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No homework questions on this subject



Privacy-aware Search: Motivations
▪ Client uploads private data collections to the cloud such 

as gmail, source code, enterprise documents
• Privacy-aware search does not want server to know the 

hosted content and index, and what is searched

▪ Server is honest-but-curious: correctly executes 
protocols but observes/infers private information
▪ Plain text leakage occurs due to accidents, 

misconfiguration/use, or attacks.
– “Dropbox Security Bug Made Passwords 

Optional For Four Hours”. June 2011

Client Cloud

Encrypted Query 

...
Encrypted doc IDs/content



• [SongS&P2000]: Song, et al. , "Practical techniques for searches on 
encrypted data." IEEE Symposium on Security and Privacy, 2000.

▪ [Client] KeyGen (a security parameter):
– Generate security keys
– Output: Private key kI for index, kD for documents.

▪ [Client] BuildIndex (kI, kD, D):
– Build encrypted index
– Output: Secure index I, and encrypted documents C.

Searchable Encryption: Workflow

Offline preprocessing

Three entities: data owner, search user and cloud server.   
Data owner and a user are the same  for this presentation

Client Cloud

Encrypted index

...
Encrypted results

Encrypted query 



▪ [Client] KeyGen (a security parameter):
▪ [Client] BuildIndex (kI, kD, D):
▪ [Client] TokenGen (kI, q):

– Client converts query q to encrypted tokens using key kI
– Output: Query tokens t  (encrypted query, or called 

trapdoor)
▪ [Server] Search (I, t):

– Search encrypted index with query token(s)
– Output: encrypted matched document ID C

▪ [Client] Decryt (kD, C):
– Client decrypts document IDs
– Output: Matched documents.

Searchable Encryption: Workflow

Online query processing

Client Cloud

Trapdoor= Enc(Query) 

...Enc(Doc id)



What are possible privacy attacks?

• Documents and queries are encrypted. The doc and 
term IDs are also random numbers in the index 
with no meaning
▪ Why there exist privacy attacks

• Leakage-Abuse Attacks:
▪ Recover plaintext  of queries or documents
▪ IKK attack
– Islam, et al. "Access Pattern disclosure on Searchable Encryption: 

Ramification, Attack and Mitigation." NDSS. Vol. 20. 2012.
– Launchable when a server knows co-occurrence 

probability  of English words + some other info



What does a server know in IKK: Example
• Knows co-occurrence matrix M, element Mij is 

the probability of the i-th keyword wi and the j-th
keyword wj appearing in the same document. 

dog cat car trunk

dog 1.0 0.8 0.3 0.2

cat - 1.0 0.1 0.6

car - - 1.0 0.9

trunk - - - 1.0

How a server can estimate 
the elements of Mij without 
knowing plaintext? 

dog

cat

car

2 3 8 9 10

2 3 5 8 10

13 16

1

Mdog,cat=? 4/10 assuming 10 documents in total



Compute co-occurrence probability from index 
access patterns

Given a query token t, access pattern R(t) is a 
list of all document IDs matched and 
returned
• The index has 10   documents                                                              

R(t1)         =        {2, 3, ,8,9,10}
R(t2)         =        {1, 2,3,5,8,10}

• Cooccurrence [t1, t2 ]= 4/10 = 0.4

• In general, a server can estimate an element of concurrence 

matrix after processing two single-word queries

t1

t2

t3

2 3 8 9 10

2 3 5 8 10

13 16

1



How can a server attack?
Co-occurrence matrix M: Adversary knows English word for 
M, but does not know corresponding tokens. 
Co-occurrence matrix M’:  The adversary does not know 
English word of each column. It estimates M’ by index access.

Try a mapping between M’ and M: t1=dog, t2=cat, t3=car
mapping error : (0.8-0.3)2 + (0.2-0.3)2+(0.9-0.1)2

dog cat car trunk

dog 1.0 0.8 0.3 0.2

cat - 1.0 0.1 0.6

car - - 1.0 0.9

trunk - - - 1.0

t1 t2 t3

t1 1.0 0.3 0.2

t2 - 1.0 0.9

t3 - - 1.0

try: t1=dog, t2=car, t3=trunk

M’
M

dog cat car trunk

dog 1.0 0.8 0.3 0.2

cat - 1.0 0.1 0.6

car - - 1.0 0.9

trunk - - - 1.0

t1 t2 t3

t1 1.0 0.3 0.2

t2 - 1.0 0.9

t3 - - 1.0



IKK Assumptions: What a server knows
▪ Each query uses one single word
▪ Know the plaintext of  m potential searchable 

keywords and their mxm co-occurrence matrix M
▪ Can be approximated from similar datasets. E.g.  

Wikipedia.
▪ But do not know their term IDs in the index

▪ Observe online processing of q single-word queries
▪ Observe index access patterns: all documents IDs that 

match each query token
▪ Know in advance the text-to-token mapping for a small 

numbers of words, e.g.  Inject 150-word public doc or email
▪ Objective: Recover plaintext of these q words



Steps to conduct IKK attack

Step 1: Calculate co-occurrence matrix M’ for these q query 
tokens based on the index access pattern: 
• Each column corresponds to a token. The adversary does 

not know  the plaintext of its corresponding word
• M’i,j is estimated as  intersection size of posting  lists of 

words wi and wj, divided by #documents in the dataset
Step 2: Map M’ to  a submatrix of M:  

Adversary knows keywords for M, but does not know 
corresponding tokens.
Use simulated annealing to map tokens to English words 
and minimize the squared error of pair mapping: 
∑(coocurrance probability mapping difference)2



IKK attack limitation and extension
Counter attack= IKK + known term frequency 
by Cash et al. "Leakage-abuse attacks against searchable encryption." 
2015 ACM CCS. https://eprint.iacr.org/2016/718.pdf
• IKK attack is not scalable for a large dataset (>5000 words).

• Counter attacks requires 
that a server knows the 
document frequency of 
terms (e.g. posting list 
length).  Does not require  
known keyword-to-token 
mapping

• More scalable



Outline

• Privacy-aware/secure search
▪ Motivation & problem definition
▪ Searchable encryption & known attacks

• Privacy-aware ranking
▪ Tree-ensemble based ranking
▪ Ranking with neural signals



Challenges in Privacy-Aware Rank 
Computation

• Ranking requires arithmetic computation 
and comparison
• Feature composition: e.g. TF-IDF, BM25, word 

distance.
• Linear/nonlinear rank computation and comparison.

• Computation and comparability of 
encrypted features
▪ Compose E(!"# + !%#) from E(!"#) and E(!%#) securely?
▪ Compare E(!"#" + !%#") and E(!"#% + !%#%) securely?
▪ Fully Homomorphic encryption [Gentry STOC09]: 

Slow



Privacy-aware Ranking with Tree 
Ensembles on the Cloud [Ji SIGIR’18]

• Full server-side ranking with encoded feature values 
for privacy protection

• Tree-based learning ensembles (GBRT, 
LamdaMART, Random Forest) still need to 
compose input features with arithmetic operations
▪ E.g. BM25 involves additions
▪ feature leakage during server tree computation

• Proposed scheme:
▪ Simplify  required arithmetic operations
▪ Query-length-specific training
▪ Hide feature values and tree thresholds with 

comparison-preserved mapping



Idea 1: Simplified feature composition

• More server-side operation types supported à more 
difficult to preserve privacy

• Strategy:
▪ Restrict type of arithmetic operations in feature 

compositions. 
▪ Only support min/max based composition from raw 

features

• For BM25, use individual raw features (avoid addition)
• For proximity, use feature values of terms which are 
word pairs or n-gram terms

f1+f2>3



Ranking without addition: Example

• Query:  CD rate
• Document:   d=“CD  rate is   0.02  provided by CD bank”
• Feature vector for a traditional tree algorithm:

▪ d= [Average TF of  unigram query words, Average TF of 
bigram query words]

• Feature vector for  ranking with no addition involved:  
= [TF of CD, TF of rate, TF of CD-rate] = [2, 1, 1]

d=[ (2+1)/2,  1]



Property of tree transformation by 
removing sum feature operators

• The new tree can 
separate white and 
black circles as 
accurate as the old 
tree 

Using  raw features only 
for common operators 
has no training loss 
degradation in terms of 
squared error or entropy-
based information gain



Idea 2: Encoding with comparison-
preserved mapping

• Objective: Hide document feature values and tree 
thresholds for better privacy

• Option 1: OPM  
• Order preserved mapping [Boldyreva et al. 

Cryoto11]
• v1 > v2 ⇔ OPM(v1) > OPM(v2)
• v1 = v2 ⇔ OPM(v1) = OPM(v2)

• Option 2: CPM (Comparison preserved mapping)
Feature value/threshold mapping only preserves 
correctness of decision tree branching
Leak less:   v1 ≥ v2 ⇔ CPM(v1) ≥ CPM(v2)



Example of comparison-preserved 
mapping (CPM)

A decision tree has 3 
thresholds

[0.5, 3, 5]

The dataset has 6 
feature values 
[0.3,0.8,1.5,2.5,3.8,5.1]

f1 ≥ 3

max(f1, f2) ≥ 5

f2 ≥ 0.5

Original trees

Data:
d1=[0.8,1.5]
d2=[2.5,5.1]
d3=[3.8,0.3]

[1, 2, 3]

[0, 1, 1, 1, 2, 3]

CPM

f1 ≥ 2

max(f1, f2) ≥ 3

f2 ≥ 1

Encoded trees

Encoded data
d1=[1,1]
d2=[1,3]
d3=[2,0] 



What information is protected 

A server cannot well 
recover original values of 
feature values, their 
difference, and their 
ratios.

Recover

f1 ≥ 3

max(f1, f2) ≥ 5

f2 ≥ 0.5

Original trees

Data:
d1=[0.8,1.5]
d2=[2.5,5.1]
d3=[3.8,0.3]

f1 ≥ 2

max(f1, f2) ≥ 3

f2 ≥ 1

Encoded trees

Encoded data
d1=[1,1]
d2=[1,3]
d3=[2,0] 

• If it can do within 
an error bound,  it 
has to distinguish 
the original data 
from an infinite 
number of possible 
datasets, which is 
unlikely.



Ideal 3: Query-length-specific training
• Number of raw features is query-dependent.
• Query-length specific training with hybrid tree 

ensemble

2 word queries
Training set

Model 
selection

Allow a different 
algorithm to be 
used
for a different 
query length with 
a different
combination of 
raw/composite 
features

3 word queries

4 word queries

m word queries



Evaluation with CPM-based tree 

ensembles
• Assume features can be safely fetched for matched 

documents
• Evaluation objective: Can tree ensembles with CPM 

using raw and min/max compositions perform 

competitively? 

• TREC Datasets

Query length 1 2 3 4 5

Robust04, 0.5M 11 70 140 25 4

Robust05, 1M 1 19 24 5 1

ClubeWeb09-12, 50M 64 70 52 14 0

ClubeWeb, MQ09, 50M 98 294 232 53 9



Relevance of CPM trees with restricted 
features

Collections λ-
MART

GBRT Random 
Forest

CPM

Robust04 0.3936 0.4025 0.4114 0.3975 (-3.3%)

Robust05 0.2765 0.2778 0.2945 0.2928 (-0.6%)

ClueWeb09-12 0.2235 0.1906 0.2100 0.2160 (-3.4%)

ClueWeb09, MQ09 0.2603 0.2419 0.2395 0.2573 (-1.2%)

Compared to existing methods with no Restriction
5-fold validation NDCG@20 results

CPM is close to the best constantly with small degradation



Relevance with different query lengths
NDCG@20 of ClueWeb09, MQ09. Features include  raw 
indivdual BM25 for title/body, word-pair distance with 
min/max composition,  PageRank, and Wikipedia indicator

Q-length λ-MART GBRT Random 
Forest

CPM

2 0.2712 0.2457 0.2612 0.2712 (0%)

3 0.2683 0.2185 0.2284 0.2767 (+3.1%)

4 0.2280 0.2296 0.2369 0.2296 (-3%)

5 0.0913 0.0843 0.0388 0.0913 (0%)

CPM gives the more stable results than others by selecting the 
best configuration with query-length specific optimization.



Privacy-aware Neural Ranking [Shao et 
al. SIGIR 2019]

• Interaction-based Neural Ranking 
▪ RankingScore = f(Ker(q ⊗ d))

– q, d: sequences of embedding 
vectors for query and document
– ⊗: interaction matrix
– Ker: kernel computation
– f: neural network computation

▪ Interaction ⊗ outputs a similarity matrix M 
containing vector similarity for all pairs of one query 
term vector and document term vector

▪ Kernel computation:

DRMM, KNRM, 
Conv-KNRM



Neural Ranking in KNRM ▪ Translation 
matrix is a 
cosine similarity 
of a query term 
and a document 
term



Leakage in Interaction-based Neural Ranking

Query
! terms

Document
" terms

⨂ Interact

Query 
plaintext 

attack, e.g., 
[Islam et al. 
NDSS12]

Similarity Matrix
!×" real values

Kernel Vector
% real values

Kernel Comp.

Leak: term 
frequency / 
term Co-

occurrence



Proposed Solution for Private Neural Ranking

Query
! terms

Document
" terms

⨂ Interact
1. Leakage in computing 

kernel vectors?
Pre-computing them.

Similarity Matrix
!×" real values

Kernel Vector
% real values

Kernel 
Comp.

2. Avoid leakage in kernel 
vectors?

Partial replacement with 
private tree ensembles

3. Too much storage cost in 
storing precomputed kernel 

vectors?
Closed soft match map

Leak term 
frequency / 
cooccurrence



How Kernel Values Leak Term Frequency

Decompose kernel values into two parts:
• !" #, % , … , !'("(#, %) Soft Match Signals
• !'(#, %) Exact Match Signal

Our analysis: Term frequency of # can be well approximated 
by !'(#, %).
Solution for privacy-preserving: Replace the exact match 
signal with the private tree-based ranking signal.

+
,∈.

log!" #, % , +
,∈.

log!2 #, % , … ,+
,∈.

log!' #, %

!3(#, %) is the 4-th kernel value on the interaction of query 
term # and document %.       5 is the number of kernels.

Final kernel vector for query q and document d:



How to Approximate Exact Match Signal !"($, &)

Proposed privacy-preserving approach 
1. Gather traditional word frequency and 

proximity features
2. Use a query-length-specific learning-to-

ranking tree ensemble to compute a rank score
3. Use a private tree-based model [Ji et al., 

SIGIR18] to encrypt features and tree 
thresholds

Kernel vector

(
)∈+

log!" $, &

Approximated 
kernel vector



Storage Cost Reduction with Soft Index

Store precomputed kernel vectors for all term-doc pairs 
à Huge storage cost. 16TB for 1M documents and 
200K vocabulary.

Soft indexing solution: soft match map
• Index contains posting (term, doc) only if this 

term is semantically related to this document.
• For every term t in a dataset, form a closure 

for term t above a similarity threshold
• Given term t in document d, we find other 

terms t’ in the cluster of t. Then the index 
contains posting (t’,d)



Fixed threshold: Can create a super large closure.

Adaptive clustering: Only keep top similar terms with 
different threshold for different clusters, which avoids 
massive storage cost.

Clustering for Soft Match Map



Privacy Property of Closed Soft Match Map

Objective: Given a closed soft match map, a server adversary 
cannot learn term frequency/co-occurrence of the dataset.

Property Sketch: Given a dataset !, with " key-value pairs in 
a closed soft match map of !, and closure size ≥ $ , 
there exist at least 2& − 1 ) different datasets !* such that 
their soft match maps have the same key, and values that are +-
statistically indistinguishable

Takeaway: These 2& − 1 ) different datasets have different 
term frequencies and co-occurrences, while their soft match 
maps are very similar (kernel value indistinguishability). 

Thus, the cloud server is unlikely to recover the correct dataset.



Kernel Value Indistinguishability: Definition

• !-statistically indistinguishable kernel values:
The statistical difference between  D and D’ ≤ ε
• An adversary can successfully differentiate $ and D′ with 

probability at most &
'
+ ).

• Takeaway

↓ )
+,-./0

↓ 1234(successfully differentiate between D and $F)

Given dataset D, transform words in document d in D as d’ by using 
a similarity closure to form D’.  Their kernel vectors are: 
I⃗J,/ = (M&, M', MN, … , MPQ&),        I⃗J,/R = MF&, M

F
', M

F
N, … , M

F
PQ& . 



Obfuscating kernel values for privacy protection

For the !-th soft kernel value in the kernel value vector, it is 
obfuscated as:

"# = %
log) *# +, - , ./ *#(+, -) > 1,
1, 4+ℎ678.96,

+ is a term, - is a document, and *# +, - is the output from 
the !-th kernel function.

Trade-off between privacy and ranking accuracy:

↑ Obfuscation value 7
yields

↓ J+"+.9+.K"L M.9+ance
yields

↑ Privacy     
yields

↓ Effectiveness of soft match signals

S
T∈V

log*# +, -



Evaluation on Approx. Exact Match Signal

ClueWeb09-Cat-B Robuts04

Model NDCG@1 NDCG@3 NDCG@10 NDCG@1 NDCG@3 NDCG@10

LambdaMART 0.2893 0.2828 0.2827 0.5181 0.4610 0.4044

DRMM 0.2586 0.2659 0.2634 0.5049 0.4872 0.4528

KNRM 0.2663 0.2739 0.2681 0.4983 0.4812 04527

C-KNRM 0.3155 0.3124 0.3085 0.5373 0.4875 0.4586

C-KNRM* 0.2884 0.2927 0.2870 0.5007 0.4702 0.4510

C-KNRM*/T 0.3175 0.3122 0.3218 0.5404 0.5006 0.4657

C-KNRM  is  CONV-KNRM [Dai et al. WSDM18]
C-KNRM* is a version of CONV-KNRM without bigram-bigram interaction
C-KNRM*/T is C-KNRM*  while using a LambdaMART tree ensemble  to 
replace the exact match signal of kernel vectors.
Takeaway: Tree signal intergration for neural kernel vectors 
perform well  and  even boost ranking performance.



Effectiveness of Kernel Value Obfuscation
ClueWeb09-Cat-B Robuts04

Model NDCG@1 NDCG@3 NDCG@10 NDCG@1 NDCG@3 NDCG@10

C-KNRM 0.3155 0.3124 0.3085 0.5373 0.4875 0.4586

C-KNRM* 0.2884 0.2927 0.2870 0.5007 0.4702 0.4510

C-KNRM*/TO
No Obfuscation

0.3175 0.3122 0.3218 0.5404 0.5006 0.4657

C-KNRM*/TO
r = 5

0.3178 0.3067 0.3100 0.5306 0.4987 0.4613

C-KNRM*/TO
r = 10

0.3121 0.3097 0.3100 0.5221 0.4980 0.4623

Takeaway: Kernel value obfuscation results in small 
degradation (~1.6%) on ranking performance, when r = 10.

C-KNRM*/TO is C-KNRM*  while using the tree-
approximated kernel vectors and kernel value obfuscation



Summary

• Secure search with searchable encryption
▪ Knowing con-occurrence and document 

frequency of terms can aid privacy-abuse 
attacks

• Privacy-aware ranking
▪ Tree-ensembles: Transform features and avoid 

additions. Comparison-preserved mapping
▪ Ranking with neural signals: Replace the exact 

match kernel with privacy-aware trees. 
Precompute kernel vectors 


