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1 Objectives and Challenges

The objective of this project is to understand and reproduce the results from the paper
Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation
[5]. In this paper, the authors propose a new training technique for neural ranking models
called Cross-Architecture Knowledge Distillation.

While neural ranking models show great performance improvement compared to classic
ranking models, neural networks require a high amount of compute and there is usually
a trade-off between efficiency and effectiveness at query time. The goal of this paper is
to improve the effectiveness of efficient neural ranking models without compromising their
query latency benefits.

2 State-of-the-art techniques

The paper leveraged an novel version of the knowledge distillation [4] to improve the effec-
tiveness of four recent efficient neural ranking models with different architectures that are
specially designed to transfer computation to the indexing phase to require less resources at
query time.

Knowledge distillation [4] is a common approach to close the performance gap between
a large teacher model (slow) and a small student model (fast). Teacher model and student
model usually have the same architecture and only different in size, so the output scores of
teacher and student model are usually in the same range. To distill knowledge from teach to
student, a standard Mean Squared Error (MSE) loss is utilized to minimizing the difference
between the absolute output scores of a teacher and a student.

The teacher model BERTCAT is a direct adaptation from BERT [3], which is a large pre-
trained language model that is widely used in neural ranking models. BERTCAT concatenate
the query and the passage to feed them to a pre-trained BERT model, then output a score
from the resulting [CLS] representation. The ranking model can then use the score to
produce the ranking between the retrieved passages for a specific query.

The first student model BERTDOT also known in the literature as Tower-BERT [2],
BERT-Siamese [11], or TwinBERT [8], is also based on BERT [3]. It uses dot product
between the [CLS] token representation computed from a full BERT of query and passage
as the output score.

The second BERT-based student model ColBERT [7] use the representations of all the
tokens computed from a full BERT as the encoded query/passage, then calculate the output
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score as a dot product between each tokens in the query and passage. Then do max-pooling
across the passage and sum across the query.

The third BERT-based student model PreTT [9] use the representations of all the tokens
computed from the first b BERT-layers as the encoded query/passage, then concatenates
the resulting passage and query sequences with a [SEP] separator token and computes the
remaining BERT-layers. Then the score is produced by the final CLS token representation.

The fourth student model Transformer-Kernel (TK) [6] is not a BERT-based model. It
represents each token using a weighted average over a classic word embedding (e.g. word2vec,
GloVe) and a contextualized representation (e.g. a shallow transformer TF). For calculating
the score, it first compute cosine similarity between each token in the query and the passage.
Then apply a set of Gaussian kernels. Then aggregate the scores by summing over the
passage and query and then weighted sum over different kernels.

3 Key algorithms

Since each student model has a different way of calculating scores, the output scores are
usually in a different range for different model. However, the difference in score for a relevant
and non-relevant passage pair is usually similar across different architectures. So instead
of using the conventional pointwise MSE that minimize the difference between the absolute
output scores, the authors proposed to use a Margin-MSE to minimize the margin between
the scores of the relevant and the non-relevant sample passage per query.

The knowledge distillation process use the triplet (query, relevant passage, non-relevant
passage) as the train data, and the whole process include three steps. In the first step,
a teacher model, BERTCAT is trained using the normal RankNet [1] algorithm that use
Sigmoid function to approximate the probabily of whether a passage is relevant to the
query or not. In the second step, we use the trained BERTCAT to inference the teacher
scores for all training triplets. In the third step, we use Margin-MSE to train each student
model with teacher scores.
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Figure 1: Results reported in the paper.

4 Experiments

We demonstrate running the model proposed by Hofstatter et al. [6] using checkpoints in
https://github.com/sebastian-hofstaetter/neural-ranking-kd. We run
our experiments using pyserini (https://github.com/castorini/pyserini) and
test the model on a novel challenge retrieval set produced from SQuAD.

4.1 Dataset

Stanford Question Answering Dataset (SQuAD) [10] is a reading comprehension dataset,
consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the
answer to every question is a segment of text, or span, from the corresponding reading
passage, or the question might be unanswerable. In our experiments, we use the articles to
build the index and then use the questions as queries to test the ranking performance of our
models.

Each article consists of some paragraphs pi which contain questions qi,j . Each question
is sufficiently answered by the information contained in its paragraph pi. We thus produce
our challenge SQuAD retrieval set as follows: Each paragraph is considered as a document
in our index, leading to a total of 20,239 documents from all paragraphs in the training and
test sets. We then use the test set questions as our query set for a total of 11,873 questions.

We produce this using the following python code:

#squaddev[”data”][0]['paragraphs'][4]['qas']
#index with ascending number for each paragraph, treat each p as a doc
#['context'] : the paragraph itself
#['qas'] : a list of 'question', 'id' that match to this paragraph

5

import json
import random
from collections import defaultdict

10 random.seed(1248)

docs = 0
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train = ”squad˙test/train-v2.0.json”
15 test = ”squad˙test/dev-v2.0.json”

# we build docs list to contain train and test qs, q list only to contain
↪→ test qs

docs˙list = []
current˙did = 0

20

# minidoc˙doc -¿ get all minidocs that correspond to this current
↪→ document

minidoc˙doc = defaultdict(list)
# a list of
doc˙minidoc = []

25

data = json.load(open(train))[”data”]
# each elem in data corresponds to a single wiki doc
# we will treat each paragraph as its own ”mini doc” for testing purposes

30 for j, document in enumerate(data):
title = document[”title”]
for paragraph in document['paragraphs']:

docs˙list.append((current˙did, title, paragraph[”context”].
↪→ replace(”“n”,” ”)))

minidoc˙doc[j].append(current˙did)
35 doc˙minidoc.append(j)

current˙did += 1
docs += 1

# save how many pages we visited
40 jstart = len(data)

data = json.load(open(test))[”data”]
questions˙list = []

# now we also build questionlist simultaneously
45 for j, document in enumerate(data):

title = document[”title”]
for paragraph in document['paragraphs']:

docs˙list.append((current˙did, title, paragraph[”context”].
↪→ replace(”“n”,” ”)))

minidoc˙doc[j].append(current˙did)
50 doc˙minidoc.append(j+jstart)

paragraph˙questions = paragraph[”qas”]
for question in paragraph˙questions:

qid = question[”id”]
qtext = question[”question”]

55 questions˙list.append((qid, qtext, current˙did))
current˙did += 1
docs += 1

60
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# build document outstring
docoutlist = []
for did, dtitle, dtext in docs˙list:

docoutlist.append(json.dumps(–”id”:did,”contents”:dtitle+”“n”+dtext˝)
↪→ +”“n”)

65 with open(”squad˙docs.jsonl”,”w”) as f:
f.writelines(docoutlist)

# generate qrels file
# query-id 0 document-id relevance (0 or 1)

70 qrels˙lines = []
easy˙qrels˙lines = []
question˙file˙lines = []
for i, (qid, qtext, did) in enumerate(questions˙list):

question˙file˙lines.append(f”–i˝“t–qtext˝“n”)
75 false˙judge = random.sample(range(0,current˙did),10)

qrels˙lines.append(f”–i˝ 0 –did˝ 1“n”)
easy˙qrels˙lines.append(f”–i˝ 0 –did˝ 1“n”)
for ˙did in random.sample(range(0,current˙did),10):

if did == ˙did:
80 continue

qrels˙lines.append(f”–i˝ 0 –˙did˝ 0“n”)
if did in minidoc˙doc[doc˙minidoc[˙did]]:

continue
easy˙qrels˙lines.append(f”–i˝ 0 –˙did˝ 0“n”)

85 for ˙did in minidoc˙doc[doc˙minidoc[did]]:
easy˙qrels˙lines.append(f”–i˝ 0 –˙did˝ 1“n”)

with open(”squad˙questions.tsv”,”w”) as f:
f.writelines(question˙file˙lines)

with open(”squad˙questions.qrel”,”w”) as f:
90 f.writelines(qrels˙lines)

with open(”squad˙questions˙easy.qrel”,”w”) as f:
f.writelines(easy˙qrels˙lines)

print(f”Processed –docs˝ documents.”)

This generates the files squad docs.jsonl, squad questions.qrel, and squad
questions.tsv, containing the preprocessed index for dense processing by pyserini, the
answers for comparison using the TREC eval scripts, and the input dev questions for an-
swering by the eval script.

4.2 Execution Code

To produce the search results using scripts of the following form:

python -m pyserini.encode input --corpus squad˙docs.jsonl --fields title
↪→ text
output --embeddings squad˙test/index˙distilbertdot --to-faiss
encoder --encoder sebastian-hofstaetter/distilbert-dot-margin˙mse-T2-
↪→ msmarco --fields title text --batch 20

5 python -m pyserini.dsearch --topics squad˙questions.tsv --index
↪→ squad˙test/index˙distilbertdot --encoder sebastian-hofstaetter/
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↪→ distilbert-dot-margin˙mse-T2-msmarco --batch-size 20 --threads 12
↪→ --output squad˙test/out˙distilbertdot.trec

After executing the following commands, output out distilbertdot.trec is pro-
duced containing the results chosen by the model.

4.3 Evaluation Metric

The metrics we use are nDCG@10, Recall@10, MRR@10 and MAP@100.
nDCG (Normalized Discounted Cumulative Gain) measures the usefulness, or gain, of a

document based on its position in the result list. MRR (Mean Reciprocal Rank) measures
the ranking quality by averaging the inverse of the rank of the correct answer over all
the queries. MAP (Mean Average Precision) measures the precision of getting the correct
answer.

We assess MAP and Recall using the trec eval system implemented by pyserini. To
assess ndcg and mrr we use the following script using the pytrec eval package.

import pytrec˙eval
import json
from collections import defaultdict
import argparse

5

def file˙to˙dict(fname, delim, qkey˙field, dkey˙field, val˙field, valtype
↪→ ):
lines = open(fname,”r”).readlines()
d = defaultdict(dict)
for line in lines:

10 line = line.strip().split(delim)
d[line[qkey˙field]][line[dkey˙field]] = valtype(line[val˙field])

return d

parser = argparse.ArgumentParser()
15 parser.add˙argument(”runf”, type=str)

args = parser.parse˙args()
qrel = file˙to˙dict(”squad˙questions.qrel”,” ”,0,2,3,int)
run = file˙to˙dict(args.runf, ” ”, 0,2,4,float)

20 evaluator = pytrec˙eval.RelevanceEvaluator(
qrel, –'recip˙rank', 'ndcg'˝)

results = evaluator.evaluate(run)

25 ndcg˙sum = 0
map˙sum = 0
count = 0

for query in results.keys():
30 ndcg˙sum += results[query][”ndcg”]

map˙sum += results[query][”recip˙rank”]
count += 1

print(f”ndcg“t–ndcg˙sum/count:.4f˝“nmrr“t–map˙sum/count:.4f˝”)
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Finally, we compare the performance of the systems in terms of latency to complete a
single search, using the following:

from pyserini.dsearch import SimpleDenseSearcher, AutoQueryEncoder,
↪→ DprQueryEncoder

import time
from transformers import AutoTokenizer, AutoModel

5 pre˙trained˙model˙name = ”sebastian-hofstaetter/distilbert-dot-margin˙mse
↪→ -T2-msmarco”

index = ”./squad˙test/index˙distilbertdot”

def get˙runtime(pre˙trained˙model˙name, index, encoder=AutoQueryEncoder):
#tokenizer = AutoTokenizer.from˙pretrained(pre˙trained˙model˙name)

10 #bert˙model = AutoModel.from˙pretrained(pre˙trained˙model˙name)
encoder = encoder(pre˙trained˙model˙name)
searcher = SimpleDenseSearcher(

index˙dir = index,
query˙encoder = encoder

15 )

t1 = time.time()
hits = searcher.search('What state is Beyonce from?')
t2 = time.time()

20

for i in range(0, 10):
print(f'–i+1:2˝ –hits[i].docid:7˝ –hits[i].score:.5f˝')

print(f”Search completed in –(t2-t1)*1000:.2f˝ms”)
25

get˙runtime(pre˙trained˙model˙name, index)
get˙runtime(”bert-base-uncased”, ”./squad˙test/index˙bertbase”)
get˙runtime(”facebook/dpr-ctx˙encoder-multiset-base”, ”./squad˙test/

↪→ index˙dpr”, DprQueryEncoder)

4.4 Results

Fundamentally, attempting to replicate the results using pyserini was flawed. The 22GB
prebuilt MS MARCO index (which we had hoped to use to get around the need to fully
index the MS MARCO document set ourselves using each neural model) is built on top
of faiss, a package for managing and reading from dense indices. Unfortunately, at present
faiss-gpu attempts to load the entire index into RAM, leading to a “bad malloc call” error on
Michael’s machine where we attempted replication. Thus, we were unable to do replication
of the MS MARCO results using pyserini.

Thus we turned to instead analyze the performance on our SQuAD challenge set. How-
ever without fine-tuning the pretrained passage encoders on this modality, performance
suffered.

In particular, it appears that pyserini had loading difficulties on BERT-base and DPR
pretrained encoders. This is probably because those checkpoints on their own don’t include
parameters that were fine-tuned for the final step of passage encoding and are instead just
grabbing the unadapted CLS tokens.
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Method nDCG@10 Recall@10 MRR@10 MAP@100 CPU Spd GPU Spd
BM25 0.8282 0.9060 0.7845 0.7845 95 ms —

BERT-base 0.0342 0.0196 0.0091 0.0091 78 ms 57 ms
DPR 0.0045 0.0003 0.0002 0.0003 65 ms 56 ms

DistillBERTDOT 0.6535 0.7648 0.5725 0.5725 70 ms 19 ms

Table 1: Our results on SQuAD

However, we were happy to see that some transfer learning performance takes place from
MSMARCO to our SQuAD challenge set, as is demonstrated by the respectable performance
of DistillBERTDOT on the challenge set in Table 1. Additionally, we were impressed to see
that DistillBERT (on a GPU) is actually faster than the CPU latency for a pyserini simple
search from the BM25 inverted index. However, on CPU we were surprised to find that
all three neural models beat SimpleSearcher with BM25 on latency. We performed CPU-
testing by running the same script in a separate conda environment with faiss-cpu rather
than faiss-gpu installed.

5 Our efforts

We put a lot of efforts in studying the paper and reading related works (e.g. knowledge
distillation [4], ColBERT [7], PreTT [9], Transformer-Kernel (TK) [6], RankNet [1]) to get
a better understanding of the proposed method. And we learned pyserini to reproduce the
results using the proposed method.

The lecture that introduced BERT showed that BERT-base ranking models are very
strong in performance. However, it is very expensive to run BERT and we are interested in
how to lower the query latency while maintaining the performance. So we study the paper
Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation
[5] as a possible solution to this problem.

Due to the problems associated with running MS MARCO replication recipes in pyserini
directly on our hardware (as mentioned above) we were instead forced to implement our
own recipe using SQuAD. This led to further downstream difficulties as discussed above.

Despite these problems, we leave this project with a deeper understanding of the technical
details required to produce a full search pipeline from scratch on a new dataset using pyserini.
Michael will apply these learnings in instructing his ERSP group of undergraduates working
with the NLP lab to create a new causal question answering dataset.

Additionally, we were able to confirm the superior performance of DistillBERT over the
alternatives in terms of latency on GPU. We were surprised to see that the CPU latency of
the neural architectures is actually the same. This is probably due to some implementation
details in the pyserini package.
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Knowledge distillation for neural ranking models

● Neural ranking models: trade-off between efficiency and effectiveness at 
query time

● Knowledge distillation: common approach to close the performance gap 
between a large teacher model (slow) and a small student model (fast)

● Teacher model and student model usually have the same architecture and 
only different in size → Output scores are in the same range

● Pointwise Mean Squared Error loss: minimizing MSE between the 
absolute scores of a teacher and a student

● Goal: improve the effectiveness of efficient neural ranking models without 
compromising their query latency benefits



Cross-architecture knowledge distillation

● Teacher model (Mt: BERTCAT): concatenate query and passage and feed to 
a pre-trained BERT model, then output a score from the CLS representation

● Student model (Ms): BERT-like architecture, but specially designed to 
transfer computation to the indexing phase to require less resources at query 
time (e.g. ColBERT, PreTT, etc)

● Output scores of different architectures are in different ranges
● Margin Mean Squared Error loss (Margin-MSE):  optimizing the margin 

between the scores of the relevant (P+) and the non-relevant (P-) sample 
passage per query (Q)



Motivation

● Different student models exhibit unique 
dynamic ranges in raw scores

● Despite this, margins are similar, on 
average, between positive and 
negative examples

● Authors propose using the 
margin-based loss instead of 
absolute output scores to improve 
distillation



Cross-architecture knowledge distillation process



Student architecture 1: BERTDOT

● Query q: CLS token representation computed from a full BERT
● Passage p: CLS token representation computed from a full BERT, 

precomputed

● Score: use dot product between the encoded representations



Student architecture 2: ColBERT

● Query q: append several MASK tokens to the end, and use the 
representations of all the tokens computed from a full BERT

● Passage p: representations of all the tokens computed from a full BERT, 
precomputed (high storage cost)

● Score: calculate the dot product between each tokens in q and p (m*n 
computation). Then do max-pooling across p and sum across q.



Student architecture 3: PreTT

● Query q: representations of all the tokens computed from the first b 
BERT-layers

● Passage p: representations of all the tokens computed from the first b 
BERT-layers, precomputed (high storage cost)

● Score: concatenates resulting p, q sequences with a SEP separator token 
and computes the remaining BERT-layers. Use the final CLS token 
representation to produce score. (high computation cost)



Student architecture 4: Transformer-Kernel (TK)

● Query q: represent each token using a weighted average over a classic word 
embedding (e.g. word2vec, GloVe) and a contextualized representation (e.g. 
a shallow transformer TF)

● Passage p: same as q, precomputed (high storage cost)

● Score: first compute cosine similarity between each token in q and p. Then 
apply a set of Gaussian kernels. Then aggregate the scores by summing over 
p and q and then weighted sum over different kernels.



Compare different architectures

● BERTCAT is the most effective model yet not practical
● TK is the most efficient model while it’s less effective 



Datasets, Training (for Distillation)

● MSMARCO-Passage
○ Training set
○ 8.8M Bing queries sampled

● MSMARCO-Dev
○ 49k queries, sparsely judged

● TREC-DL ‘97
○ 43 densely-judged queries

● All student LMs start from DistilBERT 6 layer checkpoint
● Trained using Adam with consistent LR



Experiments: KD Across Architectures?

● For each model the authors consider 
their margin-MSE distillation against 
RankNet and pointwise MSE

● Pointwise: 

● Ranknet: 

Margin MSE consistently wins across 
architectures as best distilling strategy



Results: Single teacher vs ensemble of teachers

● First, we look at the overall results for every baseline or teacher candidate
● Notice top-3 ensemble almost always is best?
● Can we leverage these as multiple teacher signals in distillation?



Results: Single teacher vs ensemble of teachers



Results: Using these distilled models for dense retrieval

● Authors demonstrate baseline-beating retrieval results with their multi-teacher 
margin-distilled student LMs in dense nearest neighbor retrieval.



Results: Closing Efficiency-Effectiveness Gap

● The authors test latency assuming 1000 cached document reps are in 
memory, and test interaction speed for reranking for a single query against 
those docs



Teacher Analysis

● Different teachers exhibit different 
distributions of score margins 
(Relevant-non-relevant)

● Does this cause a difference in how 
rankings are marginally changed by single 
examples?



Teacher Analysis

● Sort of.
● This plot shows that examples will 

tend to have a stronger “pull” on 
the model at each step from 
ensemble (T2) than single (T1) 
teacher method

● However, this pull can both be 
positive (left side) and negative 
(right side)



Conclusion

● Margin-based distillation enables multi-teacher cross-model knowledge 
distillation in IR

● Multi-teacher tends to outperform single teacher across a variety of target 
architectures/strategies, particularly in MAP@100

● For some of the architectures and metrics, not only only is an order of 
magnitude latency improvement achieved, but also accuracy is improved 
in the student models over the baselines 

○ E.g., ColBERT is ~100x faster than BERT-BaseCAT, but also has a higher NDCG@10
● We are in the process of replicating these results and trying to further expand 

the samplewise teacher analysis


