CS29S Project Report

Sparse-Dense Hybrid Retrieval
Wentai Xie, Yanze Wu

DEC 2021

1 Objective and Challenges

The present document retrieval methodologies can be categorized into two main
divisions: sparse retrieval and dense retrieval. Both these two divisions have different
challenges: On one hand, generally dense retrieval has a higher accuracy while
suffering from the costly online query latency. On the other hand, the
out-of-vocabulary terms and misleading term frequency might damage sparse
retrieval.

To find a potential solution given these challenges, we learnt about the state of art

model: TCT-Colbert and Deeplmpact. We tried to combine these two models as a
solution that makes up the deficit in both retrieval methodologies.

2 DeepImpact

2.1 Contribution

The Contribution of DeepImpact can be concluded as follow:

L. Use query to enrich the original document terms, which alleviate the poor
representation over the synonym words.
II. Calculate the Impact Score instead of term frequency to have a more capable

representation of the document.

2.2 Main Idea

The overall Deeplmpact network consists of three parts: Contextualized encoder (e.g
Bert), expansion term encoder, and Impact Score Encoder.

Impact Scores

t t t t

Impact Scores Encoder

380, 88

| Contextualized Language Madei Frrnder

‘ééééd‘;é

Document terms Expansion terms

Figure 2.1: Neural network architecture
The paper utilizes DocT5query to generate the expansion term given a document,
which enriches the vocabulary in the document. The Contextualized Language Model
is a model like Bert. And Impact Score Encoder is a simple 2-layer MLP.

The Deeplmpact network will first generate expansion for the given input document.
Then the original documents and their expansion will then go through the
contextualized language model. This will provide word embedding for each term.
After that, an impact score is encoder recalculate the important score of each term.

The first occurrence terms in the input of the intercept between the query term and the
expanded document will correspondingly be the input of the Impact Score Encoder.
The Impact Score Encoder will then take each one term at a time and give its score.

The document score is the sum of terms impact score which appears in both query and
document. And the paper uses pair-wise training, which aims to maximize the
difference between positive document score and negative document score.

3 TCT-Colbert

3.1 Contribution
The Contribution of TCT-Colbert can be concluded as follow:

I. Simplify the ColBERT’s similarity function MaxSim into a dot-product so that it
can solve the expensive storage and computing of Colbert.

II. Proposed Knowledge distillation to train student model.

III. Purpose Hybrid Dense-Sparse Ranking

3.2 Main Idea

As 1s shown in figure 3.1, the framework of Colbert has a model-teacher model and
student model coupling tightly. It uses a fine-tuned Colbert as the teacher model and
the student model is based on Colbert.

Teacher 3 [Student

e

Query Doc
Encoder Encoder

Figure 3.1: TCTColBERT framework

Although Colbert is able to do the passage retrieval efficiently, TCT-Colbert wants to
simplify it further. They use an average pooling function over the output embeddings
of documents and queries to reduce their dimension. Instead of MaxSim to evaluate
their similarity, they use a dot product between the document vector and the query
vector.

To train their model. The proposed knowledge distillation, by which their model
could learn from the teacher model (Colbert), gives similar predictions while cutting
down the computation.

Query Doc
§ Encoder Encoder

8| o]| eT, | if_lg{fJ({.la|(].J]_
EZ{(lq) N KL(P a:)||P(d’]a))

d'eDg

=

The first term is a softmax cross-entropy loss function which asks students to
correctly classify documents. The second term KL is a measure of the difference

between teacher sample distribution and student sample distribution, where they tried
to minimize the difference.

4 Margin MSE

Here we only briefly talked about Margin MSE, where we use to train our own
TCT-Colbert model, instead of the training method proposed in section 3.2.

200 —— o= Average . ColEEAT
\\ o Neg. Awerane m BEAT o
EEm EERToar
3 - T
(ST R s —— S
2 e
2100
)
5
[=1
5 50
=]
04 T T btk LA 12l 2 TR e T e
=50
[4] 100 200 300 400 500

Training Batch Count (Thousands)

Figure 4.1 margin score discrepancy
From Figure 4.1, these 4 models margins have a very similar margin
(difference between the positive score and negative score). This leads to a training
idea that only learning the margin knowledge of the teacher model.

To do this, the loss function is proposed as follow:

L(Q,P*,P7) = MSE(M(Q, P*) — Ms(Q, P7),
M (Q,P*) — My (Q, P7))

Which minimizes the mean square loss between the Teacher margin (positive
score subtract negative score) and the student margin.

5 Experiments

5.1 DeepImpact

We will talk about how we reproduce the Deeplmpact and some evaluations in this
part. For the Contextualized Language Model Encoder, we use Bert from Hugging
Face. We use DocT5query to generate query sentences for the given input document.

The Impact Score is a two-layer perceptron network. We set the dropout rate equals
0.5. the input size is 768 (the embedding size of Bert), and the hidden layers start with
a map from a 768 vector to a 768 vector, then follow reduction from 768 dimensions
to 1.

Before running through the entire DeepImpact model, we will do an intercept between
the document and query, and only the corresponding embedding will be the input of
the Impact Score Encoder, as mentioned in Section 2.2.

We use MAMARCO triple dataset to train our model for 100,000 iterations. The
learning rate is set to 3x10—6. To solve the GPU memory limitation, we divided our
batch into 4 smaller batches, and the overall loss will be the normalization of the
average gradient of 4 small batches.

5.2 TCT-Colbert

We first fine-tune our teacher model (Colbert) from Hugging Face. Then we copied
the Colbert model to our TCT-Colbert Model, and change its Maxsim into an average
pooling follows a dot product.

For the teacher model, we use MSMACRO triple dataset and cross-entropy loss to
fine-tune the model. We train the teacher model for 2000 iteration and a learning rate
of 3x10-6.

Instead of using the loss function originally presented in TCT-Colbert, we use Margin
MSE loss to evaluate the performance between student and teacher. Our maximum
iteration for training was set to 100,000 with the same learning rate of 3x10—6.

However, we found that the model already converged around 20,000 iterations, hence
we did an early stop.

5.3 Hybrid document retrieve

We use a linear combination of these two models as our final output.

We manually set w=0.35 which gives the best classification accuracy on MSMARCO.

6 Evaluations

6.1 Accuracy Evaluation

The simplest evaluation method is to see if the model could correctly classify the
triple dataset.

Our validation runs on MSMARCO triple dataset, and we also skip the first 100,000
rows in case of any interception between the training set and the validation set. We
also included a TCT-Colbert model from Hugging Face lib as a baseline against our
self implemented TCT-Colbert.

TCT-Colbert | Colbert TCT-Colbert | Deeplmpact | Hybrid
Standard (Teacher model) | Margin MSE
Acc |0.9745 0.9896 0.9840 0.9436 0.9843

Table 6.1 Models Accuracy

From Table 6.1, we can claim that Margin MSE is a more efficient way to train the
student model. And dense retrieval is consistent with our previous statement that

‘dense has a higher accuracy’. The hybrid model did have some improvements, but
not very much, other combination methods might be expected to carry out a more
reasonable prediction.

We also implemented MAP evaluations to see how far our models can go. We
sampled 50 queries in Marco TOP1000, and for each query, we recalculate their
similarity score using different methods and compare it to ground truth (qgrels).

Deeplmpact TCT-Colbert Hybrid (w=0.35)
MAP 0.344 0.366 0.424
MRR@10 0.339 0.352 0.422
Table 6.2 MAP Score

The Deeplmpact MAP score is close to the paper MAP score (0.332), hence we
assume we successfully reproduce Deeplmpact Model. We also noticed that the
hybrid retrieval is a huge improvement that before, even though it doesn’t increase
that much in classification accuracy. We discovered that the MAP scores for each
query predicted by Deeplmpact go extremes: Its output mostly equals 1 or nearly
zero. On the other hand, TCT-Colbert outputs mostly are stay between 0.5 to 0.125. A
balance between these two features helps to reach a higher MAP score.

7 Indexing

We also tried to build an index that allows us to search our own documents on
Pyserini.

Our index is built on top of the MSMARCO Topl1000 dataset. Considering that
MSMARCO Topl000 dataset has about 6,660,000 documents which are nearly
impossible to index all, we sampled 500 queries from the dataset and picked only the
documents that only related to those 500 queries. We use them to build our index.

For sparse indexing, we download the official deepimpact structure and mimick the
official data structure. Our index structure looks like this:

{Yid’ :id, "content’ :article content,vector={..}}

Where the vector looks like:

{‘terml’ :scorel,’ term2’ :score?2}

For dense indexing, we use Faiss to index the document vector produced by our
TCT-Colbert model. Then same as sparse indexing, we manually index it into
Pyserini, and use a dense searcher to retrieve our documents. We follow the Pyserini
document says they are using a Faiss index, and IndexSearch did indicate the correct
document total number. But we are not able to mimic the official document index this
time, because when loading index using Faiss, our memory cannot hold so much
index.

Our indexing work has several potential improvements:

First, we are only able to provide index, we are still using an official query

tokenizer and pre-processing when doing online query. We find out that the
preprocessing and tokenizer of the query are different from our query preprocessing,
which makes it inaccurate.

Second, the memory limitation (Faiss index) which makes it impossible for the
personal laptop to read the official data structure also adds to the volatility.

8 Our Efforts

Most of our retrieval methods are related to the BERT model introduced in class. And
we sum up our efforts into following points:

L.

II.

I11.

IV.

We learned four papers before we started our project

We successfully reproduced Deeplmpact Model and TCT-Colbert model. And

use innovative training methods like MSE instead of the method TCT-Colbert
originally introduced. We also use a hybrid combination of Deeplmpact and
TCT to achieve a better retrieval performance.

We learned a lot about MSMARCO data structure, and dive into pyserini
different index structures, and manage to search our own document using
self-created indexing

The expensive time input, training like Deeplmpact takes two days, indexing
500,000 documents takes half-day, and so on. We also solved issues like GPU
memory limitations.

We implemented MAP and MMR evaluation ourselves. We also did a lot of
speculation about how we carried out our evaluations.

Reference

1. Distilling Dense Representations for Ranking using Tightly-Coupled Teachers
Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin arXiv:2010.11386

2. Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge
Distillation

Sebastian Hofstdtter, Sophia Althammer, Michael Schroder, Mete Sertkan, Allan
Hanbury arXiv:2010.0266

3. Learning Passage Impacts for Inverted Indexes
Antonio Mallia, Omar Khattab, Nicola Tonellotto, Torsten Suel arXiv:2104.1206

4. Colbert: Efficient and Effective Passage Search via Contextualized Late Interaction
over BERT
Jimmy Huang, Yi Chang, Xueqi Cheng SIGIR 20

2021
Project Presentation

01 Introduction

el Methodology

03 Datasets and result

Introduction

- Introduction

TCT-ColBERT: an approach to ranking with dense representations

1. Adopt the “late interaction” ColBERT model(Khattab and
Zaharia,2020)

2. Use knowledge distillation (Hintonet al., 2015) to simplify the
ColBERT’s similarity function MaxSim into a dot-product
(Motivation: Solve the existing problem of ColBERT)

3. Hybrid Dense-Sparse Ranking

- References

[1] Sheng-Chieh Lin, Jheng-Hong Yang. 2020. Distilling Dense Representations for Ra
nking using Tightly-Coupled Teachers

[2] Antonio Mallia, Omar Khattab, Torsten Suel, Nicola Tonellotto . 2021. Learning Pas
sage Impacts for Inverted Indexes

[3] Omar Khattab, Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage Search
via Contextualized Late Interaction over BERT

Methodology

TCT-ColBERT famework

TCT-ColBERT: A bi-encoder—Tight coupling between teacher and student models

Teacher " Student
> = = e o

HE
Query Doc Query
8 Encoder Encoder Encoder Encader

Figurel : TCT-ColBERT famework

ColBERT

Query and document encoder

ColBERT is a highly-effective model that employs novel BERT-based query and document encoders
within the late interaction paradigm.

fQ: aqueryencoder, encodes query g into a bag of
fixed-size embeddings Eq

"""""" . Eq := Normalize(CNN(BERT(“[Q]Where is UCSB?”)))

o
£
s
Query Encoder, f,, Document Encoder, f;, § fD: adocument encoder, encodes document d into
kS a bag of fixed-size embeddings
5
Query Document)))
Ed := Filter(Normalize(CNN(BERT(“[D]l am studying at

Figure2 ColBERT famework UCSB”))))

Query and document encoder

Example: 4)

Given a textual query g and document d .
1.tokenize them into their BERT-based Word Piece tokens[1]

Documentd “[D],d0,d1,d2,d3,......,dn"

2.The sequence will go through the BERT and subsequent linear layer

3.Normalize so each has L2 norm=1
Filter out the punctuation symbols

Query g ”[Q],qorqquzrq:%, """ qn” \

Eq =

Normalize(CNN(BERT(“[Q]q0q1...ql")))

Ed =

Filter(Normalize(CNN(BERT(“[D]d0d1...dn"))))

[Q]:a special token distinguish from
document token [D]

[D]:a special token distinguish from
query token [Q]

[1] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, et al.2016. Google’s neural machine translation system: Bridging the gap
between human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

Some examples

o text = “Where is UCSB?”
token = bertTokenizer. encode (text, return_tensors="pt”). to(device)
print (token)

[»> tensor([[101, 2073, 2003, 15384, 19022, 1029, 102]], device= cuda:0’)

° outputs = bertModel (token)
states = outputs.last hidden state
print (states. shape)
print (states)
#the each term is converted into a 768 vectoﬂ

> torch.Size([1, 7, 768])

tensor ([[[-0.1036, 0.2285, —0.0987, ..., —0.5736, 0.3942, 0.5410],
[-0. 5306, —0.5094, 0.2621, ..., —0.4189, 0.4367, 0.0743],
[-0.2126, -1.0201, 0.1537, ..., -0.6653, 0.5390, 0.6819],
[-0. 8555, —0.6644, -0.3412, ..., 0.4427, 0.6662, 0.3402],
[0.0547, -0.4813, -0.8176, ..., -0.0174, 0.2172, -0.0255],
[0.8550, 0.0265, -0.2815, ..., 0.2419, -0.5727, —0.1818]]]

device= cuda:0’, grad fn=<NativelLayerNormBackward(>)

Eq: the output embeddings from query encoder fq

Ed: the output embeddings from document
encoder fD

Maxsim: maximum similarity (e.g., cosine)

Document Encoder, f;

Query Encoder,fg
Score: The relevance score of d to q

Offline Indexing

Query Document 5 — E . ET
q!d . Z) max q!- d
. E i

tE[lqu]jE[l dl]

MaxSim example

Score: The relevance score of d to g

S — max E --ET
q.d Z . 4i " d;
fE[|Eq|]"FE[|Ed|]

@mple: \
For document d, the output embeddings from

For query q, the output embeddings from query
encoder-Eq: document encoder-Dq:

Query Term 1 (Eq,): [0.1, [HN—] » Document Term 1 (Ed,): [0.2, 0.3, 0.7,.........]
Query Term 2 (Eq,): [0.4, 0.2, 0.3, Document Term 2 (Ed,): [0.1, 0.4, 0.6,......]

Sq,d=max{ Eq,-Ed,", Eq,-Ed,", Eq,-Ed,T,......, Eq,-Ed T}
+max{ Eq,-Ed,", Eq,-Ed,", Eq,-Ed,",......, Eq,-Ed T}
+max{ Eq;-Ed,", Eqs-Ed,T, Eqs-Ed,T,......, Eqs-Ed

\ +max{ Eq,-Ed,", Eq,-Ed,", Eq,-Ed,",......, Eq,-Ed T} /

TCT-ColBert optimization

Student model

ﬂssume the kernel dimension of BERT is 756, a document d contains 100 terms \
Teacher encoder Student encoder
ColBERT encoder outputs:E TCT-ColBERT encoder outputs: AvgPool(E)
(100,756) (1,756)
->Large storage cost,high latency

o /

Saving storage, compute with a dot product

m_____}x
]]
Query Doc
i Encoder Encoder

Figurel : TCT-ColBERT famework

Query
Encoder Encuder

Using Tightly coupled teacher to minimize the lost

Teacher: ColBert
Student: TCT-ColBert (identical)

Train the student model encoder to output a well-behaved pooled embedding

y - 1diET + qgi log(P(di| qi)) (1-y)XdoeDBKL(P*(d 0 |qi)||P(d O |qi))

v

The non-relative documents are expected
have a similar output score

v

Means the relative
document of the given
query must be correctly
classified as relative

Yy is a weight

-..._____g\
]
Query Doc
4 Encoder Encoder

" Student
0

Query
Encoder Encoder

Hybrid Dense-Sparse Ranking

Dense Retrieval

Sparse Retrieval

Features:

« simple but effective
« don't need to be trained
« work on any language

Limitation:
* High online processing
latency

ColBERT

Features:

« powerful but computationally
more expensive especially
during indexing

« trained using labelled datasets

* language specific

Limitation:
* Imprecise term frequency

e Cannot handle
out-of-vocabulary

Deeplmpact

Hybrid Dense-Sparse Ranking

A single dense embedding cannot sufficiently represent passages(Luan et al.
(2020); Gao et al. (2020))

So we use a linear combination of sparse and dense retrieval--Hybrid Dense-
Sparse Ranking:

¢ (qld)= a¢ sp(q) d) + ¢ ds(q) d)

@ (q,d) : The relevance scores of d to q

a: weight
We are using TCT-Colbert as dense ranking, deep Impact for sparse ranking
" For example, we can evaluate the relevance between the query and document as shown below)
The relevance of sparse representation @ _(q, d),;=0.7 @ ((q, d),=0.5 P (qg,d);=0.2,.....
The relevance of dense representation @ ,(q, d);=0.5 @ (g, d),=0.8 ® (g, d);=0.9,......
If a=3 highlight sparse ®(q,d);=2.6 P(q,d),=2.3 ®(q,d);=15 ,......
If a=0.3 highlight dense ®(q,d);=0.71 P (q,d),=0.95 ® (q,d);=0.96,......

. J

Datasets and result

Datasets and result

Datasets : MS MARCO ,TREC-2019

Table 1: Main results on passage retrieval tasks.

Result : MS MARCO dev TREC2019 DL latency
MRR@10 R@1000 NDCG@10 R@1000 (ms/query)

Sparse retrieval (Single Stage)

BM25 0.184 0.853 0.506 0.738 55
DeepCT (Dai and Callan, 2020) 0.243 0.913 0.551 0.756 55
doc2query-T5 (Nogueira and Lin, 2019) 0.277 0.947 0.642 0.802 64
Dense retrieval (Single Stage)

ANCE (Xiong et al., 2020) 0.330 0.959 0.648 - 103
Bi-encoder (PoolAvg) 0.310 0.945 0.626 0.658 103
Bi-encoder (TCT-ColBERT) 0.335 0.964 0.670 0.720 103
Multi-Stage

ColBERT (Khattab and Zaharia, 2020) 0.360 0.968 - - 458
BM25 + BERT-large (Nogueira and Cho. 2019) 0.365 - 0.736 - 3.500
Hybrid dense + sparse (Single Stage)

CLEAR (Gao et al., 2020) 0.338 0.969 0.699 0.812 -
Bi-encoder (PoolAvg) + BM25 0.342 0.962 0.701 0.804 106
Bi-encoder (TCT-ColBERT) + BM25 0.352 0.970 0.714 0.819 106
Bi-encoder (PoolAvg) + doc2query-T5 0.354 0.970 0.719 0.818 106
Bi-encoder (TCT-ColBERT) + doc2query-T35 0.364 0.973 0.739 0.832 106

Thanks for listening

