
Privacy-Aware Document
Search on the Cloud

293S, 2020, T. Yang

Outline
• Privacy-aware search

▪ Motivation & problem definition
▪ Searchable encryption & known attacks

• Privacy-aware ranking
▪ Tree-ensemble based ranking
▪ Ranking with neural signals

No homework questions on this subject

Privacy-aware Search: Motivations
▪ Client uploads private data collections to the cloud such

as gmail, source code, enterprise documents
• Privacy-aware search does not want server to know the

hosted content and index, and what is searched

▪ Server is honest-but-curious: correctly executes
protocols but observes/infers private information
▪ Plain text leakage occurs due to accidents,

misconfiguration/use, or attacks.
– “Dropbox Security Bug Made Passwords

Optional For Four Hours”. June 2011

Client Cloud

Encrypted Query

...
Encrypted doc IDs/content

• [SongS&P2000]: Song, et al. , "Practical techniques for searches on
encrypted data." IEEE Symposium on Security and Privacy, 2000.

▪ [Client] KeyGen (a security parameter):
– Generate security keys
– Output: Private key kI for index, kD for documents.

▪ [Client] BuildIndex (kI, kD, D):
– Build encrypted index
– Output: Secure index I, and encrypted documents C.

Searchable Encryption: Workflow

Offline preprocessing

Three entities: data owner, search user and cloud server.
Data owner and a user are the same for this presentation

Client Cloud

Encrypted index

...
Encrypted results

Encrypted query

▪ [Client] KeyGen (a security parameter):
▪ [Client] BuildIndex (kI, kD, D):
▪ [Client] TokenGen (kI, q):

– Client converts query q to encrypted tokens using key kI
– Output: Query tokens t (encrypted query, or called

trapdoor)
▪ [Server] Search (I, t):

– Search encrypted index with query token(s)
– Output: encrypted matched document ID C

▪ [Client] Decryt (kD, C):
– Client decrypts document IDs
– Output: Matched documents.

Searchable Encryption: Workflow

Online query processing

Client Cloud

Trapdoor= Enc(Query)

...Enc(Doc id)

What are possible privacy attacks?

• Documents and queries are encrypted. The doc and
term IDs are also random numbers in the index
with no meaning
▪ Why there exist privacy attacks

• Leakage-Abuse Attacks:
▪ Recover plaintext of queries or documents
▪ IKK attack
– Islam, et al. "Access Pattern disclosure on Searchable Encryption:

Ramification, Attack and Mitigation." NDSS. Vol. 20. 2012.
– Launchable when a server knows co-occurrence

probability of English words + some other info

What does a server know in IKK: Example
• Knows co-occurrence matrix M, element Mij is

the probability of the i-th keyword wi and the j-th
keyword wj appearing in the same document.

dog cat car trunk

dog 1.0 0.8 0.3 0.2

cat - 1.0 0.1 0.6

car - - 1.0 0.9

trunk - - - 1.0

How a server can estimate
the elements of Mij without
knowing plaintext?

dog

cat

car

2 3 8 9 10

2 3 5 8 10

13 16

1

Mdog,cat=? 4/10 assuming 10 documents in total

Compute co-occurrence probability from index
access patterns

Given a query token t, access pattern R(t) is a
list of all document IDs matched and
returned
• The index has 10 documents

R(t1) = {2, 3, ,8,9,10}
R(t2) = {1, 2,3,5,8,10}

• Cooccurrence [t1, t2]= 4/10 = 0.4

• In general, a server can estimate an element of concurrence

matrix after processing two single-word queries

t1

t2

t3

2 3 8 9 10

2 3 5 8 10

13 16

1

How can a server attack?
Co-occurrence matrix M: Adversary knows English word for
M, but does not know corresponding tokens.
Co-occurrence matrix M’: The adversary does not know
English word of each column. It estimates M’ by index access.

Try a mapping between M’ and M: t1=dog, t2=cat, t3=car
mapping error : (0.8-0.3)2 + (0.2-0.3)2+(0.9-0.1)2

dog cat car trunk

dog 1.0 0.8 0.3 0.2

cat - 1.0 0.1 0.6

car - - 1.0 0.9

trunk - - - 1.0

t1 t2 t3

t1 1.0 0.3 0.2

t2 - 1.0 0.9

t3 - - 1.0

try: t1=dog, t2=car, t3=trunk

M’
M

dog cat car trunk

dog 1.0 0.8 0.3 0.2

cat - 1.0 0.1 0.6

car - - 1.0 0.9

trunk - - - 1.0

t1 t2 t3

t1 1.0 0.3 0.2

t2 - 1.0 0.9

t3 - - 1.0

IKK Assumptions: What a server knows
▪ Each query uses one single word
▪ Know the plaintext of m potential searchable

keywords and their mxm co-occurrence matrix M
▪ Can be approximated from similar datasets. E.g.

Wikipedia.
▪ But do not know their term IDs in the index

▪ Observe online processing of q single-word queries
▪ Observe index access patterns: all documents IDs that

match each query token
▪ Know in advance the text-to-token mapping for a small

numbers of words, e.g. Inject 150-word public doc or email
▪ Objective: Recover plaintext of these q words

Steps to conduct IKK attack

Step 1: Calculate co-occurrence matrix M’ for these q query
tokens based on the index access pattern:
• Each column corresponds to a token. The adversary does

not know the plaintext of its corresponding word
• M’i,j is estimated as intersection size of posting lists of

words wi and wj, divided by #documents in the dataset
Step 2: Map M’ to a submatrix of M:

Adversary knows keywords for M, but does not know
corresponding tokens.
Use simulated annealing to map tokens to English words
and minimize the squared error of pair mapping:
∑(coocurrance probability mapping difference)2

IKK attack limitation and extension
Counter attack= IKK + known term frequency
by Cash et al. "Leakage-abuse attacks against searchable encryption."
2015 ACM CCS. https://eprint.iacr.org/2016/718.pdf
• IKK attack is not scalable for a large dataset (>5000 words).

• Counter attacks requires
that a server knows the
document frequency of
terms (e.g. posting list
length). Does not require
known keyword-to-token
mapping

• More scalable

Outline

• Privacy-aware/secure search
▪ Motivation & problem definition
▪ Searchable encryption & known attacks

• Privacy-aware ranking
▪ Tree-ensemble based ranking
▪ Ranking with neural signals

Challenges in Privacy-Aware Rank
Computation

• Ranking requires arithmetic computation
and comparison
• Feature composition: e.g. TF-IDF, BM25, word

distance.
• Linear/nonlinear rank computation and comparison.

• Computation and comparability of
encrypted features
▪ Compose E(!"# + !%#) from E(!"#) and E(!%#) securely?
▪ Compare E(!"#" + !%#") and E(!"#% + !%#%) securely?
▪ Fully Homomorphic encryption [Gentry STOC09]:

Slow

Privacy-aware Ranking with Tree
Ensembles on the Cloud [Ji SIGIR’18]

• Full server-side ranking with encoded feature values
for privacy protection

• Tree-based learning ensembles (GBRT,
LamdaMART, Random Forest) still need to
compose input features with arithmetic operations
▪ E.g. BM25 involves additions
▪ feature leakage during server tree computation

• Proposed scheme:
▪ Simplify required arithmetic operations
▪ Query-length-specific training
▪ Hide feature values and tree thresholds with

comparison-preserved mapping

Idea 1: Simplified feature composition

• More server-side operation types supported à more
difficult to preserve privacy

• Strategy:
▪ Restrict type of arithmetic operations in feature

compositions.
▪ Only support min/max based composition from raw

features

• For BM25, use individual raw features (avoid addition)
• For proximity, use feature values of terms which are
word pairs or n-gram terms

f1+f2>3

Ranking without addition: Example

• Query: CD rate
• Document: d=“CD rate is 0.02 provided by CD bank”
• Feature vector for a traditional tree algorithm:

▪ d= [Average TF of unigram query words, Average TF of
bigram query words]

• Feature vector for ranking with no addition involved:
= [TF of CD, TF of rate, TF of CD-rate] = [2, 1, 1]

d=[(2+1)/2, 1]

Property of tree transformation by
removing sum feature operators

• The new tree can
separate white and
black circles as
accurate as the old
tree

Using raw features only
for common operators
has no training loss
degradation in terms of
squared error or entropy-
based information gain

Idea 2: Encoding with comparison-
preserved mapping

• Objective: Hide document feature values and tree
thresholds for better privacy

• Option 1: OPM
• Order preserved mapping [Boldyreva et al.

Cryoto11]
• v1 > v2 ⇔ OPM(v1) > OPM(v2)
• v1 = v2 ⇔ OPM(v1) = OPM(v2)

• Option 2: CPM (Comparison preserved mapping)
Feature value/threshold mapping only preserves
correctness of decision tree branching
Leak less: v1 ≥ v2 ⇔ CPM(v1) ≥ CPM(v2)

Example of comparison-preserved
mapping (CPM)

A decision tree has 3
thresholds

[0.5, 3, 5]

The dataset has 6
feature values
[0.3,0.8,1.5,2.5,3.8,5.1]

f1 ≥ 3

max(f1, f2) ≥ 5

f2 ≥ 0.5

Original trees

Data:
d1=[0.8,1.5]
d2=[2.5,5.1]
d3=[3.8,0.3]

[1, 2, 3]

[0, 1, 1, 1, 2, 3]

CPM

f1 ≥ 2

max(f1, f2) ≥ 3

f2 ≥ 1

Encoded trees

Encoded data
d1=[1,1]
d2=[1,3]
d3=[2,0]

What information is protected

A server cannot well
recover original values of
feature values, their
difference, and their
ratios.

Recover

f1 ≥ 3

max(f1, f2) ≥ 5

f2 ≥ 0.5

Original trees

Data:
d1=[0.8,1.5]
d2=[2.5,5.1]
d3=[3.8,0.3]

f1 ≥ 2

max(f1, f2) ≥ 3

f2 ≥ 1

Encoded trees

Encoded data
d1=[1,1]
d2=[1,3]
d3=[2,0]

• If it can do within
an error bound, it
has to distinguish
the original data
from an infinite
number of possible
datasets, which is
unlikely.

Ideal 3: Query-length-specific training
• Number of raw features is query-dependent.
• Query-length specific training with hybrid tree

ensemble

2 word queries
Training set

Model
selection

Allow a different
algorithm to be
used
for a different
query length with
a different
combination of
raw/composite
features

3 word queries

4 word queries

m word queries

Evaluation with CPM-based tree

ensembles
• Assume features can be safely fetched for matched

documents
• Evaluation objective: Can tree ensembles with CPM

using raw and min/max compositions perform

competitively?

• TREC Datasets

Query length 1 2 3 4 5

Robust04, 0.5M 11 70 140 25 4

Robust05, 1M 1 19 24 5 1

ClubeWeb09-12, 50M 64 70 52 14 0

ClubeWeb, MQ09, 50M 98 294 232 53 9

Relevance of CPM trees with restricted
features

Collections λ-
MART

GBRT Random
Forest

CPM

Robust04 0.3936 0.4025 0.4114 0.3975 (-3.3%)

Robust05 0.2765 0.2778 0.2945 0.2928 (-0.6%)

ClueWeb09-12 0.2235 0.1906 0.2100 0.2160 (-3.4%)

ClueWeb09, MQ09 0.2603 0.2419 0.2395 0.2573 (-1.2%)

Compared to existing methods with no Restriction
5-fold validation NDCG@20 results

CPM is close to the best constantly with small degradation

Relevance with different query lengths
NDCG@20 of ClueWeb09, MQ09. Features include raw
indivdual BM25 for title/body, word-pair distance with
min/max composition, PageRank, and Wikipedia indicator

Q-length λ-MART GBRT Random
Forest

CPM

2 0.2712 0.2457 0.2612 0.2712 (0%)

3 0.2683 0.2185 0.2284 0.2767 (+3.1%)

4 0.2280 0.2296 0.2369 0.2296 (-3%)

5 0.0913 0.0843 0.0388 0.0913 (0%)

CPM gives the more stable results than others by selecting the
best configuration with query-length specific optimization.

Privacy-aware Neural Ranking [Shao et
al. SIGIR 2019]

• Interaction-based Neural Ranking
▪ RankingScore = f(Ker(q ⊗ d))

– q, d: sequences of embedding
vectors for query and document
– ⊗: interaction matrix
– Ker: kernel computation
– f: neural network computation

▪ Interaction ⊗ outputs a similarity matrix M
containing vector similarity for all pairs of one query
term vector and document term vector

▪ Kernel computation:

DRMM, KNRM,
Conv-KNRM

Neural Ranking in KNRM ▪ Translation
matrix is a
cosine similarity
of a query term
and a document
term

Leakage in Interaction-based Neural Ranking

Query
! terms

Document
" terms

⨂ Interact

Query
plaintext

attack, e.g.,
[Islam et al.
NDSS12]

Similarity Matrix
!×" real values

Kernel Vector
% real values

Kernel Comp.

Leak: term
frequency /
term Co-

occurrence

Proposed Solution for Private Neural Ranking

Query
! terms

Document
" terms

⨂ Interact
1. Leakage in computing

kernel vectors?
Pre-computing them.

Similarity Matrix
!×" real values

Kernel Vector
% real values

Kernel
Comp.

2. Avoid leakage in kernel
vectors?

Partial replacement with
private tree ensembles

3. Too much storage cost in
storing precomputed kernel

vectors?
Closed soft match map

Leak term
frequency /
cooccurrence

How Kernel Values Leak Term Frequency

Decompose kernel values into two parts:
• !" #, % , … , !'("(#, %) Soft Match Signals
• !'(#, %) Exact Match Signal

Our analysis: Term frequency of # can be well approximated
by !'(#, %).
Solution for privacy-preserving: Replace the exact match
signal with the private tree-based ranking signal.

+
,∈.

log!" #, % , +
,∈.

log!2 #, % , … ,+
,∈.

log!' #, %

!3(#, %) is the 4-th kernel value on the interaction of query
term # and document %. 5 is the number of kernels.

Final kernel vector for query q and document d:

How to Approximate Exact Match Signal !"($, &)

Proposed privacy-preserving approach
1. Gather traditional word frequency and

proximity features
2. Use a query-length-specific learning-to-

ranking tree ensemble to compute a rank score
3. Use a private tree-based model [Ji et al.,

SIGIR18] to encrypt features and tree
thresholds

Kernel vector

(
)∈+

log!" $, &

Approximated
kernel vector

Storage Cost Reduction with Soft Index

Store precomputed kernel vectors for all term-doc pairs
à Huge storage cost. 16TB for 1M documents and
200K vocabulary.

Soft indexing solution: soft match map
• Index contains posting (term, doc) only if this

term is semantically related to this document.
• For every term t in a dataset, form a closure

for term t above a similarity threshold
• Given term t in document d, we find other

terms t’ in the cluster of t. Then the index
contains posting (t’,d)

Fixed threshold: Can create a super large closure.

Adaptive clustering: Only keep top similar terms with
different threshold for different clusters, which avoids
massive storage cost.

Clustering for Soft Match Map

Privacy Property of Closed Soft Match Map

Objective: Given a closed soft match map, a server adversary
cannot learn term frequency/co-occurrence of the dataset.

Property Sketch: Given a dataset !, with " key-value pairs in
a closed soft match map of !, and closure size ≥ $,
there exist at least 2& − 1) different datasets !* such that
their soft match maps have the same key, and values that are +-
statistically indistinguishable

Takeaway: These 2& − 1) different datasets have different
term frequencies and co-occurrences, while their soft match
maps are very similar (kernel value indistinguishability).

Thus, the cloud server is unlikely to recover the correct dataset.

Kernel Value Indistinguishability: Definition

• !-statistically indistinguishable kernel values:
The statistical difference between D and D’ ≤ ε
• An adversary can successfully differentiate $ and D′ with

probability at most &
'
+).

• Takeaway

↓)
+,-./0

↓ 1234(successfully differentiate between D and $F)

Given dataset D, transform words in document d in D as d’ by using
a similarity closure to form D’. Their kernel vectors are:
I⃗J,/ = (M&, M', MN, … , MPQ&), I⃗J,/R = MF&, M

F
', M

F
N, … , M

F
PQ& .

Obfuscating kernel values for privacy protection

For the !-th soft kernel value in the kernel value vector, it is
obfuscated as:

"# = %
log) *# +, - , ./ *#(+, -) > 1,
1, 4+ℎ678.96,

+ is a term, - is a document, and *# +, - is the output from
the !-th kernel function.

Trade-off between privacy and ranking accuracy:

↑ Obfuscation value 7
yields

↓ J+"+.9+.K"L M.9+ance
yields

↑ Privacy
yields

↓ Effectiveness of soft match signals

S
T∈V

log*# +, -

Evaluation on Approx. Exact Match Signal

ClueWeb09-Cat-B Robuts04

Model NDCG@1 NDCG@3 NDCG@10 NDCG@1 NDCG@3 NDCG@10

LambdaMART 0.2893 0.2828 0.2827 0.5181 0.4610 0.4044

DRMM 0.2586 0.2659 0.2634 0.5049 0.4872 0.4528

KNRM 0.2663 0.2739 0.2681 0.4983 0.4812 04527

C-KNRM 0.3155 0.3124 0.3085 0.5373 0.4875 0.4586

C-KNRM* 0.2884 0.2927 0.2870 0.5007 0.4702 0.4510

C-KNRM*/T 0.3175 0.3122 0.3218 0.5404 0.5006 0.4657

C-KNRM is CONV-KNRM [Dai et al. WSDM18]
C-KNRM* is a version of CONV-KNRM without bigram-bigram interaction
C-KNRM*/T is C-KNRM* while using a LambdaMART tree ensemble to
replace the exact match signal of kernel vectors.
Takeaway: Tree signal intergration for neural kernel vectors
perform well and even boost ranking performance.

Effectiveness of Kernel Value Obfuscation
ClueWeb09-Cat-B Robuts04

Model NDCG@1 NDCG@3 NDCG@10 NDCG@1 NDCG@3 NDCG@10

C-KNRM 0.3155 0.3124 0.3085 0.5373 0.4875 0.4586

C-KNRM* 0.2884 0.2927 0.2870 0.5007 0.4702 0.4510

C-KNRM*/TO
No Obfuscation

0.3175 0.3122 0.3218 0.5404 0.5006 0.4657

C-KNRM*/TO
r = 5

0.3178 0.3067 0.3100 0.5306 0.4987 0.4613

C-KNRM*/TO
r = 10

0.3121 0.3097 0.3100 0.5221 0.4980 0.4623

Takeaway: Kernel value obfuscation results in small
degradation (~1.6%) on ranking performance, when r = 10.

C-KNRM*/TO is C-KNRM* while using the tree-
approximated kernel vectors and kernel value obfuscation

Summary

• Secure search with searchable encryption
▪ Knowing con-occurrence and document

frequency of terms can aid privacy-abuse
attacks

• Privacy-aware ranking
▪ Tree-ensembles: Transform features and avoid

additions. Comparison-preserved mapping
▪ Ranking with neural signals: Replace the exact

match kernel with privacy-aware trees.
Precompute kernel vectors

