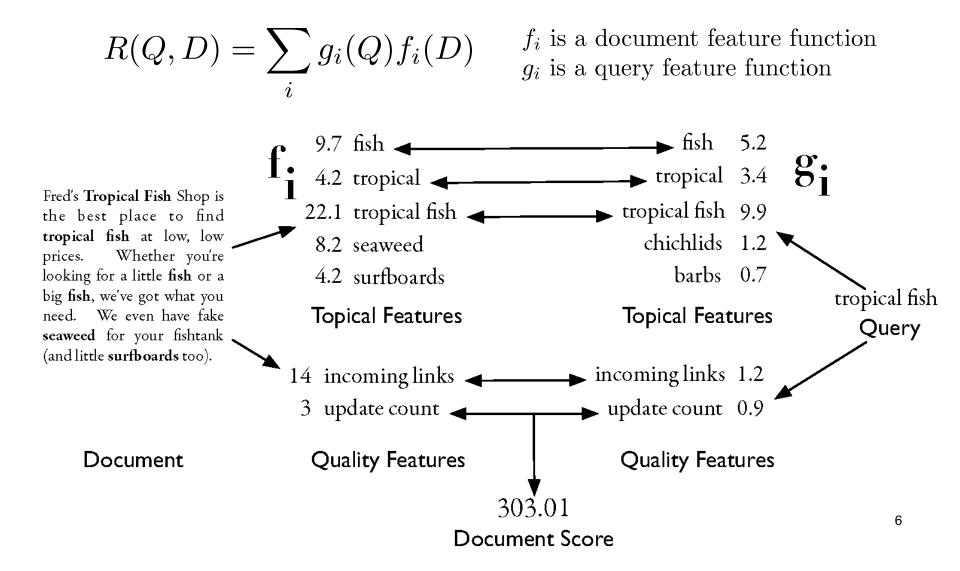
Query term "ucsb admission" appears in title, and "ucsb" appears in body. Document score: $(0.6 \cdot 2) + (0.1 \cdot 1) = 1.3$.

Simple Model of Ranking with Similarity [Croft, Metzler, Strohman's textbook slides]

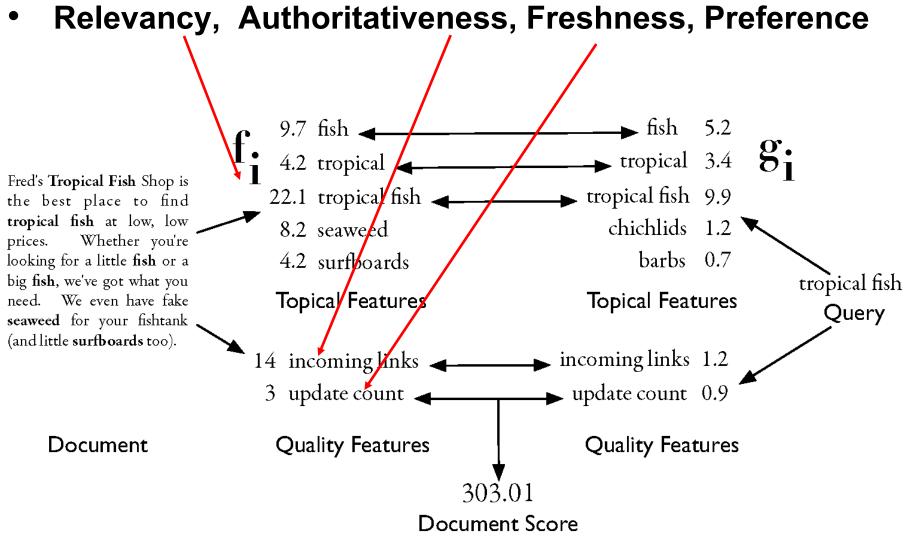
Document features are topical or quality-based



Simple Model of Ranking with Similarity [Croft, Metzler, Strohman's textbook slides]



Aspects of Ranking Marching User Intent



Ranking Features used in Web Search

- Modern systems especially on the Web use a great number of features:
 - Major web search engines use "hundreds" of such features – and they keep refinement
 - Text features: Query word frequency, Highlighted on page.
 - Document features: URL length, URL contains "~", Page length, Page freshness

- Categories of ranking signals
 - Query-dependent
 - Query-independent

Ranking Signals: Query Dependent

- Text score
 - Document text.
 - -Text frequency: TFIDF, BM25
 - -Text proxmity:
 - Closeness of keywords that appear in a document
 - Sum of 1/distance²(w₁,w₂) for all keyword pairs
 - Query word span window
 - Anchor text
 - URL text
 - http://www.microsoft.com/en-us/download/

Ranking Signals: Query Dependent

- Historical queries that yield document clicks
 - www.marriott.com for mariott, marriot
- Query classification and preference
 - Local, commerical products, news, image, video
 - Geo-location
- Link citation from documents that match the same query
 - # citations from documents relevant to a query
 - Hub authority analysis

Ranking Signals: Query independent

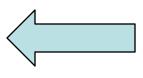
- Document specific:
 - Link analysis: Page Rank
 - #incoming links to a URL
 - Quality of documents:
 - Spam analysis
 - Page classification and properties
 - Geo location
 - Country/language classification
 - Homepage/personal page classification
 - Freshness

Site specific

- Site quality:
 - Well-known sites
- Site classification: e.g. Country classification

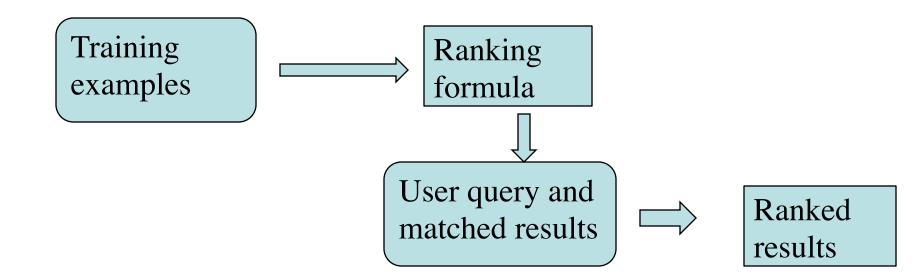
Table of Content

- Weighted scoring for ranking
 - Ranking Features
- Learning to rank:
 - A simple example
 - Generalization
 - Type of learning-to-rank methods
- Learning to ranking as classification
 - Iearning-to-rank strategies
 - Convert ranking as SVM based classification



Machine learning for ranking

- How do we combine these signals into a good ranker?
 - How to derive weights if linear combination is used
 - What are other machine-learned models?
- Learning to rank
 - Learning from examples (called training data)



Learning weights: Methodology

- •Given a set of training examples,
 - each contains (query q, document d, relevance score r).
 - r is relevance judgment for d on q
 - Simplest scheme
 - relevant (1) or nonrelevant (0)
 - More sophisticated: graded relevance judgments
 - 1 (bad), 2 (Fair), 3 (Good), 4 (Excellent), 5 (Perfect)

 Learn weights from these examples, so that the learned scores approximate the relevance judgments in the training examples

Simple example of learning-to-rank

- Each doc has two zones, <u>Title</u> and <u>Body</u>
- For a chosen $w \in [0,1]$, score for doc d on query q

$$score(d,q) = w \cdot s_T(d,q) + (1-w)s_B(d,q)$$

where:

- $s_T(d, q) \in \{0, 1\}$ is a Boolean denoting whether q matches the <u>Title</u> and
- $s_B(d, q) \in \{0, 1\}$ is a Boolean denoting whether q matches the <u>Body</u>

Examples of Training Data

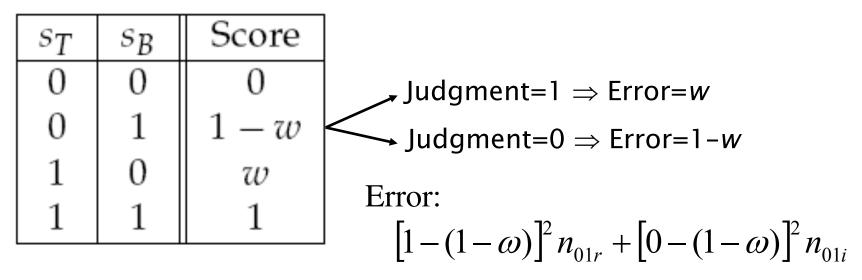
Example	DocID	Query	s_T	s_B	Judgment
Φ_1	37	linux	1	1	Relevant
Φ_2	37	penguin	0	1	Non-relevant
Φ_3	238	system	0	1	Relevant
Φ_4	238	penguin	0	0	Non-relevant
Φ_5	1741	kernel	1	1	Relevant
Φ_6	2094	driver	0	1	Relevant
Φ_7	3191	driver	1	0	Non-relevant

From these 7 examples, learn the best value of w.

- For each example Φ_t we can compute the score based or score(d_t, q_t) = w ⋅ s_T(d_t, q_t) + (1 − w)s_B(d_t, q_t).
- We quantify Relevant as 1 and Non-relevant as 0
- Would like the choice of w to be such that the computed scores are as close to these 1/0 judgments as possible
 - Denote by $r(d_t, q_t)$ the judgment for training instance Φ_t
- Then minimize total squared regression error $\sum_{\Phi_t} (r(d_t, q_t) - score(d_t, q_t))^2$

Optimize the selection of weights

- There are 4 kinds of training examples
- Thus only four possible values for score
 - And only 8 possible values for error (relevant vs irrelevant)
- Let n_{01r} be the number of training examples for which *title score* 0, *body score* 1, judgment = *Relevant*.
- Similarly define n_{00r} , n_{10r} , n_{11r} , n_{00i} , n_{01i} , n_{10i} , n_{11i}



Total error – then calculus

 Add up contributions from various cases to get total error

 $(n_{01r} + n_{10i})w^2 + (n_{10r} + n_{01i})(1 - w)^2 + n_{00r} + n_{11i}$

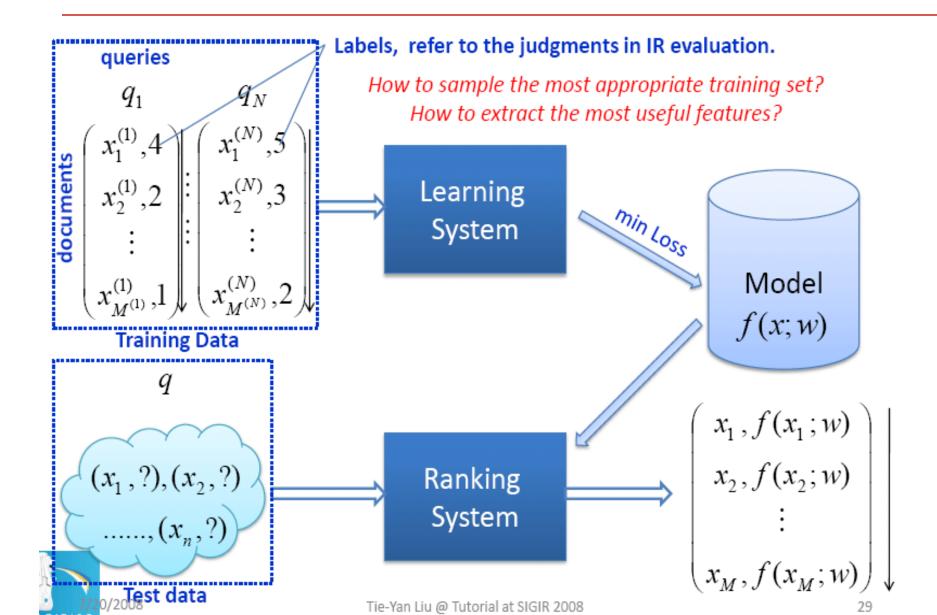
 Now differentiate with respect to w to get optimal value of w as:

$$\frac{n_{10r} + n_{01i}}{n_{10r} + n_{10i} + n_{01r} + n_{01i}}.$$

Generalizing this simple example

- More (than 2) features
- Non-Boolean features
 - What if the title contains some but not all query terms ...
 - Categorical features (query terms occur in plain, boldface, italics, etc)
- Scores are nonlinear combinations of features
- Multilevel relevance judgments (Perfect, Good, Fair, Bad, etc)
- Complex error functions
- Not always a unique, easily computable setting of score parameters

Framework of Learning to Rank



Learning-based Web Search

- Given features $x_1, x_2, ..., x_M$ for each document, learn a ranking function $f(x_1, x_2, ..., x_m)$ that minimizes the loss function *L* under a query
- f*=min L(f(x₁,x₂,...,x_M), GroundTruth)
- Some related issues
 - The functional space
 - linear/non-linear? continuous? Derivative?
 - The search strategy
 - The loss function

Table of Content

- Weighted scoring for ranking
 - Ranking Features
- Learning to rank:
 - A simple example
 - Generalization
- Learning to ranking as classification
 - Convert ranking as SVM based classification

Relationship to Classification Problem: An example

- Collect a training corpus of (q, d, r) triples
 - Relevance r is still binary for now
 - Document is represented by a feature vector
 - $\mathbf{x} = (\alpha, \omega)$ α is cosine similarity, ω is minimum query window size
 - ω is the shortest text span that includes all query words (Query term proximity in the document)
- Train a machine learning model to predict the class r of a document-query pair

example	docID	query	cosine score	ω	judgment
Φ_1	37	linux operating system	0.032	3	relevant
Φ_2	37	penguin logo	0.02	4	nonrelevant
Φ_3	238	operating system	0.043	2	relevant
Φ_4	238	runtime environment	0.004	2	nonrelevant
Φ_5	1741	kernel layer	0.022	3	relevant
Φ_6	2094	device driver	0.03	2	relevant
Φ_7	3191	device driver	0.027	5	nonrelevant

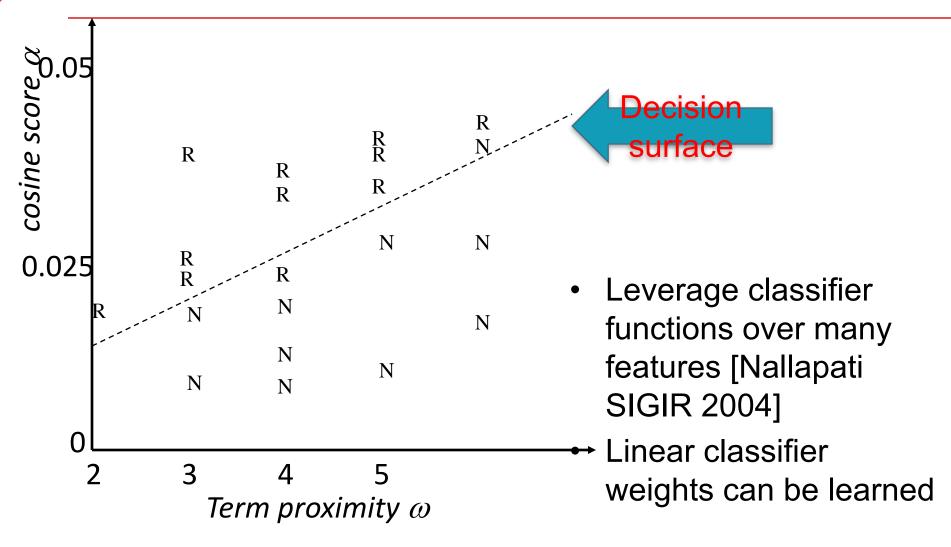
Window-based text span score

- Query text span in a document is the minimum length of word interval that covers all query words
- Example document:

Fred's tropical fish shop is the best place to find tropical fish at low price

- Span for query "tropical fish": 2
- Span for query "Fred's fish shop": 4

Using classification for deciding relevance

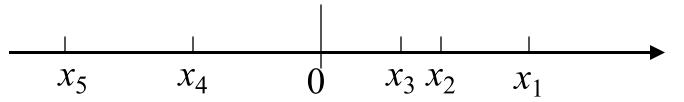


A SVM classifier for relevance [Nallapati SIGIR 2004]

- Let $Score(d,q) = W \cdot Feature(d,q) + b$
 - W is the weight vector
 - Feature(d,q) is the feature vector
- Derive weights from the training examples:
 - want Score(d,q) ≤ -1 for nonrelevant documents
 - $Score(d,q) \ge 1$ for relevant documents
- Testing:
 - decide relevant iff $Score(d,q) \ge 0$
- Train a classifier as the ranking function

Summary: Ranking vs. Classification

- Classification
 - Well studied: Bayesian, Neural network, Decision tree, SVM, Boosting, ...
 - Training data: points: Positive: x1, x2, x3, Negative: x4, x5



Ranking

- Two ways to transform ranking problem to classification:
 - Assign a document to a class (relevant/nonrelevant)

Or assign to multiple classes such as perfect, excellent, good, fair, bad)

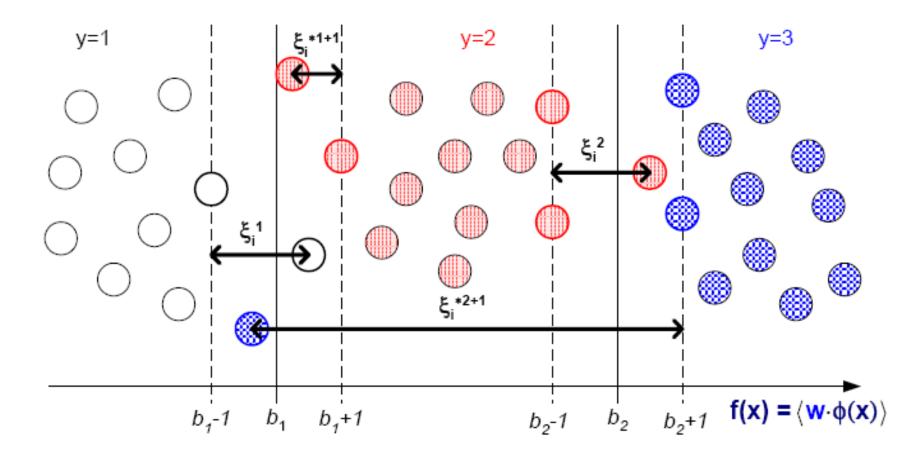
2. Classify the relationship of two documents in answering a query

Strategies for "learning to rank"

- Point-wise learning
 - Given a query-document pair, predict a score (e.g. relevancy score)
 - Map f(x) to one of relevance vaules 0,1,2...
- Pair-wise learning
 - the input is a pair of results for a query, and the classification target is the relevance ordering relationship between them
 - Correct Order: f(x₁) >f (x₂) if x₁ is more relevant than x₂
 - Otherwise incorrect.
- List-wise learning
 - Directly optimize the ranking metric (e.g. NDCG) for each query with a list of ranked results

Point-wise learning: Example

- Goal is to learn a threshold to separate each rank
- Assume 3 relevance levels: 1, 2, 3



Pair-wise Learning

- A ranking should correctly classify the order of documents based on their relevance score:
 - Assume query q has matched documents ordered as x1, x2, x3, x4, x5

- Correct order

(x1, x2), (x1, x3), (x1, x4), (x1, x5), (x2, x3), (x2, x4) ...

- Other orders are incorrect

Convert ranking into binary classification

Modified example for multi-class mapping with pair-wise learning

- Collect a training corpus of (q, d, r) triples
 - Relevance label r has 4 values
 - Perfect, Relevant, Weak, Nonrelevant
- Train a machine learning model to predict the class r of a document-query pair

example	docID	query	cosine score	ω	judgment
Φ_1	37	linux operating system	0.032	3	Perfect
Φ_2	37	penguin logo	0.02	4	Nonrelevant
Φ_3	238	operating system	0.043	2	Relevant
Φ_4	238	runtime environment	0.004	2	Weak
Φ_5	1741	kernel layer	0.022	3	Relevant
Φ_6	2094	device driver	0.03	2	Perfect
Φ_7	3191	device driver	0.027	5	Nonrelevant

The Ranking SVM : Pairwise Learning [Herbrich et al. 1999, 2000; Joachims et al. KDD 2002]

- Aim is to classify training instance pairs as
 - correctly ranked
 - or incorrectly ranked
- This turns an ordinal regression problem back into a binary classification problem
- We want a ranking function *f* such that *c_i* is ranked before *c_k* :

 $c_i < c_k \text{ iff } f(\psi_i) > f(\psi_k)$

• Suppose that *f* is a linear function

 $f(\Psi_i) = \mathbf{w} \cdot \Psi_i$

• Thus

 $c_i < c_k \text{ iff } w(\psi_i - \psi_k) > 0$

How many training examples formed for Ranking SVM?

example	docID	query	cosine score	ω	judgment
$\overline{\Phi_1}$	37	linux operating system	0.032	3	Perfect
Φ_2	37	penguin logo	0.02	4	Nonrelevant
Φ_3	238	operating system	0.043	2	Relevant
Φ_4	238	runtime environment	0.004	2	Weak
Φ_5	1741	kernel layer	0.022	3	Relevant
Φ_6	2094	device driver	0.03	2	Perfect
Φ_7	3191	device driver	0.027	5	Nonrelevant

1 training case:

Query: device driver Order: Doc 2094, 3192

How to derive (a, b, c) based on the training examples? $Score(d, q) = a\alpha + b\omega + c$ $Score(Doc 2094, q) \ge 1 + Score(Doc 3192, q)$ $0.03a + 2b + c \ge 1 + 0.027a + 5b + c$

Ranking SVM

- Training Set
 - for each query q, we have a ranked list of documents totally ordered by a person for relevance to the query.
- Features
 - vector of features for each document/query pair

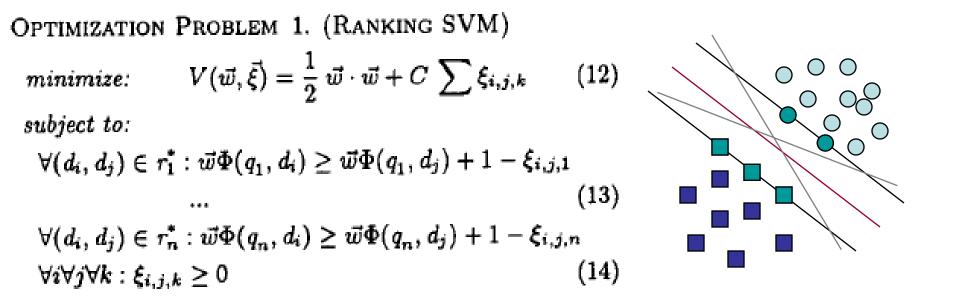
$$\psi_j = \psi(d_j, q)$$

• feature differences for two documents d_i and d_i

$$\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$$

- Classification
 - Make the difference vector Φ(d_i, d_j, q) bigger than
 +1 if order is correct.
 - Otherwise less than -1.

Ranking SVM



Optimization problem is equivalent to that of a classification SVM on pairwise difference vectors Φ(q_k, d_i)
 - Φ (q_k, d_j)

Classification vs. Regression

Classification

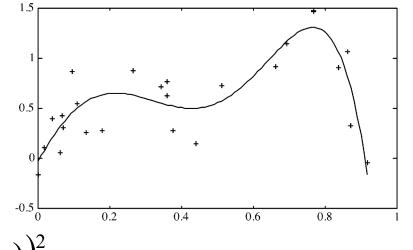
- Data in the form (x,y), where x is input vector. y is a category label
- Goal is to find indicator function estimation f. $(0 \text{ if } v = f(\mathbf{x}))$

• Loss: L(y, ..., L(y, .

$$y, f(\mathbf{x}) = \begin{cases} 0 & \text{if } y = f(\mathbf{x}) \\ 1 & \text{if } y \neq f(\mathbf{x}) \end{cases}$$

Regression

- Data in the form (x,y), where x is input vector. y is real-valued output
- Goal is to find function estimation f.
- Example loss: $L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2$



Classification vs. regression for learning to rank

Regression

- Find relative rank scores. E.g. Score = af₁+bf₂, what is weight a and b?
- Not just classification labels.
- Classification isn't the best model for rank score learning:
 - Classification: Map to an unordered set of classes
 - Regression: Map to a real value
- This regression formulation gives extra power:
 - Relations between relevance levels are modeled
 - Fine grain scoring from highly relevant to irrelevant
 - Not an absolute scale of goodness

- Weighted scoring for ranking
 - Example: linear combination
 - Ranking features for web search
- Learning to rank: A simple example
 - Generalization to a general machine learning problem
- Learning to ranking as classification
 - Point-wise, pair-wise, & list-wise learning
 - Point-wise SVM classification
 - Pair-wise SVM classification
 - Classification vs. regression for ranking