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• System support for offline data processing
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Offline Architecture for Ask.com Search
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Content Management

• Organize the vast amount of pages crawled to 
facilitate online search.
§ Data preprocessing
§ Inverted index
§ Compression
§ Classify and partition data

• Collect additional content and ranking signals.
§ Link, anchor text, log data

• Extract and structure  content
• Duplicate detection
• Anti-spamming
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Classifying and Partitioning data

• Classify 
§ Content quality. Language/country etc

• Partition 
§ Based on languages and countries. Geographical 

distribution based on data center locations
§ Partition based on quality 

– First tier --- high chance that users will access
§ Quality indicator
§ Click feedback

– Second tier – lower chance

English 
Main.

English
UK

English
Australia

Tier 1

Tier 2
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Text mining

• “Text mining” is a cover-all marketing term
• A lot of what we’ve already talked about is actually 

the bread and butter of text mining:
§ Text classification, clustering, and retrieval

• But we will focus in on some of the higher-level 
text applications:
§ Extracting document metadata
§ Entities/knowledge graphs
§ Topic tracking and new story detection
§ Cross document entity and event coreference
§ Text summarization
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Knowledge Graph

A knowledge graph is represented as entities, edges and attributes 
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Knowledge Graphs and Challenges

General knowledge graphs
• Freebase Wikidata, Dbpedia
• Google Knowledge Vault, 

Google KG, Microsoft Satori KG 
Large vertical KGs 
- Facebook (social 

network), LinkedIn (people 
graph) 

- Amazon (product graph)
Challenges for building/maintaining  
a scalable large KG

2B+ entities 
130B+ Web pages
44+ languages 
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Usage of Knowledge Graphs for Search 
and Other Information Systems

• Search and NLP questions
§ Give direct answers
§ Enhance ranking

• Recommendation
• Auto conversation
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Information extraction to enhance information on 
web pages and refine knowledge graphs
• Getting semantic information out of textual data

§ Understand more information on web pages
§ Refine knowledge entities and extract their relationship

§ Validation, association, duplicate removal/merging 
(entity linking), error correction, content refreshing

• Look for specific types of web pages:
§ E.g. an event web page:

– What is the name of the event?
– What date/time is it?

– How much does it cost to attend

§ Home pages for persons, organizations, 
• Many vertical domains: resumes, health,  products, …

10



Examples of Context Extraction/Analysis

• Getting semantic information out of textual data
§ Identify key phrases that capture the meaning of this 

document.  For example, title, section title, 
highlighted words.

§ Identify parts of a document representing the 
meaning of this document.

– Many web pages contain a side-menu, which his less 
relevant to the main content of the documents

§ Identify entities and their relationships, attributes
§ Capture page content through Javascript analysis. 

– Page rendering and Javascript evaluation within a page
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Example of Content
Analysis

• Identify content block related
to the main content of a page

§ Non-content text/link
material is de-prioritized
during  indexing process
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Redundant Content Removal in Search 
Engines

• Over 1/3 of Web pages crawled are near 
duplicates

• When to remove near duplicates?
§ Offline removal

§ Online removal with query-based duplicate 
removal

Online index 
matching & 
result ranking

Duplicate 
removalUser

query

Final results

Offline data 
processing

Duplicate 
filtering

Web
Pages

Online 
index
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Why there are so many duplicates?

• Same content, different URLs, often with different 
session IDs.

• Crawling time
difference
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Tradeoff of online vs. offline removal

Online-dominating
approach

Offline-dominating 
approach

Impact to offline data 
processing design

High precision
Low recall

Remove fewer 
duplicates

High precision
High recall

Remove most of 
duplicates

Higher offline burden
Impact to online 
system design

More burden to 
online deduplication

Less burden to 
online deduplication

Impact to  overall 
cost

Higher serving cost Lower serving cost
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Key Value Stores/Storage

• Handle huge volumes of 
data, e.g., PetaBytes!
§ Store (key, value) tuples

• Simple interface
§ put(key, value); 

Insert/write “value” 
associated with “key”

§ value = get(key); 
Get/read data associated 
with “key”

Used sometimes as a 
simpler but more 
scalable “database”

17



Key Values: Examples 

• Web search: store documents,  cache results, store URL 
properties
§ Document server, image server, cache server, URL server
§ Neural embeddings for tokens and documents

• Amazon shopping:
§ Key: customerID
§ Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter accounts:
§ Key: UserID
§ Value: user profile (e.g., posting history, photos, friends, …)

• iCloud/iTunes:
§ Key: Movie/song name
§ Value: Movie, Song
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Key-Value Storage Systems in Real Life
• Amazon

§ DynamoDB: internal key value store used for 
Amazon.com (cart)

§ Amazon SimpleDB. Simple Storage System (S3)
• BigTable/HBase/Hypertable: distributed, scalable data 

store
• Cassandra: “distributed data management system” 

(developed by Facebook)
• Memcached: in-memory key-value store for small chunks of 

arbitrary data (strings, objects) 
• BitTorrent distributed file location: peer-to-peer 

sharing system
• Redis, Oracle NSQL Database…
• Distributed file systems: set of (file block ID, file block) 19



Key Value Store on a Cluster of Machines

• Also called Distributed Hash Tables (DHT)
• Main idea: partition set of key-values across 

many machines key, value

…
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Challenges

• Fault Tolerance: handle machine failures without 
losing data  and without degradation in performance

• Scalability: 
§ Need to scale to thousands of machines 
§ Need to allow easy addition of new machines

• Consistency: maintain data consistency in face of 
node failures and message losses 

• Heterogeneity (if deployed as peer-to-peer 
systems):
§ Latency: 1ms to 1000ms
§ Bandwidth: 32Kb/s to 100Mb/s

…

21



Important Concepts on Fault Tolerance

• Availability: the probability that the system can accept and process 
requests even there are failures
§ Often measured in “nines” of probability.  So, a 99.9% probability is 

considered “3-nines of availability”
§ Key idea here is independence of failures

• Reliability: the ability to perform required functions correctly during failure
• Usually stronger than simply availability: means that the system is not 

only “up”, but also working correctly
• Must make sure data survives system crashes, disk crashes, etc



Key Questions

• put(key, value): where to store a new (key, 
value) tuple?

• get(key): where is the value associated with a 
given “key” stored?

• And, do the above while providing 
§ Fault Tolerance
§ Scalability
§ Consistency
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Directory-Based Architecture

• Have a node maintain the mapping between 
keys and the machines (nodes) that store the 
values associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
put(K14, V14)

pu
t(K

14
, V

14
)
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Directory-Based Architecture
• Have a node maintain the mapping between 

keys and the machines (nodes) that store 
the values associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
get(K14)

ge
t(K
14
)

V1
4

V14
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Directory-Based Architecture
• Having the master relay the requests ®

recursive query
• Another method: iterative query (this slide)

§ Return node to requester and let requester contact 
node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
put(K14, V14)

put(K14, V14)

N3
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Directory-Based Architecture
• Having the master relay the requests ®

recursive query
• Another method: iterative query

§ Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N3
K105N50

Master/Directory
get(K14)

get(K14)

V14
N3

27



Fault Tolerance

• Replicate key-value pairs on several nodes
• Usually, place replicas on different racks in a datacenter to 

guard against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N1,N3 
K105N50

Master/Directory
put(K14, V14)

put(K14, V14)

K14 V14

put(K14, V14)



Consistency 
among replicas

• Need to make sure that a value is replicated 
correctly
§ How do you know a value has been replicated 

on every node? 
§ Wait for acknowledgements from every node

• What happens if a node fails during replication?
§ Pick another node and try again

• What happens if a node is slow?
§ Slow down the entire put()? Pick another node?

• In general, with multiple replicas
§ Slow puts and fast gets

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105K14 V14



Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) may 
need to make sure that updates happen in the same 
order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105V105

K5 N2
K14 N1,N3 
K105N50

Master/Directory
put(K14, V14’)

put(K14, V14’)

K14 V14

put(K14, V14’’)

put(K14, V14’’)

put(K14, V14’)

put(K14, V14’')

K14 V14’’K14 V14’

• put(K14, V14’) and 
put(K14, V14’’) reach N1 & 
N3 in reverse  order

• What does get(K14) 
return?
• Undefined!

Inconsistent 
write/write

from UCB CS162



Read after Write

• Read not guaranteed to return value of latest write
§ Can happen if Master processes requests in different 

threads

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 
K105 N50

Master/Directory

get(K14)

get(K14, V14’)

K14 V14

put(K14, V14’)

put(K14, V14’)

put(K14, V14’)

K14 V14’K14 V14’

• get(K14) happens right after 
put(K14, V14’)

• get(K14) reaches N3 before 
put(K14, V14’)!

V14

V14

Inconsistent 
write/read

from UCB CS162



API Interface  vs Amazon Store  Architecture
• get(key)

§ return single 
object or list of 
objects with 
conflicting version 
and context

• put(key, context, 
object)
§ store object and 

context under key
• Context encodes 

system meta-data, 
e.g. version number

3
2

Dynamo: Amazon’s Highly 
Available Key-value Store. SOSP 
2007



Data partitioning: How to assign data to 
machines

• Assign data to machines with hashing
§ View machines as a ring
§ Consistent hashing: the output range of a hash function 

is treated as a fixed circular space or “ring”.

0 1
2

15
14

13 3

12

11

4

5
6

9 8 7
1
0

3
3

britney.mp3

tallat-song1.mp3

tallat-song2.mp3

tallat-song3.mp3

tallat-song4.mp3



Load imbalance caused by simple hashing

• Node identifiers may not be 
balanced

• Data identifiers may not be 
balanced

• Hot spots
• Heterogeneous nodes
• Nodes may be added or deleted 

periodically

- node
- data

3
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Load balancing via Virtual Servers

• ”Virtual Nodes”: Each node can run and  responsible 
for multiple virtual nodes.
§ Each physical node picks multiple random identifiers
§ Each identifier represents a virtual server

• Better load balancing
§ Evenly dispersed on node failure 
§ New node takes load from all others 

• #virtual nodes allows for heterogenity 
• Problems:  Slow repartitioning 

3
5

Each node assigned to 
multiple points on ring 
(virtual nodes) 



Data Replication for Better Availability

• Map the same copy of data  to N nodes for a 
replication factor of N

0 1
2

15
14

13 3

12

11

4

5
6

9 8 7
1
0

Data: 12, 13, 14, 15, 0

Data: 1, 2, 3

Data: 4, 5

Data: 11

Data: 6, 7, 8, 9, 10

Node 0

Node 0

Node 0

Node 3

Node 3

Node 3

Node 5

Node 5

Node 5

Node 11 Node 10

Node 11

Node 10

Node 10Node 11
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Quorum Consensus for Consistency

• Reading or writing involves multiple replicas.
§ But not wait for all replicas :  improve put() and get() 

operation performance
• Define a replica set of size N

§ put() yields writes to all replicas, and waits for 
acknowledgements from at least W replicas. The writer 
returns after it hears form these replicas.

– Ensure sufficient replicas have right versions.
§ get() asks a response from all replicas and waits for 

responses from at least R replicas. Use timestamp to get 
the latest version.

§ W+R > N
• Why does it work?

§ There is at least one node that contains the latest update



Quorum Consensus Example

• N=3, W=2, R=2
• Replica set for K14: {N1, N3, N4}
• Assume put() on N3 fails. But 

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

ACK

put(K14, V14)pu
t(K

14
, V

14
)

ACK



Quorum Consensus Example

• Now, issuing get() to any two nodes out of 
three will return the answer

N1 N2 N3 N4

K14 V14K14 V14

ge
t(K
14
)

V1
4

get(K14)
N
IL

from UCB CS162



• Q1: True _  False _  On a single machine, key-value store 
can be implemented as a hash table.

• Q2: 1 _  2 _  3_   machine failures can be tolerated with the 
number  of replicas as 3 in a distribued key-value store.

• Q3: 1 _  2 _  3_   replicas must respond for a read  in a 
quorum-based scheme when # of relicas =3 and # of 
replicas  to respond a write operation is 2.

Questions : Key Value Stores

Remember W+R >N where 
W=2 and N=3. Thus R>N-W=1



• Each request is put/get operation
• Throughput – # of requests that can be handled  per second  or by a 

cluster  by one machine or by the service with  a cluster of machines  
§ High traffic à high throughput requirement. Typically a few thousand 

requests per second
• Turnaround time – amount of time to execute a request

§ Completion time – arrival time
• Response time – amount of time it takes for each request.

§ Similar to turnaround time.  But if a partial response is conducted, 
then turnaround time is for completion of the entire request.

• Possible bottlenecks:  CPU utilization, memory consumption, disk 
latency, network I/O

Performance Metrics and Optimization 
Goals



Evaluation of Dynamo DB
4
2

Figure 4: Average and 
99.9 percentiles of 
latencies for read and 
write requests during our 
peak request season of 
December 2006. The 
intervals between 
consecutive ticks in the x-
axis correspond to 12 
hours. Latencies follow a 
diurnal pattern similar to 
the request rate and 99.9 
percentile latencies are 
an order of magnitude 
higher than averages 

Dynamo: Amazon’s Highly Available Key-value Store . 2007 SOSP
Amazon DynamoDB: A Scalable, Predictably Performant, and Fully Managed 
NoSQL Database Service. 2022 USENIX ATC



Evaluation
4
3

Figure 6: Fraction of 
nodes that are out-of-
balance (i.e., nodes 
whose request load is 
above a certain 
threshold from the 
average system load) 
and their corresponding 
request load. The 
interval between ticks 
in x-axis corresponds to 
a time period of 30 
minutes. 



Evaluation: versioning due to concurrent 
writes

• Divergence 
§ Number of different versions returned 
§ Over 24h period 

• Reason
§ Node failures, data center failures, network 

partitions
§ Large number of concurrent writes to an item

• Occurence
§ 99.94 % one version
§ 0.00057 % two versions
§ 0.00047 % three versions
§ 0.00009 % four versions

4
4



Summary: Key-Value Stores

• Very large scale storage systems
§ Distributed hash tables

• Two operations
§ put(key, value)
§ value = get(key)

• Challenges
§ Fault Tolerance à replication
§ Scalability à serve get()’s in parallel; replicate/cache 

hot tuples
§ Consistency à quorum consensus to improve put/get 

performance
• Amazon’s Dynamo key-value store



Distributed Processing for Indexing and 
Data Analysis

• Distributed processing driven by need to index and analyze 
huge amounts of data (i.e., the Web)

• Large numbers of inexpensive servers used rather than 
larger, more expensive machines

• MapReduce is a distributed programming tool
§ Simplify  data distribution on a cluster of machines 
§ Open source code runs on Hadoop distributed file system
§ Provide fault tolerance
§ But not designed for interactive applications

Hadoop 

Mapreduce Mapreduce Mapreduce…
46



MapReduce Programming Model
• Data:  a set of key-value pairs to model input, intermediate 

results, and output
§ Initially input data is stored in files
§ stored in Hadoop: distributed file system built on a cluster 

of machinesà Looks like one machine
• Parallel computation: 

§ A set of Map tasks and reduce tasks to access and 
produce key-value pairs

§ Map Function: (key1, val1) → (key2, val2)
§ Reduce: (key2, [val2 list]) → [val3]

Map Tasks Reduce Tasks
Input files

Output files

Stored in Hadoop

in Hadoop
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Inspired by LISP Function Programming
• Lisp map function

§ Input parameters:  a function and a set of values
§ This function is applied to each of the values.
Example:
§ (map ‘length ‘(() (a) (ab) (abc)))
à(length(()) length(a) length(ab) length(abc)).   à (0 1 2 3)

• Lisp reduce function
§ given a binary function and a set of values. 
§ It combines all the values together using the binary 

function. 
§ Example:

§ use the + (add) function to reduce the list (0 1 2 3)
§ (reduce    #'+   '(0 1 2 3))  à 6

48



MapReduce

• Mapper
§ Generally, transforms a list of 

items into another list of items of 
the same length

• Reducer
§ Transforms a list of items into a 

single item
§ processes records in batches, 

where all pairs with the same key 
are processed at the same time

• Shuffle
§ Uses a hash function so that all 

pairs with the same key end up 
the same machine

Distributed programming 
framework that simplifies on data 
placement and distribution on a 
cluster of machines

Suitable for large data mining jobs
Not for interactive jobs
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MapReduce to compute document 
frequency of terms

the 
quick
brown 

fox

the fox 
ate the 
mouse

how 
now

brown 
cow

Map

Map

Map

the, 1
brown, 1

fox, 1

the, 1
fox, 1
the, 1
ate,1

mouse,1

how, 1
now, 1

brown, 1
cow,1

Reduc
e

Reduc
e

quick, 1
brown, 1

brown, 1

Input Map Shuffle & Sort Reduce Output

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1
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.

Document Frequency: Input Example

map() gets a key, value
• key - "bytes from the beginning of the line?“
• value - the current line;

US history book
School admission records
iPADs sold in 2012

US history book

School admission records

iPADs sold in 2012

Input file
Line value Tokens

US    history book
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Inverted Indexing with Mapreduce

This page contains 
so much text

My page contains 
text too

Foo

Bar

contains: Bar
My: Bar
page : Bar
text: Bar
too: Bar

contains: Foo
much: Foo
page : Foo
so : Foo
text: Foo
This : Foo

contains: Foo, Bar
much: Foo
My: Bar
page : Foo, Bar
so : Foo
text: Foo, Bar
This : Foo
too: Bar

Reduced output

Foo map output

Bar map output

Input files 
Stored in Hadoop

Map Tasks Reduce Tasks

Output files
in Hadoop
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Pseudo code example for indexing with 
position information

Intermediate 
results in key-
value pairs 
managed by the 
system 

A user writes a 
small amount of
code without 
worrying about 
inter-machine 
management
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Hadoop Distributed File System

• Standard  file  interface as Linux
§ Open, seek, read, write, close

• Files split into 64 MB blocks
§ Blocks replicated across 

several datanodes ( 3)
• Namenode stores metadata (file 

names, locations, etc)
• Files are append-only. 

Optimized for large files, 
sequential reads
§ Read: use any copy
§ Write: append to 3 replicas

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1
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Hadoop Cluster with MapReduce
Daemons for MapReduce

TT – Task tracker to 
manage within a node
Job Tracker –

coordinate across 
machines

Daemons for 
Hadoop:

NN –Name node
DN –Data node to 
serve file blocks
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Execute MapReduce on a cluster of machines 
with Hadoop DFS

56



User Code Optimization: Combining Phase

• Run on map machines after map phase
§ “Mini-reduce,” only on local map output
§ E.g.  job.setCombinerClass(Reduce.class);

• save bandwidth before sending data to full reduce tasks
• Requirement:  commutative & associative

Combiner 
replaces with:

Map output

To reducer

On one mapper machine:

To reducer



Types of MapReduce Applications

• Map only parallel processing
• Count word usage for each document

• Map-reduce two-stage processing
• Count word usage for the entire 

document collection
• Multiple map-reduce stages

1. Count word usage in a document set
2. Identify most frequent words in each 

document, but exclude those most 
popular words in the entire document 

5
8



MapReduce Application: Examples

• Distributed grep (search for words)
• Map: emit a line if it matches a given 

pattern
• URL access frequency from many 

web access logs
• Map: process one log file of web page 

access; output frequency for each 
URL

• Reduce: add all values for the same 
URL

5
9



MapReduce Applications: Build a large 
graph for computing PageRank

• Input: a set of web pages and their 
outgoing links

• Output: Reversed web-link graph 
• A set of web page IDs and their 

incoming links.
• Parallel code

• Map:  Input is a web page containing  
outgoing links. Output each link with 
the target URL as a key. 

• Reduce: Concatenate the list of all 
source pages associated with a target 
URL 

The Web

Reversed graph



MapReduce Job Chaining

• Run a sequence of map-reduce jobs



Spark and Amazon EMR

Spark: Berkeley design of Mapreduce programming supported 
in Python, Scala, & Java

Amazon EMR is a managed service for Hadoop and Spark  to run large  
analytic jobs on an Amazon cluster

https://aws.amazon.com/elasticmapreduce/


Mapreduce programming with SPAK: key 
concept

RDD: Resilient Distributed 
Datasets
• Like a big list:

§ Collections of objects spread 
across a cluster, cached in 
memory as much as possible or 
stored on Disk

• Built through parallel 
transformations

• Automatically rebuilt on 
failure

Operations
• Transformations

(e.g. map, filter, 
groupBy)

• Make sure 
input/output match

Write programs in terms of operations on 
implicitly distributed datasets (RDD)

RDD
RDD

RDD
RDD



MapReduce  vs Spark

Spark operates on RDD 
with aggressive memory 

caching

RDD
RDD

RDD
RDDMap and reduce

tasks operate on key-value
pairs



Spark Context and Creating RDDs

#Start with sc – SparkContext as
Main entry point to Spark functionality

# Turn a Python collection into an RDD
>sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
>sc.textFile(“file.txt”)
>sc.textFile(“directory/*.txt”)
>sc.textFile(“hdfs://namenode:9000/path/file”)

RDD



Spark Architecture



Spark Architecture

RDD



Basic Transformations

> nums = sc.parallelize([1, 2, 3])

# Pass each element through a function
> squares = nums.map(lambda x: x*x)   // {1, 4, 9}

# Keep elements passing a predicate
> even = squares.filter(lambda x: x % 2 == 0) // {4}

#read a text file and count number of lines 
containing error

lines = sc.textFile(“file.log”)
lines.filter(lambda s: “ERROR” in s).count()

RDD
RDD

RDD



Basic Actions

> nums = sc.parallelize([1, 2, 3])

# Retrieve RDD contents as a local collection

> nums.collect() # => [1, 2, 3]

# Return first K elements
> nums.take(2)   # => [1, 2]

# Count number of elements
> nums.count()   # => 3

# Merge elements with an associative function
> nums.reduce(lambda x, y: x + y)  # => 6

# Write elements to a text file
> nums.saveAsTextFile(“hdfs://file.txt”)

RDD
RDD



Working with Key-Value Pairs

Spark’s “distributed reduce” transformations 
operate on RDDs of key-value pairs
Python: pair = (a, b)

pair[0] # => a 
pair[1] # => b

Scala: val pair = (a, b)
pair._1 // => a
pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b); 
pair._1 // => a
pair._2 // => b



Some Key-Value Operations

> pets = sc.parallelize(
[(“cat”, 1), (“dog”, 1), (“cat”, 2)])

> pets.reduceByKey(lambda x, y: x + y)
# => {(cat, 3), (dog, 1)}

> pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

> pets.sortByKey()  # => {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey() also automatically implements combiners 
on the map side

RDD
RDD



Other Key-Value Operations

> visits = sc.parallelize([ (“index.html”, “1.2.3.4”),
(“about.html”, “3.4.5.6”),

(“index.html”, “1.3.3.1”) ])

> pageNames = sc.parallelize([ (“index.html”, “Home”),
(“about.html”, “About”) ])

> visits.join(pageNames) 
# (“index.html”, (“1.2.3.4”, “Home”))
# (“index.html”, (“1.3.3.1”, “Home”))

# (“about.html”, (“3.4.5.6”, “About”))

> visits.cogroup(pageNames) 
# (“index.html”, ([“1.2.3.4”, “1.3.3.1”], [“Home”]))
# (“about.html”, ([“3.4.5.6”], [“About”]))



> lines = sc.textFile(“hamlet.txt”)

> counts = lines.flatMap(lambda line: line.split(“ ”))
.map(lambda word: (word, 1))
.reduceByKey(lambda x, y: x + y)

Example: Word Count

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 1)(be,1)
(not, 1)

(or, 1)
(to, 1)(to,1)

(be,2)
(not, 1)

(or, 1)
(to, 2)

lines
flatmap

map
reduceByKey



> lines = sc.textFile(“hamlet.txt”)

> counts = lines.flatMap(lambda line: line.split(“ ”))

.map(lambda word: (word, 1))

.reduceByKey(lambda x, y: x + y)

Partitioning and Parallel Tasks in Spark

“to be or”

“not to be”

“to”
“be”
“or”

“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)

(not, 1)
(to, 1)
(be, 1)

(be, 1)(be,1)
(not, 1)

(or, 1)
(to, 1)(to,1)

(be,2)
(not, 1)

(or, 1)
(to, 2)

lines
flatmap

map
reduceByKey

linesàRDD[“to be or”, “not to be”]

lines.flatmap(..) àRDD[to, be, or, not, to, be]

...map(..) àRDD[(to,1), (be,1), (or,1), (not,1),( to,1), (be,1)]

Partitions flatmap tasks



Mapping and Scheduling  of a Spark Task 
Graph 

• RDD is partitioned and 
distributed among 
threads/machines

• Task computation is  
partitioning aware
to avoid/minimize data 
shuffles

• Acyclic task graph 
structure

• Data flows through 
dependence pipelines

• Data is cached in 
memory as much as 
possible.

• Computation 
scheduling is data 
locality aware

= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map

Level of parallelism 4

Level of parallelism 3



Setting the Level of Parallelism

All the pair RDD operations take an optional 
second parameter for number of tasks

>words.reduceByKey(lambda x, y: x + y, 5)
>words.groupByKey(5)
>visits.join(pageViews, 5)



More RDD Operators

• map

• filter

• groupBy

• sort

• union

• join

• leftOuterJoin

• rightOuterJoin

• reduce

• count

• fold

• reduceByKey

• groupByKey

• cogroup

• cross

• zip

sample

take

first

partitionBy

mapWith

pipe

save    ...



Summary

• Offline incremental data processing
§ All kinds of text mining and data transformation

– Indexing, duplicate removal, content classification, spam analysis

§ Combine information from different sources
– Web pages, entity/knowledge graph,  link data, click data, database 

tables

• Offline architectures and infrastructure 
§ Flow control for large system components

–Pipeline, incremental update, 24x7 support

§ Examples of system software for 
parallel/distributed processing

–Key-value stores, Map-Reduce, Spark
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