
Offline Data Processing: Tasks
and Infrastructure Support

T. Yang, UCSB 293S, 2022

1

Table of Content

• Offline incremental data processing: case
study
§ Content management for large index
§ Text mining, knowledge graph
§ Example of content analysis

• Duplicate content removal
• System support for offline data processing

2

Offline Architecture for Ask.com Search

3

Content Management

• Organize the vast amount of pages crawled to
facilitate online search.
§ Data preprocessing
§ Inverted index
§ Compression
§ Classify and partition data

• Collect additional content and ranking signals.
§ Link, anchor text, log data

• Extract and structure content
• Duplicate detection
• Anti-spamming

4

Classifying and Partitioning data

• Classify
§ Content quality. Language/country etc

• Partition
§ Based on languages and countries. Geographical

distribution based on data center locations
§ Partition based on quality

– First tier --- high chance that users will access
§ Quality indicator
§ Click feedback

– Second tier – lower chance

English
Main.

English
UK

English
Australia

Tier 1

Tier 2

5

Text mining

• “Text mining” is a cover-all marketing term
• A lot of what we’ve already talked about is actually

the bread and butter of text mining:
§ Text classification, clustering, and retrieval

• But we will focus in on some of the higher-level
text applications:
§ Extracting document metadata
§ Entities/knowledge graphs
§ Topic tracking and new story detection
§ Cross document entity and event coreference
§ Text summarization

6

Knowledge Graph

A knowledge graph is represented as entities, edges and attributes

7

Knowledge Graphs and Challenges

General knowledge graphs
• Freebase Wikidata, Dbpedia
• Google Knowledge Vault,

Google KG, Microsoft Satori KG
Large vertical KGs
- Facebook (social

network), LinkedIn (people
graph)

- Amazon (product graph)
Challenges for building/maintaining
a scalable large KG

2B+ entities
130B+ Web pages
44+ languages

8

Usage of Knowledge Graphs for Search
and Other Information Systems

• Search and NLP questions
§ Give direct answers
§ Enhance ranking

• Recommendation
• Auto conversation

9

Information extraction to enhance information on
web pages and refine knowledge graphs
• Getting semantic information out of textual data

§ Understand more information on web pages
§ Refine knowledge entities and extract their relationship

§ Validation, association, duplicate removal/merging
(entity linking), error correction, content refreshing

• Look for specific types of web pages:
§ E.g. an event web page:

– What is the name of the event?
– What date/time is it?

– How much does it cost to attend

§ Home pages for persons, organizations,
• Many vertical domains: resumes, health, products, …

10

Examples of Context Extraction/Analysis

• Getting semantic information out of textual data
§ Identify key phrases that capture the meaning of this

document. For example, title, section title,
highlighted words.

§ Identify parts of a document representing the
meaning of this document.

– Many web pages contain a side-menu, which his less
relevant to the main content of the documents

§ Identify entities and their relationships, attributes
§ Capture page content through Javascript analysis.

– Page rendering and Javascript evaluation within a page

11

Example of Content
Analysis

• Identify content block related
to the main content of a page

§ Non-content text/link
material is de-prioritized
during indexing process

12

Table of Content

• Offline incremental data processing: case
study
§ Content management for large index
§ Text mining, knowledge graph
§ Example of content analysis

• Duplicate content removal
• System support

13

Redundant Content Removal in Search
Engines

• Over 1/3 of Web pages crawled are near
duplicates

• When to remove near duplicates?
§ Offline removal

§ Online removal with query-based duplicate
removal

Online index
matching &
result ranking

Duplicate
removalUser

query

Final results

Offline data
processing

Duplicate
filtering

Web
Pages

Online
index

14

Why there are so many duplicates?

• Same content, different URLs, often with different
session IDs.

• Crawling time
difference

15

Tradeoff of online vs. offline removal

Online-dominating
approach

Offline-dominating
approach

Impact to offline data
processing design

High precision
Low recall

Remove fewer
duplicates

High precision
High recall

Remove most of
duplicates

Higher offline burden
Impact to online
system design

More burden to
online deduplication

Less burden to
online deduplication

Impact to overall
cost

Higher serving cost Lower serving cost

16

Key Value Stores/Storage

• Handle huge volumes of
data, e.g., PetaBytes!
§ Store (key, value) tuples

• Simple interface
§ put(key, value);

Insert/write “value”
associated with “key”

§ value = get(key);
Get/read data associated
with “key”

Used sometimes as a
simpler but more
scalable “database”

17

Key Values: Examples

• Web search: store documents, cache results, store URL
properties
§ Document server, image server, cache server, URL server
§ Neural embeddings for tokens and documents

• Amazon shopping:
§ Key: customerID
§ Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter accounts:
§ Key: UserID
§ Value: user profile (e.g., posting history, photos, friends, …)

• iCloud/iTunes:
§ Key: Movie/song name
§ Value: Movie, Song

18

Key-Value Storage Systems in Real Life
• Amazon

§ DynamoDB: internal key value store used for
Amazon.com (cart)

§ Amazon SimpleDB. Simple Storage System (S3)
• BigTable/HBase/Hypertable: distributed, scalable data

store
• Cassandra: “distributed data management system”

(developed by Facebook)
• Memcached: in-memory key-value store for small chunks of

arbitrary data (strings, objects)
• BitTorrent distributed file location: peer-to-peer

sharing system
• Redis, Oracle NSQL Database…
• Distributed file systems: set of (file block ID, file block) 19

Key Value Store on a Cluster of Machines

• Also called Distributed Hash Tables (DHT)
• Main idea: partition set of key-values across

many machines key, value

…

20

Challenges

• Fault Tolerance: handle machine failures without
losing data and without degradation in performance

• Scalability:
§ Need to scale to thousands of machines
§ Need to allow easy addition of new machines

• Consistency: maintain data consistency in face of
node failures and message losses

• Heterogeneity (if deployed as peer-to-peer
systems):
§ Latency: 1ms to 1000ms
§ Bandwidth: 32Kb/s to 100Mb/s

…

21

Important Concepts on Fault Tolerance

• Availability: the probability that the system can accept and process
requests even there are failures
§ Often measured in “nines” of probability. So, a 99.9% probability is

considered “3-nines of availability”
§ Key idea here is independence of failures

• Reliability: the ability to perform required functions correctly during failure
• Usually stronger than simply availability: means that the system is not

only “up”, but also working correctly
• Must make sure data survives system crashes, disk crashes, etc

Key Questions

• put(key, value): where to store a new (key,
value) tuple?

• get(key): where is the value associated with a
given “key” stored?

• And, do the above while providing
§ Fault Tolerance
§ Scalability
§ Consistency

23

Directory-Based Architecture

• Have a node maintain the mapping between
keys and the machines (nodes) that store the
values associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
put(K14, V14)

pu
t(K

14
, V

14
)

24

Directory-Based Architecture
• Have a node maintain the mapping between

keys and the machines (nodes) that store
the values associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
get(K14)

ge
t(K
14
)

V1
4

V14

25

Directory-Based Architecture
• Having the master relay the requests ®

recursive query
• Another method: iterative query (this slide)

§ Return node to requester and let requester contact
node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
put(K14, V14)

put(K14, V14)

N3

26

Directory-Based Architecture
• Having the master relay the requests ®

recursive query
• Another method: iterative query

§ Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
get(K14)

get(K14)

V14
N3

27

Fault Tolerance

• Replicate key-value pairs on several nodes
• Usually, place replicas on different racks in a datacenter to

guard against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N1,N3
K105N50

Master/Directory
put(K14, V14)

put(K14, V14)

K14 V14

put(K14, V14)

Consistency
among replicas

• Need to make sure that a value is replicated
correctly
§ How do you know a value has been replicated

on every node?
§ Wait for acknowledgements from every node

• What happens if a node fails during replication?
§ Pick another node and try again

• What happens if a node is slow?
§ Slow down the entire put()? Pick another node?

• In general, with multiple replicas
§ Slow puts and fast gets

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105K14 V14

Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) may
need to make sure that updates happen in the same
order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N1,N3
K105N50

Master/Directory
put(K14, V14’)

put(K14, V14’)

K14 V14

put(K14, V14’’)

put(K14, V14’’)

put(K14, V14’)

put(K14, V14’')

K14 V14’’K14 V14’

• put(K14, V14’) and
put(K14, V14’’) reach N1 &
N3 in reverse order

• What does get(K14)
return?
• Undefined!

Inconsistent
write/write

from UCB CS162

Read after Write

• Read not guaranteed to return value of latest write
§ Can happen if Master processes requests in different

threads

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3
K105 N50

Master/Directory

get(K14)

get(K14, V14’)

K14 V14

put(K14, V14’)

put(K14, V14’)

put(K14, V14’)

K14 V14’K14 V14’

• get(K14) happens right after
put(K14, V14’)

• get(K14) reaches N3 before
put(K14, V14’)!

V14

V14

Inconsistent
write/read

from UCB CS162

API Interface vs Amazon Store Architecture
• get(key)

§ return single
object or list of
objects with
conflicting version
and context

• put(key, context,
object)
§ store object and

context under key
• Context encodes

system meta-data,
e.g. version number

3
2

Dynamo: Amazon’s Highly
Available Key-value Store. SOSP
2007

Data partitioning: How to assign data to
machines

• Assign data to machines with hashing
§ View machines as a ring
§ Consistent hashing: the output range of a hash function

is treated as a fixed circular space or “ring”.

0 1
2

15
14

13 3

12

11

4

5
6

9 8 7
1
0

3
3

britney.mp3

tallat-song1.mp3

tallat-song2.mp3

tallat-song3.mp3

tallat-song4.mp3

Load imbalance caused by simple hashing

• Node identifiers may not be
balanced

• Data identifiers may not be
balanced

• Hot spots
• Heterogeneous nodes
• Nodes may be added or deleted

periodically

- node
- data

3
4

Load balancing via Virtual Servers

• ”Virtual Nodes”: Each node can run and responsible
for multiple virtual nodes.
§ Each physical node picks multiple random identifiers
§ Each identifier represents a virtual server

• Better load balancing
§ Evenly dispersed on node failure
§ New node takes load from all others

• #virtual nodes allows for heterogenity
• Problems: Slow repartitioning

3
5

Each node assigned to
multiple points on ring
(virtual nodes)

Data Replication for Better Availability

• Map the same copy of data to N nodes for a
replication factor of N

0 1
2

15
14

13 3

12

11

4

5
6

9 8 7
1
0

Data: 12, 13, 14, 15, 0

Data: 1, 2, 3

Data: 4, 5

Data: 11

Data: 6, 7, 8, 9, 10

Node 0

Node 0

Node 0

Node 3

Node 3

Node 3

Node 5

Node 5

Node 5

Node 11 Node 10

Node 11

Node 10

Node 10Node 11

3
6

Quorum Consensus for Consistency

• Reading or writing involves multiple replicas.
§ But not wait for all replicas : improve put() and get()

operation performance
• Define a replica set of size N

§ put() yields writes to all replicas, and waits for
acknowledgements from at least W replicas. The writer
returns after it hears form these replicas.

– Ensure sufficient replicas have right versions.
§ get() asks a response from all replicas and waits for

responses from at least R replicas. Use timestamp to get
the latest version.

§ W+R > N
• Why does it work?

§ There is at least one node that contains the latest update

Quorum Consensus Example

• N=3, W=2, R=2
• Replica set for K14: {N1, N3, N4}
• Assume put() on N3 fails. But

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

ACK

put(K14, V14)pu
t(K

14
, V

14
)

ACK

Quorum Consensus Example

• Now, issuing get() to any two nodes out of
three will return the answer

N1 N2 N3 N4

K14 V14K14 V14

ge
t(K
14
)

V1
4

get(K14)
N
IL

from UCB CS162

• Q1: True _ False _ On a single machine, key-value store
can be implemented as a hash table.

• Q2: 1 _ 2 _ 3_ machine failures can be tolerated with the
number of replicas as 3 in a distribued key-value store.

• Q3: 1 _ 2 _ 3_ replicas must respond for a read in a
quorum-based scheme when # of relicas =3 and # of
replicas to respond a write operation is 2.

Questions : Key Value Stores

Remember W+R >N where
W=2 and N=3. Thus R>N-W=1

• Each request is put/get operation
• Throughput – # of requests that can be handled per second or by a

cluster by one machine or by the service with a cluster of machines
§ High traffic à high throughput requirement. Typically a few thousand

requests per second
• Turnaround time – amount of time to execute a request

§ Completion time – arrival time
• Response time – amount of time it takes for each request.

§ Similar to turnaround time. But if a partial response is conducted,
then turnaround time is for completion of the entire request.

• Possible bottlenecks: CPU utilization, memory consumption, disk
latency, network I/O

Performance Metrics and Optimization
Goals

Evaluation of Dynamo DB
4
2

Figure 4: Average and
99.9 percentiles of
latencies for read and
write requests during our
peak request season of
December 2006. The
intervals between
consecutive ticks in the x-
axis correspond to 12
hours. Latencies follow a
diurnal pattern similar to
the request rate and 99.9
percentile latencies are
an order of magnitude
higher than averages

Dynamo: Amazon’s Highly Available Key-value Store . 2007 SOSP
Amazon DynamoDB: A Scalable, Predictably Performant, and Fully Managed
NoSQL Database Service. 2022 USENIX ATC

Evaluation
4
3

Figure 6: Fraction of
nodes that are out-of-
balance (i.e., nodes
whose request load is
above a certain
threshold from the
average system load)
and their corresponding
request load. The
interval between ticks
in x-axis corresponds to
a time period of 30
minutes.

Evaluation: versioning due to concurrent
writes

• Divergence
§ Number of different versions returned
§ Over 24h period

• Reason
§ Node failures, data center failures, network

partitions
§ Large number of concurrent writes to an item

• Occurence
§ 99.94 % one version
§ 0.00057 % two versions
§ 0.00047 % three versions
§ 0.00009 % four versions

4
4

Summary: Key-Value Stores

• Very large scale storage systems
§ Distributed hash tables

• Two operations
§ put(key, value)
§ value = get(key)

• Challenges
§ Fault Tolerance à replication
§ Scalability à serve get()’s in parallel; replicate/cache

hot tuples
§ Consistency à quorum consensus to improve put/get

performance
• Amazon’s Dynamo key-value store

Distributed Processing for Indexing and
Data Analysis

• Distributed processing driven by need to index and analyze
huge amounts of data (i.e., the Web)

• Large numbers of inexpensive servers used rather than
larger, more expensive machines

• MapReduce is a distributed programming tool
§ Simplify data distribution on a cluster of machines
§ Open source code runs on Hadoop distributed file system
§ Provide fault tolerance
§ But not designed for interactive applications

Hadoop

Mapreduce Mapreduce Mapreduce…
46

MapReduce Programming Model
• Data: a set of key-value pairs to model input, intermediate

results, and output
§ Initially input data is stored in files
§ stored in Hadoop: distributed file system built on a cluster

of machinesà Looks like one machine
• Parallel computation:

§ A set of Map tasks and reduce tasks to access and
produce key-value pairs

§ Map Function: (key1, val1) → (key2, val2)
§ Reduce: (key2, [val2 list]) → [val3]

Map Tasks Reduce Tasks
Input files

Output files

Stored in Hadoop

in Hadoop

47

Inspired by LISP Function Programming
• Lisp map function

§ Input parameters: a function and a set of values
§ This function is applied to each of the values.
Example:
§ (map ‘length ‘(() (a) (ab) (abc)))
à(length(()) length(a) length(ab) length(abc)). à (0 1 2 3)

• Lisp reduce function
§ given a binary function and a set of values.
§ It combines all the values together using the binary

function.
§ Example:

§ use the + (add) function to reduce the list (0 1 2 3)
§ (reduce #'+ '(0 1 2 3)) à 6

48

MapReduce

• Mapper
§ Generally, transforms a list of

items into another list of items of
the same length

• Reducer
§ Transforms a list of items into a

single item
§ processes records in batches,

where all pairs with the same key
are processed at the same time

• Shuffle
§ Uses a hash function so that all

pairs with the same key end up
the same machine

Distributed programming
framework that simplifies on data
placement and distribution on a
cluster of machines

Suitable for large data mining jobs
Not for interactive jobs

49

MapReduce to compute document
frequency of terms

the
quick
brown

fox

the fox
ate the
mouse

how
now

brown
cow

Map

Map

Map

the, 1
brown, 1

fox, 1

the, 1
fox, 1
the, 1
ate,1

mouse,1

how, 1
now, 1

brown, 1
cow,1

Reduc
e

Reduc
e

quick, 1
brown, 1

brown, 1

Input Map Shuffle & Sort Reduce Output

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

50

.

Document Frequency: Input Example

map() gets a key, value
• key - "bytes from the beginning of the line?“
• value - the current line;

US history book
School admission records
iPADs sold in 2012

US history book

School admission records

iPADs sold in 2012

Input file
Line value Tokens

US history book

51

Inverted Indexing with Mapreduce

This page contains
so much text

My page contains
text too

Foo

Bar

contains: Bar
My: Bar
page : Bar
text: Bar
too: Bar

contains: Foo
much: Foo
page : Foo
so : Foo
text: Foo
This : Foo

contains: Foo, Bar
much: Foo
My: Bar
page : Foo, Bar
so : Foo
text: Foo, Bar
This : Foo
too: Bar

Reduced output

Foo map output

Bar map output

Input files
Stored in Hadoop

Map Tasks Reduce Tasks

Output files
in Hadoop

52

Pseudo code example for indexing with
position information

Intermediate
results in key-
value pairs
managed by the
system

A user writes a
small amount of
code without
worrying about
inter-machine
management

53

Hadoop Distributed File System

• Standard file interface as Linux
§ Open, seek, read, write, close

• Files split into 64 MB blocks
§ Blocks replicated across

several datanodes (3)
• Namenode stores metadata (file

names, locations, etc)
• Files are append-only.

Optimized for large files,
sequential reads
§ Read: use any copy
§ Write: append to 3 replicas

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

54

Hadoop Cluster with MapReduce
Daemons for MapReduce

TT – Task tracker to
manage within a node
Job Tracker –

coordinate across
machines

Daemons for
Hadoop:

NN –Name node
DN –Data node to
serve file blocks

55

Execute MapReduce on a cluster of machines
with Hadoop DFS

56

User Code Optimization: Combining Phase

• Run on map machines after map phase
§ “Mini-reduce,” only on local map output
§ E.g. job.setCombinerClass(Reduce.class);

• save bandwidth before sending data to full reduce tasks
• Requirement: commutative & associative

Combiner
replaces with:

Map output

To reducer

On one mapper machine:

To reducer

Types of MapReduce Applications

• Map only parallel processing
• Count word usage for each document

• Map-reduce two-stage processing
• Count word usage for the entire

document collection
• Multiple map-reduce stages

1. Count word usage in a document set
2. Identify most frequent words in each

document, but exclude those most
popular words in the entire document

5
8

MapReduce Application: Examples

• Distributed grep (search for words)
• Map: emit a line if it matches a given

pattern
• URL access frequency from many

web access logs
• Map: process one log file of web page

access; output frequency for each
URL

• Reduce: add all values for the same
URL

5
9

MapReduce Applications: Build a large
graph for computing PageRank

• Input: a set of web pages and their
outgoing links

• Output: Reversed web-link graph
• A set of web page IDs and their

incoming links.
• Parallel code

• Map: Input is a web page containing
outgoing links. Output each link with
the target URL as a key.

• Reduce: Concatenate the list of all
source pages associated with a target
URL

The Web

Reversed graph

MapReduce Job Chaining

• Run a sequence of map-reduce jobs

Spark and Amazon EMR

Spark: Berkeley design of Mapreduce programming supported
in Python, Scala, & Java

Amazon EMR is a managed service for Hadoop and Spark to run large
analytic jobs on an Amazon cluster

https://aws.amazon.com/elasticmapreduce/

Mapreduce programming with SPAK: key
concept

RDD: Resilient Distributed
Datasets
• Like a big list:

§ Collections of objects spread
across a cluster, cached in
memory as much as possible or
stored on Disk

• Built through parallel
transformations

• Automatically rebuilt on
failure

Operations
• Transformations

(e.g. map, filter,
groupBy)

• Make sure
input/output match

Write programs in terms of operations on
implicitly distributed datasets (RDD)

RDD
RDD

RDD
RDD

MapReduce vs Spark

Spark operates on RDD
with aggressive memory

caching

RDD
RDD

RDD
RDDMap and reduce

tasks operate on key-value
pairs

Spark Context and Creating RDDs

#Start with sc – SparkContext as
Main entry point to Spark functionality

Turn a Python collection into an RDD
>sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
>sc.textFile(“file.txt”)
>sc.textFile(“directory/*.txt”)
>sc.textFile(“hdfs://namenode:9000/path/file”)

RDD

Spark Architecture

Spark Architecture

RDD

Basic Transformations

> nums = sc.parallelize([1, 2, 3])

Pass each element through a function
> squares = nums.map(lambda x: x*x) // {1, 4, 9}

Keep elements passing a predicate
> even = squares.filter(lambda x: x % 2 == 0) // {4}

#read a text file and count number of lines
containing error

lines = sc.textFile(“file.log”)
lines.filter(lambda s: “ERROR” in s).count()

RDD
RDD

RDD

Basic Actions

> nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection

> nums.collect() # => [1, 2, 3]

Return first K elements
> nums.take(2) # => [1, 2]

Count number of elements
> nums.count() # => 3

Merge elements with an associative function
> nums.reduce(lambda x, y: x + y) # => 6

Write elements to a text file
> nums.saveAsTextFile(“hdfs://file.txt”)

RDD
RDD

Working with Key-Value Pairs

Spark’s “distributed reduce” transformations
operate on RDDs of key-value pairs
Python: pair = (a, b)

pair[0] # => a
pair[1] # => b

Scala: val pair = (a, b)
pair._1 // => a
pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b);
pair._1 // => a
pair._2 // => b

Some Key-Value Operations

> pets = sc.parallelize(
[(“cat”, 1), (“dog”, 1), (“cat”, 2)])

> pets.reduceByKey(lambda x, y: x + y)
=> {(cat, 3), (dog, 1)}

> pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

> pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey() also automatically implements combiners
on the map side

RDD
RDD

Other Key-Value Operations

> visits = sc.parallelize([(“index.html”, “1.2.3.4”),
(“about.html”, “3.4.5.6”),

(“index.html”, “1.3.3.1”)])

> pageNames = sc.parallelize([(“index.html”, “Home”),
(“about.html”, “About”)])

> visits.join(pageNames)
(“index.html”, (“1.2.3.4”, “Home”))
(“index.html”, (“1.3.3.1”, “Home”))

(“about.html”, (“3.4.5.6”, “About”))

> visits.cogroup(pageNames)
(“index.html”, ([“1.2.3.4”, “1.3.3.1”], [“Home”]))
(“about.html”, ([“3.4.5.6”], [“About”]))

> lines = sc.textFile(“hamlet.txt”)

> counts = lines.flatMap(lambda line: line.split(“ ”))
.map(lambda word: (word, 1))
.reduceByKey(lambda x, y: x + y)

Example: Word Count

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 1)(be,1)
(not, 1)

(or, 1)
(to, 1)(to,1)

(be,2)
(not, 1)

(or, 1)
(to, 2)

lines
flatmap

map
reduceByKey

> lines = sc.textFile(“hamlet.txt”)

> counts = lines.flatMap(lambda line: line.split(“ ”))

.map(lambda word: (word, 1))

.reduceByKey(lambda x, y: x + y)

Partitioning and Parallel Tasks in Spark

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 1)(be,1)
(not, 1)

(or, 1)
(to, 1)(to,1)

(be,2)
(not, 1)

(or, 1)
(to, 2)

lines
flatmap

map
reduceByKey

linesàRDD[“to be or”, “not to be”]

lines.flatmap(..) àRDD[to, be, or, not, to, be]

...map(..) àRDD[(to,1), (be,1), (or,1), (not,1),(to,1), (be,1)]

Partitions flatmap tasks

Mapping and Scheduling of a Spark Task
Graph

• RDD is partitioned and
distributed among
threads/machines

• Task computation is
partitioning aware
to avoid/minimize data
shuffles

• Acyclic task graph
structure

• Data flows through
dependence pipelines

• Data is cached in
memory as much as
possible.

• Computation
scheduling is data
locality aware

= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map

Level of parallelism 4

Level of parallelism 3

Setting the Level of Parallelism

All the pair RDD operations take an optional
second parameter for number of tasks

>words.reduceByKey(lambda x, y: x + y, 5)
>words.groupByKey(5)
>visits.join(pageViews, 5)

More RDD Operators

• map

• filter

• groupBy

• sort

• union

• join

• leftOuterJoin

• rightOuterJoin

• reduce

• count

• fold

• reduceByKey

• groupByKey

• cogroup

• cross

• zip

sample

take

first

partitionBy

mapWith

pipe

save ...

Summary

• Offline incremental data processing
§ All kinds of text mining and data transformation

– Indexing, duplicate removal, content classification, spam analysis

§ Combine information from different sources
– Web pages, entity/knowledge graph, link data, click data, database

tables

• Offline architectures and infrastructure
§ Flow control for large system components

–Pipeline, incremental update, 24x7 support

§ Examples of system software for
parallel/distributed processing

–Key-value stores, Map-Reduce, Spark
78

