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' Table of Content

« Offline incremental data processing: case
study

= Content management for large index
= Text mining, knowledge graph
= Example of content analysis
* Duplicate content removal
« System support for offline data processing
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' Content Management

« Organize the vast amount of pages crawled to
facilitate online search.

= Data preprocessing
* |nverted index
= Compression
= Classify and partition data
« Collect additional content and ranking signals.
= Link, anchor text, log data
« Extract and structure content
* Duplicate detection
* Anti-spamming




Classifying and Partitioning data

English English English

« Classify @ @F

= Content quality. Language/country etc
« Partition
= Based on languages and countries. Geographical
distribution based on data center locations

= Partition based on quality

— First tier --- high chance that users will access

= Quality indicator
= Click feedback

— Second tier — lower chance /:_i /:_i Tier 1




' Text mining

 “Text mining” is a cover-all marketing term

« A lot of what we’ve already talked about is actually
the bread and butter of text mining:

= Text classification, clustering, and retrieval

« But we will focus in on some of the higher-level
text applications:

= Extracting document metadata

= Entities/lknowledge graphs

Topic tracking and new story detection

= Cross document entity and event coreference
= Text summarization




Knowledge Graph

A knowledge graph is represented as entities, edges and attributes

Personal entity showing
that Tom watched Ghosts

of the Abyss

Key concepts

Entity Represent something in
the real world

Edge Represent relationship

Attribute = Represent something
about an entity

Ontology | Definition of possible

types of entities,
relationships and
attributes

[ n-l-omn e
@, : writer . An entity
_______________ e | /Peson “GhostsoftheAbyss’ | 1©T ooy )
1 i ® . producer . representinga
| watched ' fim name A ’ :
— diecor ———— person with
_________________ type ] actor : name attribute
! . directed ey v
| i S bm pde:eyd ' type peson . ‘James Cameron’
_________________ type () person ()—name
1 ﬁImJaerformance E pouse “lames Cameron” ]
- performance_type ma B R
.................. O - marriage ;
1 film_performance_type | from to mage
spouse
2] " ” narne I(aﬂ1rynB|$b\A/
| Him/Hersef?” e | asey || oo )
tym I"_______________':
Edge (i.e. relationship) showing that ; person [
\ director :

“Ghosts of the Abyss” was ‘directed_by’
and ‘produced_by’ James Cameron




Knowledge Graphs and Challenges

General knowledge graphs

* Freebase Wikidata, Dbpedia A

* Google Knowledge Vault, ety
Google KG, Microsoft Satori KG

Large vertical KGs

- Facebook (social
network), LinkedIn (people

graph)

- Amazon (product graph) o

Challenges for building/maintaining
a scalable large KG Coverage

Have we got the
information we need?

2B+ entities
>

130B+ Web pages
44+ languages Freshness / Correctness

Is information Is our information
up to date? accurate?

s e Will Smith @ s

Lived: Jul 04, 1981 @will_cha
Height: o1 Follow my progess on Twitter and Instagram. Twizter
s @Wii_char Instagram-
4

Will Smith & shae

a
.

Will Smith: Single entity,
108K facts assembled from
41 web sites.

There are 200 Will Smiths on
Wikipedia alone.

Facebook  Tw
Facebook: 1.0k fo
Twitter: 3 4k folloy
Wikgeda
Born 71 (age 46) - Winchester. England
biing




Usage of Knowledge Graphs for Search
and Other Information Systems

« Search and NLP questions
= Give direct answers
= Enhance ranking

« Recommendation

« Auto conversation
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’ Information extraction to enhance information on
web pages and refine knowledge graphs

« Getting semantic information out of textual data
= Understand more information on web pages
* Refine knowledge entities and extract their relationship

= Validation, association, duplicate removal/merging
(entity linking), error correction, content refreshing

* Look for specific types of web pages:

= E.g. an event web page:

— What is the name of the event?
— What date/time is it?
— How much does it cost to attend

= Home pages for persons, organizations,
 Many vertical domains: resumes, health, products, ...
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' Examples of Context Extraction/Analysis

« Getting semantic information out of textual data

|dentify key phrases that capture the meaning of this
document. For example, title, section title,
highlighted words.

|dentify parts of a document representing the
meaning of this document.

— Many web pages contain a side-menu, which his less
relevant to the main content of the documents

|dentify entities and their relationships, attributes

Capture page content through Javascript analysis.
— Page rendering and Javascript evaluation within a page

11



Example of Content
Analysis

 ldentify content block related
to the main content of a page
= Non-content text/link
material is de-prioritized
during indexing process
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' Table of Content

« Offline incremental data processing: case
study

= Content management for large index
= Text mining, knowledge graph
= Example of content analysis
 Duplicate content removal <{——
« System support

13



' Redundant Content Removal in Search

— Engines

* Over 1/3 of Web pages crawled are near
duplicates

* When to remove near duplicates?
= Offline removal

b N\
Web Offline data Duplicate
Pages processing y filterin
= Online removal with query-based duplicate
removal

g Online index h N Final results

Duplicate

User ::> matching & removal j\>

query . resultranking )

14



Why there are so many duplicates?

« Same content, different URLSs, often with different
session IDs.

User 1 Server User 2
« Crawling time
. —!
dlfference USEr 1 ee—— 9 44— User2
intial request intial request
Response Response T Ly
form with form with
/ Session ID 01 Session ID 02
<form> <tarm>
User 1 Eo User 2
INPUL With e——|| | o @ input with
— Session ID 01 Session ID 02 L™=
Response with Response with
User 1 data and User 2 data and
/ Session ID 01 Session ID 02 \
User 1 Info User 2 Info
User 1 = User 2
inpu(_with —ep || | 8 - input with
Session ID 01 Session ID 02
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Tradeoff of online vs. offline removal

Online-dominating Offline-dominating

approach approach
Impact to offline data High precision High precision
processing design Low recall High recall

Remove fewer Remove most of

duplicates duplicates

Higher offline burden

16



' Key Value Stores/Storage

 Handle huge volumes of

Value

data, e.g., PetaBytes!

= Store (key, value) tuples

« Simple interface

= put(key, value);
Insert/write “value”
associated with “key”

= value = get(key);
Get/read data associated
with “key”

AAA BBB,CCC
AAA BBB
AAA,DDD

AAA,2,01/01/2015
3,772,5623

Used sometimes as a
simpler but more
scalable “database”

17



Key Values: Examples

Web search: store documents, cache results, store URL
properties
= Document server, image server, cache server, URL server
= Neural embeddings for tokens and documents
Amazon shopping:
= Key: customerlD

= Value: customer profile (e.g., buying history, credit card, ..)

Facebook, Twitter accounts:
= Key: UserlD
= Value: user profile (e.g., posting history, photos, friends, ...)

iCloud/iTunes:
= Key: Movie/song name
= Value: Movie, Song

18



' Key-Value Storage Systems in Real Life

 Amazon

= DynamoDB: internal key value store used for
Amazon.com (cart)

= Amazon SimpleDB. Simple Storage System (S3)

 BigTable/HBase/Hypertable: distributed, scalable data
store

« Cassandra: “distributed data management system”
(developed by Facebook)

« Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)

 BitTorrent distributed file location: peer-to-peer
sharing system

 Redis, Oracle NSQL Database...
 Distributed file systems: set of (file block ID, file block) <




' Key Value Store on a Cluster of Machines

* Also called Distributed Hash Tables (DHT)
 Main idea: partition set of key-values across

. key, value
many machines
//

E &

20



' Challenges

* Fault Tolerance: handle machine failures without
losing data and without degradation in performance
* Scalability:
= Need to scale to thousands of machines
= Need to allow easy addition of new machines

« Consistency: maintain data consistency in face of
node failures and message losses

- Heterogeneity (if deployed as peer-to-peer
systems):
= Latency: 1ms to 1000ms
= Bandwidth: 32Kb/s to 100Mb/s

21



Important Concepts on Fault Tolerance

- Availability: the probability that the system can accept and process
requests even there are failures

= Often measured in “nines” of probability. So, a 99.9% probability is
considered “3-nines of availability”

= Key idea here is independence of failures

Class|Uptime [Downtime per Year Examples
(maximum)
1 |90.0% 36di12h personal clients, experimental systems
2 99.0% 87h 36 m entry-level business systems
3 199.9% 8h46m top Internet Service Providers, mainstream
business systems
4 199.99% 52m 33 S high-end business systems, data centers
5 199.999% 5m15s carrier-grade telephony; health systems; banking
6 199.99990% 31.5S military defense systems

* Reliability: the ability to perform required functions correctly during failure
* Usually stronger than simply availability: means that the system is not

only “up”, but also working correctly

* Must make sure data survives system crashes, disk crashes, etc




' Key Questions

 put(key, value): where to store a new (key,
value) tuple?

o get(key): where is the value associated with a
given “key” stored?

* And, do the above while providing
= Fault Tolerance
= Scalability
= Consistency

23



Directory-Based Architecture

 Have a node maintain the mapping between
keys and the machines (hodes) that store the
values associated with the keys

Master/Directory

put(K14, V14) == - === - __ \E K5
14| N3
\a .~

KTO3 N5

KS [ V5 K14[ V1 K109V104




Directory-Based Architecture

. H I o N

keys and the machines (hodes) that store
the values associated with the keys

Master/Directory

KO

Vi4 « = = = — — . — _ _ _ -r 14| N3
G, KTO8N5
SN
ST
¥ '
K5 | V5 K14| V1 K105V105
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Directory-Based Architecture

« Having the master relay the requests —

recursive query

* Another method: iterative query (this slide)
= Return node to requester and let requester contact

node
put(K14,V14) == === - - - - - _ . K5 _
N3 - =--omo____ Tana| Master/Directory
S~l by K105 N5
g L
\\\7\4}
K5 [V5 K14[ Vi K105V105




Directory-Based Architecture

« Having the master relay the requests —

recursive query

* Another method: iterative query

= Return node to requester and let requester contact node
Master/Directory

get(K14y-=---=------ > KT
N ====mmmm 141 N3
vi4 DY " [KTOG N5
\\ \g@f/ﬁ'
N0y
K5 [ V5 K14[ V1 K1059V105




Fault Tolerance

Replicate key-value pairs on several nodes

Usually, place replicas on different racks in a datacenter to
guard against rack failures

Master/Directory

pUt(K14, VA1 4) ——————————— > K5 N2 |

E K14 N1 N3
) _ K103 N50
VAL ABY
KA - \(\\b‘*}/
———— \)\\//
=" -7 Q‘( -
K14| V14 K5 | V5 K14| V14 K109V104




Consistency
amond replicas

K14| V1 K5 | V5 K14]| Vi K105 V105

E & & &

N, N, N3 Nso
Need to make sure that a value is replicated
correctly

= How do you know a value has been replicated
on every node?
= Wait for acknowledgements from every node

What happens if a node fails during replication?
= Pick another node and try again

What happens if a node is slow?
= Slow down the entire put()? Pick another node?

In general, with multiple replicas
= Slow puts and fast gets



Consistency (cont’d)

* If concurrent updates (i.e., puts to same key) may
need to make sure that updates happen in the same

order . ,
Master/Directory put(K|4,\/|4’? and
put(K14, V14’) < _ put(K14,V14") reach N, &
Sa K5 N2 | .
put(K14, V14”) -_..E K14 N1.N3 N5 In reverse order
K105 N50 * What does get(K14)
AT X" return?
b:\ 7\ -’ \ = = (
W ARE
AXo 2 Tabo 7 i * Undefined!
\)\Ql\ - \)\K\l:/ \\ ’4\ £
// {d \ =\ ;
-’ P « "y T
y y -~ -~
K14 V1 K5 [ V5 K14 V1 K109V105 .
Inconsistent
E E write/write
N, N3 Niso

from UCB CS162



Read after Write

- Read not guaranteed to return value of latest write

= Can happen if Master processes requests in different
threads Master/Directory

get(K14) happens right after

put(K14, V14’) = - ,
=~y ut K14 V14
get(K14) -~ FEANNERNR put(iF14 )
V14 « === —- - « get(K14) reaches N3 before
<105|NED ] put(K14, V14)!
s \ @
N L7 Vo2 =
N\ - AT o
St S
Q\%\’ g ‘\P \ ﬁ‘\ S
e v VB
s PR
K14 V14 K5 [ V5 K14 V14 K105[V105
Inconsistent
E write/read
N No N3 N5

from UCB CS162



'API Interface vs Amazon Store Architecture

« get(key)
= return single
object or list of
objects with
conflicting version
and context

* put(key, context,
object)
= store object and
context under key

« Context encodes
system meta-data,
e.g. version number

Dynamo: Amazon’s Highly

Available Key-value Store. SOSP
N"NOT

Client Requests

~

. s . » s Rendering
l; t t t t Components
Request Routing
E Sk = / \‘ S Aggregator
y J \ / R Services

g¥a\ @vd [
| - U| t; Jl s3

_Ij;;\amo instancesi Other datastores



Data partitioning: How to assign data to
— machines

« Assign data to machines with hashing
= View machines as a ring

= Consistent hashing: the output range of a hash function
1s treated as a fixed circular space or “ring”.

15 0 4
tallat-song4.mp3
14 2
tallat-song3.mp3
13 3
12 4 tallat-song1.mp3
1 1 5 tallat-song2.mp3
1 6 brithney.mp3




' Load imbalance caused by simple hashing

* Node identifiers may not be
balanced

« Data identifiers may not be
balanced

 Hot spots
 Heterogeneous nodes

* Nodes may be added or deleted
periodically

® - node
" _data



' Load balancing via Virtual Servers

* ”Virtual Nodes”: Each node can run and responsible
for multiple virtual nodes.

= Each physical node picks multiple random identifiers
= Each identifier represents a virtual server
« Better load balancing

= Evenly dispersed on node failure

= New node takes load from all others
« #virtual nodes allows for heterogenity
* Problems: Slow repartitioning

) —> j
Each node assignedto %

multiple points on ring &
(virtual nodes) ‘\_.//



Data Replication for Better Availability

« Map the same copy of data to N nodes for a
replication factor of N

Node 11 Node 10 Node 5

Data: 12, 13, 14, 15,0
O '

15 0 4
14 2

13 3@

Node O Node 11 Node 10

Data: 1,2, 3

A

Node 10 Node 5 Node 3 1 2 4

Data: 11 Node 3 Node O Node 11

\O 11 504 Data: 4, 5

Node 5 Node 3 Node O O 1 6

Data: 6,7, 8,9, 10 ? O 9 8 7




' Quorum Consensus for Consistency

 Reading or writing involves multiple replicas.

= But not wait for all replicas : improve put() and get()
operation performance

* Define a replica set of size N

= put() yields writes to all replicas, and waits for
acknowledgements from at least W replicas. The writer
returns after it hears form these replicas.

— Ensure sufficient replicas have right versions.

= get() asks a response from all replicas and waits for
responses from at least R replicas. Use timestamp to get

the latest version.
= W+R >N
« Why does it work?
= There is at least one node that contains the latest update




Quorum Consensus Example

« N=3, W=2, R=2
* Replica set for K14: {N,, N3, N4}
« Assume put() on N5 fails. But

7/

q\b‘\’, o \ \‘%ﬁ

,\b‘”///, \\-%3\\)?
E” \N 2
S Vo2
S’ .’ R
o7 \ \<

K14 Vi K14 V14




Quorum Consensus Example

 Now, issuing get() to any two nodes out of
three will return the answer

t
R Q
\// |fc'li"I Z
Qc;ﬁ"{‘ ’ :5: —
7/ ,/ |£:
,//’// l 1
K14 V1
N, N,

K14

Vi4

N,

from UCB CS162



' Questions : Key Value Stores

- Q1: True>_< False _ On a single machine, key-value store
can be implemented as a hash table.

. Q2:1_ 2X3_ machine failures can be tolerated with the
number of replicas as 3 in a distribued key-value store.

- Q3:1_ Q_<3_ replicas must respond for a read in a
gquorum-based scheme when # of relicas =3 and # of
replicas to respond a write operation is 2.

Remember W+R >N where
W=2 and N=3. Thus R>N-W=1



Performance Metrics and Optimization
— Goals

Each request is put/get operation

Throughput — # of requests that can be handled per second or by a
cluster by one machine or by the service with a cluster of machines

= High traffic 2 high throughput requirement. Typically a few thousand
requests per second

Turnaround time — amount of time to execute a request
= Completion time — arrival time
Response time — amount of time it takes for each request.

= Similar to turnaround time. But if a partial response is conducted,
then turnaround time is for completion of the entire request.

Possible bottlenecks: CPU utilization, memory consumption, disk
latency, network I/O



Client latencies in milliseconds

Evaluation of Dynamo DB
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w— 00 G Writes
— 99 9 Reads
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-  Ayg Reads
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Timeline
(hourly plot of latencies during our peak seson in Dec. 2006)

Figure 4: Average and
99.9 percentiles of
latencies for read and
write requests during our
peak request season of
December 2006. The
intervals between
consecutive ticks in the x-
axis correspond to 12
hours. Latencies follow a
diurnal pattern similar to
the request rate and 99.9
percentile latencies are
an order of magnitude
higher than averages

Dynamo: Amazon’s Highly Available Key-value Store . 2007 SOSP
Amazon DynamoDB: A Scalable, Predictably Performant, and Fully Managed

NoSQL Database Service. 2022 USENIX ATC



99.9' percentile response times

Evaluation

—direct BDB writes

e huffered writes

E—T

4_"
—_——
——
| —

11111111111111111111111

Timeline

Figure 6: Fraction of
nodes that are out-of-
balance (i.e., nodes
whose request load is
above a certain
threshold from the
average system load)
and their corresponding
request load. The
interval between ticks
in X-axis corresponds to
a time period of 30
minutes.




' Evaluation: versioning due to concurrent

— writes

 Divergence
= Number of different versions returned
= Over 24h period

« Reason

= Node failures, data center failures, network
partitions

= Large number of concurrent writes to an item
 Occurence

= 99.94 % one version

= 0.00057 % two versions

= 0.00047 % three versions

= 0.00009 % four versions




' Summary: Key-Value Stores

- Very large scale storage systems
= Distributed hash tables
- Two operations
= put(key, value)
= value = get(key)
- Challenges
= Fault Tolerance - replication

= Scalability - serve get()’s in parallel; replicate/cache
hot tuples

= Consistency - quorum consensus to improve put/get
performance

- Amazon’s Dynamo key-value store




' Distributed Processing for Indexing and

— Data Analysis

Distributed processing driven by need to index and analyze
huge amounts of data (i.e., the Web)

Large numbers of inexpensive servers used rather than
larger, more expensive machines

MapReduce is a distributed programming tool
= Simplify data distribution on a cluster of machines
= Open source code runs on Hadoop distributed file system
= Provide fault tolerance
= But not designed for interactive applications

S, & SD?

Mapreduce

Hadoop

46




MapReduce Programming Model

« Data: a set of key-value pairs to model input, intermediate
results, and output

= |nitially input data is stored in files

= stored in Hadoop: distributed file system built on a cluster
of machines—> Looks like one machine
« Parallel computation:

= A set of Map tasks and reduce tasks to access and
produce key-value pairs

= Map Function: (key1, val1l) — (keyZ2, val2)
= Reduce: (key2, [val2 list]) — [val3]

<satish, 26000> | | <gopal . S0000=>

ish, satis
=Krishna, 25000> =Krishna, 25000> <kiran, 45000> <Krishna, 25000>
<Satishk, 15000> <=Satishk, 15000> <=Satishk. 15000> | | <sman isha, 45000>
@ <=Raju. 10000> <Raju. 10000> <Raju, 10000> ju.
Output files

Input files ﬁ ﬁ in Hadoop

Stored in Hadoop Map Tasks Reduce Tasks
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' Inspired by LISP Function Programming

« Lisp map function
* |nput parameters: a function and a set of values
= This function is applied to each of the values.
Example:
* (map ‘length () (a) (ab) (abc)))
= (length(()) length(a) length(ab) length(abc)). = (012 3)

 Lisp reduce function
= given a binary function and a set of values.

* |t combines all the values together using the binary
function.

= Example:

= use the + (add) function to reduce the list (0 1 2 3)
= (reduce #+ '(0123) > 6
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Distributed programming

MapReduce

Mapper

= Generally, transforms a list of

framework that simplifies on data
placement and distribution on a
cluster of machines

Suitable for large data mining jobs

items into another list of items of

the same length

Reducer

= Transforms a list of items into a

single item

Not for interactive jobs

DN

—

= processes records in batches,
where all pairs with the same key
are processed at the same time

Shuffle

= Uses a hash function so that all
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MapReduce to compute document

frequency of terms

Input Map Shuffle & Sort  Reduce
A the, 1
th brown, 1
(S
: TMap W brown, 1
qulck quick, T Sr=2
brown e
- the, 1
f()x fox, 1 prown, 1
the, 1
the fox m '
ouse
ate the
mouse [
now , 1
b now, 1
rown brown, 1
COW | cow,1

ate, 1
cow, 1
mouse, 1
quick, 1
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Document Frequency: Input Example

map() gets a key, value
+ key - "bytes from the beginning of the line?”
 value - the current line;

Input file

Line value

Tokens

US history book

IPADs sold in 2012

School admission records\

N

—>| US history book

_——>» US history book

N

School admission records +—2

\f PADSs sold in 20124+H——"
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Inverted Indexing with Mapreduce

Foo

This page contains
S0 much text

-

Input files
Stored 1n Hadoogalr

Bar map output

My page contains
text too

Foo map output

contains: Foo

much: Foo Reduced output
page : Foo
so : Foo
text: Foo contains: Foo, Bar
This : Foo much: Foo

My: Bar

page : Foo, Bar

so : Foo
text: Foo, Bar

This : Foo

ntains: Bar
contains: Ba too: Bar

My: Bar Output files
page : Bar .
text: Bar mn Hadoop

too: Bar ‘H
ﬂMap Tasks Reduce Tasks 52



Pseudo code example for indexing with

procedure MAPDOCUMENTSTOPOSTINGS(input) A user writes a
while not input.done() do small amount of

document < input.next() code without

number < document.number

position « 0 worrying about

tokens <— Parse(document) int hi
for each word w in tokens do Imter-macnine

Emit(w, number:position) management
position = position + 1
end for \ /\
end while w

end procedure

Intermediate

results in key-
procedure REDUCEPOSTINGSTOL1STS(key, values)

word + key value pairs
while not input.done() do
EncodePosting(values.next()) system

end while
end procedure
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' Hadoop Distributed File System

 Standard file interface as Linux
= Open, seek, read, write, close Namenode
* Files split into 64 MB blocks

= Blocks replicated across
several datanodes ( 3)

- Namenode stores metadata (file

names, locations, etc) y
- Files are append-only. @

Optimized for large files,

sequential reads

= Read: use any copy .

= Write: append to 3 replicas

Datanodes
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Hadoop Cluster with MapReduce

Daemons for

Hadoop:

NN —Name node

DN —Data node to

serve file blocks

Name Node

DN +TT
DN +TT
DN+TT
DN+TT

Rack 1

_--"‘;---

Hadoop Cluster

- World 9,

Job Tracker

DN+ TT
DN+ TT
DN+TT
DN+TT

Rack 2

Secondary NN

DN+ TT
DN+ TT
DN+TT
DN+TT

Rack 3

|

Client

_. itch

|

DN+ TT

DN+ TT

DN+TT

DN+TT

Rack 4

BERAD HEDLUND .com

Daemons for MapReduce

TT — Task tracker to
manage within a node
Job Tracker —
coordinate across
machines

DN+ TT
DN+ TT
DN+TT
DN+TT
DN+TT
DN+TT

Rack N
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Execute MapReduce on a cluster of machines

with Hadoop DFS

Update

J Json

i .

Job Status
Job Tracker

ASSlgns/ \issﬂgns

HDFS
oooo ( Map PCRead Blocks
Data node

Reduce

Data node

Data node

Map

\jocaf Write

Reduce

o @
3

Data node files

RPC Read

Data node

HDFS
Blocks

Local Write
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' User Code Optimization: Combining Phase

 Run on map machines after map phase

= “Mini-reduce,” only on local map output

= E.g. job.setCombinerClass(Reduce.class);
« save bandwidth before sending data to full reduce tasks
* Requirement. commutative & associative

On one mapper machine:

Map output . . . . ...‘
\/ \/
Combiner
replaces with: . ‘

T

To reducer To reducer




' Types of MapReduce Applications

 Map only parallel processing
» Count word usage for each document
 Map-reduce two-stage processing

» Count word usage for the entire
document collection

* Multiple map-reduce stages
1. Count word usage in a document set

2. ldentify most frequent words in each
document, but exclude those most

NnAantilar woarde 1in tha antira dAociimant




' MapReduce Application: Examples

* Distributed grep (search for words)

* Map: emit a line if it matches a given
pattern

 URL access frequency from many
web access logs

» Map: process one log file of web page

access; output frequency for each
URL

 Reduce: add all values for the same
Hl=)




”apReduce Applications: Build a large
graph for computing PageRank

* Input: a set of web pages and their
outgoing links
* Output: Reversed web-link graph

« A set of web page IDs and their
iIncoming links.
« Parallel code
* Map: Inputis a web page containing
outgoing links. Output each link with
the target URL as a key.

* Reduce: Concatenate the list of all
source pages associated with a target
URL

The Web

I

V' Reversed grapt

/




' MapReduce Job Chaining

* Run a sequence of map-reduce jobs

R1 R3

& (=
VO VO E

— @ TG
o

gc

a EBY% o
oG

(w ) (=




Spark and Amazon EMR

Spark: Berkeley design of Mapreduce programming supported
in Python, Scala, & Java

Amazon EMR is a managed service for Hadoop and Spark to run large
analytic jobs on an Amazon cluster

Amazon Redshift Copy .
From HDFS

Amazon Redshift
Spor‘l?

‘ Streaming data §8 kafka
JDBC Data Source connectors
w/ Spark SQL
Amazon EMR

Kinesis
Amazon RDS Elasticsearch

connector
*, EMR File System
(EMRFS)
H

Amazon S3


https://aws.amazon.com/elasticmapreduce/

' Mapreduce programming with SPAK: key

— concept

Write programs in terms of operations on
implicitly distributed datasets (RDD)

| | RDD
RDD: Resilient Distributed | 1 RDD
Datasets gt
» Like a big list: | ' RDD
= Collections of objects spread = . RDD
across a cluster, cached in Operations

memory as much as possible or

stored on Disk * Transformations

(e.g. map, filter,

* Built through parallel groupBy)
transformations » Make sure
- Automatically rebuilt on input/output match

failure



MapReduce vs Spark

<satish, 26000>
<Krishna, 25000>
<Satishk, 15000>

<Raju, 10000>

<gopal, 50000
<Krishna, 25000
<Satishk, 15000>
<Raju, 10000>

<satish, 26000>
<Kiran, 45000>
<Satishk, 15000>

<Raju, 10000>

<satish, 26000>
<Krishna, 25000>
<manisha, 45000>

<Raju, 10000>

T 1

Map and reduce

RDD
RDD

RDD
RDD

tasks operate on key-value
pairs Spark operates on RDD

with aggressive memory
caching



' Spark Context and Creating RDDs

#Start with sc - SparkContext as
Main entry point to Spark functionality

#Turn a Python collection into an RDD ! 7 < RDD
sc.parallelize([1, 2, 3]) ® %>\})

# Load text file from local FS, HDFS, or S3
sc.textFile(“file.txt”)
sc.textFile(“directory/*.txt”)
sc.textFile(“hdfs://namenode:9000/path/file”)



Spark Architecture

Spark Architecture

Driver Program

Executor

Cache

Task

SparkContext % Cluster Manager

Task

Standalone

* | Mesos

01/06/15 Creative Common, BY, SA, NC

Worker Node l

Executor

Cache

Task

Task




Spark Components

Spark Driver

Worker Nodes 7\

Master

RDD

u Tasks

{

y 4 1

Y i 1
Y 4

Tasks Eas(s ﬂ/l' asks ‘gl Task$
v /

Cache Cache // Cache // Cache / Caghe
RDD1-Blockl | || ROD1-Bt6ck1 ||| RDD1-Blogkl ||| RDD1-Block2 /|| RDD1-Block2
RDD1-Block2 RDD1-Block3 RDD1—B|€)Ck3 RDD1—B|OCk¥ RDD1—i:'":|OCk4
RDD1-Block4 RDD1-Block4 RDD1-Block5 RDD1—B|OCk§ RDD1-Block5
Worker Node 1 Worker Node 2 Worker Node 3 Worker Node 4 Worker Node 5




: : | | RDL
Basic Transformations gl
. RDL
~~

#read_a_text file and count number of Tines | | RDL
containing error

lines = sc.textFile(“file.log”)
Tines.filter(lambda s: “ERROR” in s).count()

nums = sc.parallelize([1, 2, 3])

# Pass each element through a function
squares = nums.map(lambda x: x*x) // {1, 4, 9}

# Keep elements passing a predicate
even = squares.filter(lambda x: x % 2 == 0) // {4}



Basic Actions ~ . RDD

nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
nums.collect( # => [1, 2, 3]

Return first K elements
nums . take(2) # = [1, 2]

Count number of elements
nums.count() # => 3

Merge elements with an associative function
nums.reduce(lambda x, y: X + y) # => 6

wWrite elements to a text file
nums.saveAsTextFile(“hdfs://file.txt”)



”orking with Key-Value Pairs

Spark’s “distributed reduce” transformations
operate on RDDs of key-value pairs

Python: pair = (a, b)
pair[@] # => a
pair[l] # => b

Scala: val pair = (a, b)
pair. 1 // => a
pair. 2 // => D
Java: Tuple2 pair = new Tuple2(a, b);

pair. 1 // => a
pair. 2 // => b



' Some Key-Value Operations

| | RDD

| - 1 RDD

pets = sc.parallelize(
[(“cat”, 1), (“dog”, 1), (“cat”, 2)1)
pets.reduceByKey(lambda x, y: X + y)
# => {(Cat, 3)! (dog! 1)}

pets.groupBykey() # => {(cat, [1, 2]), (dog, [1])}
pets.sortBykKey() # => {(cat, 1), (cat, 2), (dog, 1)}

reduceByKey () also automatically implements combiners
on the map side



Other Key-Value Operations

visits = sc.parallelize([ (“index.html”, “1.2.3.4"),
(“about.html”, “3.4.5.6"),
(“index.html1”, “1.3.3.1”)

pageNames = sc.parallelize([ (“index.htm1”, “Home”),

(“about.html”, “About”) ])

visits.join(pageNames)

# (“index.html”, (*1.2.3.4”, “Home™))
# (“index.html”, (*“1.3.3.1”, “Home™))
# (“about.html”, (“3.4.5.6”, “About”))

visits.cogroup(pageNames)
# (“index.html”, ([“1.2.3.4”

, “1.3.
# (“about.html”, ([“3.4.5.6"], [“Abou



Example: Word Count

1ines = sc.textFile(“hamlet.txt”)

counts = lines.flatMap(lambda 1ine: Tine.split(* 7))
.map(lambda word: (word, 1))
.reduceByKey(lambda x, y: X + y)

| | lines
flatmap

I |
A map
|
@reduceB yKey
|

“to” (to, 1) (be, 1)(be,1) b
n " " of —l I _I ’( EIZ)
tobeor” —» “be” (be, 1) (not, 1) (not, 1)
or (Orl 1) '
“not” (not, 1)

" (or, 1) (or, 1)
to" 5 (to, 1) ! —
“ha (be, 1) (to, 1)(to,1) (to, 2)

A\

“not to be” —»



Partitioning and Parallel Tasks in Spark

1ines = sc.textFile(“hamlet.txt”)

counts = lines.fiatmap(iambda 1ine: 1ine.spiitC )
.map(lambda word: (word, 1))
.reduceByKey(lambda x, y: x + y)

lines>RDD[*“to be or”, “not to be”’] | | lines
<_L flatmap
lines.flatmapf. )9RDD[t0 be, or, not, to, be] I I
<} map
...map(..) ?RDD|(to,1), (be 1)/(or,1), (not 1),(to,1), (be,l)] | @redulceByKey

“to” to, 1
l \\b 17 (b ) (be, 1)(be,1) (be 2)
“to be or” |—— P& ——p (be 1) (not. 1) oo
Nor” (or, 1) / (not, 1)
Partitions flatmap tasks
B > ! (to, 2)
e (be, 1) (to, 1)(to,1) /




Mapping and Scheduling of a Spark Task

—Graph

RDD is partitioned and
distributed among
threads/machines

Task computation is
partitioning aware

to avoid/minimize data
shuffles

Acyclic task graph
structure

Data flows through
dependence pipelines

Data is cached in
memory as much as
possible.

Computation
scheduling is data
locality aware

‘g\ =RDD (g = cached partition

Level ¢f parallelism 3

Level of parallelism 4




' Setting the Level of Parallelism

All the pair RDD operations take an optional

second parameter for number of tasks
words.reduceByKey(l da/x, y: x + vy, 5)
words.groupByKey (5
visits.join(pageviews, 5)




' More RDD Operators

e map
e filter

e groupBy

e sort

e union

e join

« leftOuterloin
e« rightouterloin

reduce
count

fold
reduceByKey
groupByKey
cogroup
Ccross

Zip

sample

take

first
partitionBy
mapwith
pipe

save



Summary

« Offline incremental data processing

= All kinds of text mining and data transformation
— Indexing, duplicate removal, content classification, spam analysis

= Combine information from different sources

— Web pages, entity/knowledge graph, link data, click data, database
tables

« Offline architectures and infrastructure
= Flow control for large system components
—Pipeline, incremental update, 24x7 support

= Examples of system software for
parallel/distributed processing

—Key-value stores, Map-Reduce, Spark
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