y

Privacy-Aware Document
Search on the Cloud

293S, 2020, T. Yang

' Outline

* Privacy-aware search

= Motivation & problem definition

= Searchable encryption & known attacks

* Privacy-aware ranking

= Tree-ensemble based ranking

= Ranking with neural signals

No homework questions on this subject

' Privacy-aware Search: Motivations

- Client uploads private data collections o the cloud such
as gmail, source code, enterprise documents

- Privacy-aware search does not want server to know the
hosted content and index, and what is searched

Encrypted Query -E- S
Client ‘ < e —] E%
AA

@ @ Cloud —/——

Encrypted doc IDs/content

- Server is honest-but-curious: correctly executes
protocols but observes/infers private information
- Plain text leakage occurs due to accidents,
misconfiguration/use, or attacks.
— “Dropbox Security Bug Made Passwords
Optional For Four Hours”. June 2011

Searchable Encryption: Workflow

Three entities: data owner, search user and cloud server.
Data owner and a user are the same for this presentation

¢ [SongS&PZOOO] Song, et al. , "Practical techniques for searches on

encrypted data." IEEE Symposium on Security and Privacy, 2000.]
ffline preprocessing

= [Client] KeyGen (a security parameter):
— Generate security keys
— Output: Private key k; for index, k, for documents.
= [Client] BuildIndex (k;, kp, D):
— Build encrypted index
— Output: Secure index I. and encrypted documents C.

Encrypted index

Encrypted query -E‘ o
o B ==
A ¢ @ - @ Cloud

Encrypted results

+
UIICTIU

Searchable Encryption: Workflow
‘ Trapdoor= Enc(Query)‘
= (Cioud =

AA o opciq) BB

= [Client] KeyGen (a security parameter):

* [Client] BuildIndex (k;, kp, D):

= [Client] TokenGen (k;, q): Online query processing
— Client converts query q to encrypted tokens using key k;
— Output: Query tokens t (encrypted query, or called

trapdoor)

= [Server] Search (I, t):
— Search encrypted index with query token(s)
— Output: encrypted matched document ID C

= [Client] Decryt (kp, C):
— Client decrypts document IDs
— QOutput: Matched documents.

' What are possible privacy attacks?

Documents and queries are encrypted. The doc and
term IDs are also random numbers in the index
with no meaning

= Why there exist privacy attacks
Leakage-Abuse Attacks:

= Recover plaintext of queries or documents
= JKK attack

— Islam, et al. "Access Pattern disclosure on Searchable Encryption:
Ramification, Attack and Mitigation." NDSS. Vol. 20. 2012.

— Launchable when a server knows co-occurrence
probability of English words + some other info

'ghat does a server know in IKK: Example

* Knows co-occurrence matrix M, element M;; 1s
the probability of the i-th keyword w; and the j-th

keyword w; appearing in the same document.

How a server can estimate dog |cat foar | trunk
the elements of M‘j without| s |10 0.8 0.3 0.2
knowing plaintext? cat |- 10 o1 |os
car - - 1.0 09
dog |2 {3 P8 Mo 10 — - _ _ —

cat 1»2»3|>5>8>10

car | 13 P 16 Maog.cat=" 4/10 assuming 10 documents in total

’!!ompute co-occurrence probability from index
access patterns

t

2

> 3

N

8 M

9 10

t;

1

> 2

N

}

5 M 810

LE!

13

)

16

Given a query token ¢, access pattern R(?) is a
list of all document IDs matched and
returned

* The index has 10 documents
R(t)) = {2,3,,8,9,10}
R(t,) = {1, 2,3,5,8,10}

* C(Cooccurrence [t;, t, |=4/10=0.4

* In general, a server can estimate an element of concurrence

matrix after processing two single-word queries

’ How can a server attack?

Co-occurrence matrix M: Adversary knows English word for
M, but does not know corresponding tokens.

Co-occurrence matrix M’: The adversary does not know
English word of each column. It estimates M’ by index access.

Try a mapping between M’ and M: t1=dog, t2=cat, t3=car
mapping error : (0.8-0.3)% + (0.2-0.3)>+(0.9-0.1)?

M’ t1 t2 t3 dog cat car trunk
t1 1.0] 03 |02 dog 1.0 | 0.8 0.3 0.2 M
2 |- 1.0 cat - 1.0 0.6
t3 - - 1.0 car - - 1.0 0.9
trunk - - - 1.0

try: t1=dog, t2=car, t3=trunk

' IKK Assumptions: What a server knows

Each query uses one single word
Know the plaintext of m potential searchable

keywords and their mxm co-occurrence matrix M

= (Can be approximated from similar datasets. E.g.
Wikipedia.

= But do not know their term IDs in the index

Observe online processing of q single-word queries

= Observe index access patterns: all documents IDs that
match each query token

Know in advance the text-to-token mapping for a small

numbers of words, e.g. Inject 150-word public doc or email

Objective: Recover plaintext of these q words

’ Steps to conduct IKK attack

Step 1: Calculate co-occurrence matrix M’ for these g query

tokens based on the index access pattern:

* Each column corresponds to a token. The adversary does
not know the plaintext of its corresponding word

* M’i;is estimated as intersection size of posting lists of
words w; and w;, divided by #documents in the dataset

Step 2: Map M’ to a submatrix of M:
Adversary knows keywords for M, but does not know
corresponding tokens.
Use simulated annealing to map tokens to English words
and minimize the squared error of pair mapping:
Y.(coocurrance probability mapping difference)?

IKK attack limitation and extension

Counter attack= IKK + known term frequency

by Cash et al. "Leakage-abuse attacks against searchable encryption."
2015 ACM CCS. https://eprint.iacr.org/2016/718.pdf

* JKK attack is not scalable for a large dataset (>5000 words).
Al

o —o— IKK At{ad<

. £ 0. Count Attack
Counter attacks requires g ™| = =" JF
that a server knows the §
document frequency of B 04
terms (e.g. posting list g 02
length). Does not require ojpe=——
known keyword_to_tOken % of dataset known to server
mapping Figure 6: Average reconstruction rate when server has partial
More Scalable knowledge of true document set for the Enron dataset with 500

keywords and 150 queried uniformly. 5% of queries are known
by IKK. The count attack has no known queries. Error bars
show one standard deviation.

' Outline

* Privacy-aware/secure search

= Motivation & problem definition

= Searchable encryption & known attacks
* Privacy-aware ranking

= Tree-ensemble based ranking

= Ranking with neural signals

’ Challenges in Privacy-Aware Rank
__Computation

- Ranking requires arithmetic computation

and comparison

e Feature composition: e.g. TF-IDF, BM25, word
distance.
e Linear/nonlinear rank computation and comparison.
- Computation and comparability of

encrypted features
« Compose E(ff + ££) from E(ff) and E(£{) securely?

» Compare E(f#* + £) and E(f? + ££?) securely?
= Fully Homomorphic encryption [Gentry STOCO9]:

Slow

’ Privacy-aware Ranking with Tree
« Full server-side ranking with encoded feature values

for privacy protection

« Tree-based learning ensembles (GBRT,
LamdaMART, Random Forest) still need to
compose input features with arithmetic operations

E.g. BM25 involves additions

feature leakage during server tree computation
 Proposed scheme:

Simplify required arithmetic operations

Query-length-specific training

Hide feature values and tree thresholds with

comparison-preserved mapping

' Idea 1: Simplified feature composition

« More server-side operation types supported = more
difficult to preserve privacy i+f2>3
- Strategy: ’
= Restrict type of arithmetic operations in feature

compositions.
= Only support min/max based composition from raw

features f,>2
f,+£f,>3 <

f,>2 |f;>1

A o sl

o @ o @ o @

0 1 0 1 0 1

« For BM25, use individual raw features (avoid addition)
« For proximity, use feature values of terms which are
word pairs or n-gram terms

’Eanking without addition: Example

« Query: CD rate

- Document: d=“CD rateis 0.02 provided by CD bank”
- Feature vector for a traditional tree algorithm:

d= [Average TF of unigram query words, Average TF of
bigram query words]

d=[(2+1)/2, 1]

- Feature vector for ranking with no addition involved:
= [TF of CD, TF of rate, TF of CD-rate] =[2, 1, 1]

’ Property of tree transformation by

removing sum feature operators

Using raw features only
for common operators
has no training loss
degradation in terms of
squared error or entropy-
based information gain

* The new tree can
separate white and
black circles as
accurate as the old
tree

f,+1,>3

/ \
o e
0 1

—>

f,>2

) \
f,>2] [f;>
R / N\
O o o @
0 1 0 1

’ Idea 2: Encoding with comparison-
preserved mapping

- Objective: Hide document feature values and tree
thresholds for better privacy

« Option 1: OPM
e Order preserved mapping [Boldyreva et al.
Cryoto11]
e vV, >Vv, & OPM(v,) > OPM(v,)
e Vi =V, & OPM(v,) = OPM(v,)

« Option 2: CPM (Comparison preserved mapping)
Feature value/threshold mapping only preserves
correctness of decision tree branching R
Leak less: vi=v, % CPM(v,)=CPM(v,) A

’ Example of comparison-preserved

-mapping{(GPM)
IVI,

Q= ° N |
A decision tree has 3 Cf23) | iy =2
thresholds | /\ /\
|
[0-5"3’ °! > | (CERE
| |
1,2, 3] FA [\ 1= /A /\
The dataset has 6 . f205 O C 621 D
feature values : |
[0.3,0.8,1.5,2.5,3.8,51] ' A A A
- Qrglr_mal_tr_ee_s - _: Encoded trees
‘ iuD-e;t_a_: ________ i Encoded data
[0,1,1,1, 2, 3] id1=[0-8,1-5] ! di=[1,1]
| d,=[2.5,5.1] d,=[1,3]
 d5=[3.8,0.3] ; d5=(2,0]

’ What information is protected

A server cannot well r- = - -
o ! @ ! f22
recover original values of | |
feature values, their | A\ /\ |
difference, and their |ty 2 !
. [I
ratios. : :
A A |A /\
I
I
I
I
I
I

e If it can do within | —
@ Recover @
I
|
I
I

an error bound, it
has to distinguish £\
the original data Encoded trees

| >

from an infinite ':r -_D-a-_t-a SRR Encoded data
number of ppsgble ' d,=[0.8,1. 5] d1f[1]
datasets, which is ' dy=[2.5,5.1] ! gz:[;,fé]
unlikely. i d,=[3.8,0.3] i 3=[2,0]

' ldeal 3: Query-length-specific training

- Number of raw features is query-dependent.
- Query-length specific training with hybrid tree

ensemble

"Training set |

2 word queries ==

= A

3 word queries=== Model —V(\(\

4 word queries=—

m word queries==

selection c "(\

=R

Allow a different
algorithm to be
used

for a different
query length with
a different
combination of
raw/composite
features

’Evaluation with CPM-based tree
ensembles

* Assume features can be safely fetched for matched
documents

* Evaluation objective: Can tree ensembles with CPM
using raw and min/max compositions perform
competitively?

° TREC Datasets

Query length 1 2 3 4
Robust04, 0.5M 11 70 140 25
Robust05, 1M 1 19 24 5

ClubeWeb09-12, 50M 64 70 52 14
ClubeWeb, MQO09, 50M 98 | 294 | 232 | 53

© O - b O

’ Relevance of CPM trees with restricted

'Fogh res
W CALUAI]

Compared to existing methods with no Restriction
5-fold validation NDCG@20 results

Collections A- GBRT | Random CPM
MART Forest

Robust04 0.3936 0.4025 0.4114 0.3975 (-3.3%)

Robust05 0.2765 0.2778 0.2945 0.2928 (-0.6%)

ClueWeb09-12 | 0.2235 0.1906 0.2100 0.2160 (-3.4%)
ClueWeb09, MQO9 | 0.2603 0.2419 | 0.2395 0.2573 (-1.2%)

CPM is close to the best constantly with small degradation

'Relevance with different query lengths

NDCG@20 of ClueWeb09, MQO09. Features include raw
indivdual BM25 for title/body, word-pair distance with
min/max composition, PageRank, and Wikipedia indicator

Q-length

2
3
4

3}

A-MART

0.2712
0.2683
0.2280
0.0913

GBRT

0.2457
0.2185
0.2296
0.0843

Random

Forest
0.2612
0.2284
0.2369
0.0388

CPM

0.2712 (0%)
0.2767 (+3.1%)
0.2296 (-3%)
0.0913 (0%)

CPM gives the more stable results than others by selecting the
best configuration with query-length specific optimization.

’ Privacy-aware Neural Ranking [Shao et
al. SIGIR 2019]

* Interaction-based Neural Ranking DRMM. KNRM.,
= RankingScore = f(Ker(qg &® d)) Conv-KNRM
— (, d: sequences of embedding
vectors for query and document
— & interaction matrix
— Ker: kernel computation
— f: neural network computation

= |nteraction @ outputs a similarity matrix M
containing vector similarity for all pairs of one query
term vector and document term vector
= Kernel computation: L (Mij — pr)*
P Kie(Mp) = D exp(—— L)

2
= 20'k

Neural Ranking in KNRM " Translation

matrix is a
cosine similarity
Query Translation Matrix Kernels Soft-TF Ranking of a query term
_(nwords) My Features
\ and a document
Final term
Ranking
N . VAN L .-~ Score
Documen @ —
(m words)\ . i :7:\!11
(), /O
_________ —
Embedding Translation ing-To-Rank

Layer Layer
Z log Ki(t,d), - - - Z log Kg(t,d))T.

teq

Kitd) =Y exp(—w).

wed 20’]

' Leakage in Interaction-based Neural Ranking

Query Document
m terms n terms
&® Interact @

Similarity Matrix

mXn real values Leak: term Query
frequency / plaintext

Kernel Comp. @ term Co- > attack, e.g.,

occurrence [Islam et al.

Kernel Vector @ NDSS12]

R real values

e

Proposed Solution for Private Neural Ranking

Query Document
m terms n terms _ -
1. Leakage in computing
® Interact @ kernel vectors?

Pre-computing them.
Similarity Matrix
mXn real Values®
Kernel
Comp.
private tree ensembles
Kernel Vector @
R real values

2. Avoid leakage in kernel
vectors?
Partial replacement with

3. Too much storage cost in

@ storing precomputed kernel
vectors?

Closed soft match map

' How Kernel Values Leak Term Frequency

Final kernel vector for query g and document d:

{Z logK,(t,d), Z log K,(t,d), ’Z log Ky (t, d)}

teq teq teq

term t and document d. R 1s the ber of kernels.

Decompose kernel values into tw
K, (t,d),.., Kr_1(t,d) Sofiatch Signals
e Kg(t,d) Exact Match Stenal

Our analysis: Term frequency of ¢ can be well approximated
by Kr(t,d).

Solution for privacy-preserving: Replace the exact match
signal with the private tree-based ranking signal.

' How to Approximate Exact Match Signal K, (t,d)

Proposed privacy-preserving approach
1.

2.

3.

{Z log Kx (¢, d)} / <\/ <:\

)’ @

v B o

Kernel vector
\ J

|
Approximated
kernel vector

Gather traditional word frequency and
proximity features

Use a query-length-specific learning-to-
ranking tree ensemble to compute a rank score
Use a private tree-based model [Ji et al.,
SIGIR 18] to encrypt features and tree
thre<holds

' Storage Cost Reduction with Soft Index

Store precomputed kernel vectors for all term-doc pairs

- Huge storage cost. 16TB for 1M documents and
200K vocabulary.

Soft indexing solution: soft match map

« |ndex contains posting (term, doc) only if this
term is semantically related to this document.

« Foreveryterm tin a dataset, form a closure
for term t above a similarity threshold

« Given term tin document d, we find other
terms t in the cluster of t. Then the index
contains posting (¢, d)

Clustering for Soft Match Map

Car NS
P : N 0.279
Clustering with fixed threshold:
0.734"
: 0524 C1:{Car, Truck, Vehicle, Flatbed, ...}
0726; oo Truck -------- Flatbed
: - REA Adaptive clustering:
0.715
C1:{Car, Truck, Vehicle},
P 7 0.305 C2: {FlatBed, ...}
“Vehicle =~

Fixed threshold: Can create a super large closure.

Adaptive clustering: Only keep top similar terms with

different threshold for different clusters, which avoids
massive storage cost.

Privacy Property of Closed Soft Match Map

Objective: Given a closed soft match map, a server adversary
cannot learn term frequency/co-occurrence of the dataset.

Property Sketch: Given a dataset D, with N key-value pairs in
a closed soft match map of D, and closure size = p ,

there exist at least (2P — 1)V different datasets D’ such that
their soft match maps have the same key, and values that are ¢-
statistically indistinguishable

Takeaway: These (2P — 1)V different datasets have different
term frequencies and co-occurrences, while their soft match
maps are very similar (kernel value indistinguishability).

Thus, the cloud server 1s unlikely to recover the correct dataset.

' Kernel Value Indistinguishability: Definition

Given dataset D, transform words in document d in D as d’ by using
a similarity closure to form D’. Their kernel vectors are:

- -
fra = (a1, a;,as, ---raR—lza ft,d’ = (a'y,a'y,a's, ...,a'g_q).
7 AN
‘/,

» g-statistically indistinguishable kernel values:
The statistical difference between D and D’ < ¢
» An adversary can successfully differentiate D and D" with

probability at most % + &.

* Takeaway

eld
1eZ25) Prob(successfully differentiate between D and D")

' Obfuscating kernel values for privacy protection

{Z‘ log K; (¢, d)}
O
For the j-th soft kernel value in the kernel value vector, it is
obfuscated as:
_ {|log, K;(t, D], if K;(t,d) > 1,
J 1, otherwise,
t is a term, d is a document, and K;(t, d) is the output from
the j-th kernel function.

Trade-off between privacy and ranking accuracy:

_ yields o ,
T Obfuscation value r —— | Statistical Distance
yields yields

—— T Privacy —— | Effectiveness of soft match signals

Evaluation on Approx. Exact Match Signal

ClueWeb09-Cat-B Robuts04

Model NDCG@1 NDCG@3 NDCG@10 NDCG@1 NDCG@3 NDCG@10
LambdaMART 0.2893 0.2828 0.2827 0.5181 0.4610 0.4044
DRMM 0.2586 0.2659 0.2634 0.5049 0.4872 0.4528
KNRM 0.2663 0.2739 0.2681 0.4983 0.4812 04527
C-KNRM 0.3155 0.3124 0.3085 0.5373 0.4875 0.4586
C-KNRM* 0.2884 0.2927 0.2870 0.5007 0.4702 0.4510
C-KNRM*/T 0.3175 0.3122 0.3218 0.5404 0.5006 0.4657

C-KNRM is CONV-KNRM [Dai et al. WSDM 18]
C-KNRM* is a version of CONV-KNRM without bigram-bigram interaction
C-KNRM*/T 1s C-KNRM* while using a LambdaMART tree ensemble to

replace the exact match signal of kernel vectors.

Takeaway: Tree signal intergration for neural kernel vectors
perform well and even boost ranking performance.

Effectiveness of Kernel Value Obfuscation

ClueWeb09-Cat-B Robuts04
Model NDCG@1 NDCG@3 NDCG@10 NDCG@1 NDCG@3 NDCG@10
C-KNRM 0.3155 0.3124 0.3085 0.5373 0.4875 0.4586
C-KNRM* 0.2884 0.2927 0.2870 0.5007 0.4702 0.4510
C-KNRM*/TO 0.3175 0.3122 0.3218 0.5404 0.5006 0.4657
No Obfuscation
C-KNRM*/TO 0.3178 0.3067 0.3100 0.5306 0.4987 0.4613
r=>5
C-KNRM*/TO 0.3121 0.3097 0.3100 0.5221 0.4980 0.4623
r=10

C-KNRM*/TO 1s C-KNRM?* while using the tree-

approximated kernel vectors and kernel value obfuscation

Takeaway: Kernel value obfuscation results in small
degradation (~1.6%) on ranking performance, when r = 10.

' Summary

* Secure search with searchable encryption
- Knowing con-occurrence and document
frequency of terms can aid privacy-abuse

attacks
* Privacy-aware ranking
- Tree-ensembles: Transform features and avoid
additions. Comparison-preserved mapping
- Ranking with neural signals: Replace the exact
match kernel with privacy-aware trees.
Precompute kernel vectors

