2

BERT: Contextual Representations
for Better Text Understanding

CS 293S UCSB Tao Yang 2022

' Outline

« Why BERT
« BERT Architecture
= Self-attention computation
= How to pre-train
« BERT Applications
= Classification, question answering, ad-hoc search

Word Embeddings and Contextual
— Representations

Word embeddings are the basis of deep learning
for text understanding and NLP |

MICROSOFT
]

Word embeddings (word2vec, GloVe) are often o o
pre-trained on text corpus from co-occurrence o

. e MANGO @ ARELE
statistics

Problem: Word embeddings are applied in a
context free manner
The taste of this apple is good P
This apple phone loo od

Solution: Tram@z(tual representatieQs on text corpus
[O'll _-21 -61 ---] [0.3, .1, .3, ...] 3

BERT: Bidirectional Encoder Representations
for Transformers

BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding, Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google, Proc of NAACL 2019

BERT architecture 1s a multi-layer

bidirectional Transformer encoder.
* BERT base — 12 layers
(transformer blocks), 768- ol
hidden, 12 attention heads, and
110 million parameters.
 BERT Large — 24 layers, 1024-
hidden, 16 attention heads and,
340 million parameters.
BERT computation is expensive
Takes many days to train

ENCODER]

§=N

— N X[N\)
J

ENCODER
12 ENCODER

w

ENCODER

2 ENCODER 2 ENCODER

1 ENCODER

-d

ENCODER

BERTgase BERT arce

The transformer layers of BERT

 Also called encoder

ENCODER #2 k\

Output to the next layer

»

ENCODER #1

Input to BERT: Two tokens

)

~

r+ [r> [

Feed Forward Feed Forward
Neural Network Neural Network
2 2, [

[Self-Attention]
; ; /
x1 [x [T
Thinking Machines

https://jalammar.github.io/illustrated-transformer/

More about Attention

“The Attention is All You Need” paper, A. Vaswani et al. NIPS 2017

Self-attention is the method the
Transformer uses to detect how
other words relevant to the current
word being processed

Example: “The animal didn't cross
the street because it was too tired”

What does “it” in this sentence
refer to? self-attention allows it
to associate “it” with “animal’.

Layer: 5 3| Attention: Input - Input

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_
was_
too_
tire

d

The_
animal_
didn_

t

Cross_
the_
street_
because_

it

was_
too_
tire

d

Transformer Computation for Self Attention

So for each input token, we create a Query vector, a Key
vector, and a Value vector.

Input Thinking Machines

Embedding Xl LT X2l |

Queries a+ [T a7 we
Keys

Values le:l:lj v§|:|:|j wVv

' Transformer Computation for Self-Attention:

— Compute Query, Key, and Value Matrices

X woa Q
For 2 tokens x4, X, , they form
two rows of matrix X. X =
Multiply with 3 weight X
matrices, we get query, key,
value matrices Q, K, V x -
Q contains g4, 95 X

K contains k4, K,
V contains v4, Vv,

Example: Output of Self Attention

Input

Embedding
Queries

Keys

Values

Score

Divide by 8 (Vdj,)

d, =64
Softmax

Softmax
X
Value

Sum

Thinking Machines
x: [x. [T
o [T o [T

EDH\ [I1]
w IEE ™. I
qi* K1 = g1 =
vi [V2

[T 1] [T1]

For 2 tokens x4, X,
of dimension d,,

output z,, z,

Z, represents interaction
of g4 with k;, and
interaction of g4 with k,

softmax(

Multi-headed Attention: Assume 8 Heads

Repeat the same attention computation for different heads
Finally concatenate them together multiplied by weight matrix

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X Wol
Thinking v QO
Machines Wo
Vo
W, Q
* |n all encoders other than #0, Q1
we don't need embedding. W4V W
We start directly with the output Vi

of the encoder right below this one

w-Q

Q7

w7V fvtata 0,

' Outline

« Why BERT
 BERT Architecture
= Self-attention computation
= How to pre-train <
« BERT Applications
= Classification, question answering, ad-hoc search

11

' BERT Architecture and How to Pre-Train

e Scan books (800M

words) and Wikipedia . MaskLM O\
(2,500M words) * P * \

« Unsupervised training [c 7. T |7 7 I
= Masked language

model: Predicted a BERT
masked word in a
sentence fon || & [| & || Esen|[B) (&

_wmv do is;uté” i —— N — -

y g ¢ —] 4 — B 4 T:k W T N - ™ f—\TM
= Next sentence 1 l] 1 l

predlctlon (NSP) Masked Sentence A Masked Sentence B
Sentence A appears \ * /
Sentence B \ Unlabeled Sentence A and B Pair /

— my dog is cute, he Pre-training

likes playing

How to pre-train BERT

* |Input token combines 3 embeddings.

CLS] classification

token is added at the
beginning of the first

[SEP] token is
added at the end

ach sentence.

) rence \

g e N N A N N NS ™

Input [CLS) my dog is cute || [SEP) he likes || play || ##ing || [SEP]

Token

Embedxings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe Elikes Eplay E"ing E[SEP]
-+ -+ -+ -+ -+ -+ + + -+ =+ -+

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
=+ + -+ + =+ =+ -+ + -+ =+ +

Position

Embeddings Eo E 1 Ez E3 E4 E5 E6 E? E8 E9 ElO

Embedding dimension of each token: 768 for BERT base model. #input tokens<512

How to Use BERT for Applications

« Start with a pre-trained BERT model
 Add some computation layer on top of the core BERT model

* Fine-tune with your own dataset by converting application
input into the specific format used for BERT model

Example for sequence
classification: Does a sentence

contain personal attack?

e Final hidden state [CLS] is the fixed-
dimensional pooled representation
of the input sequence, i.e. a
sentence embedding capturing
trained semantics

Class
Label

E[CLS]

[CLS]

et

Tok 1

BERT

= Ex
L 1L
Tok 2 Tok N

e Computation on [CLS} vector yields a softmax

probability for the targeted class

l

Single Sentence

BERT for Question Answering

Given a question and a context paragraph, the model predicts a
start and an end token from a reference paragraph that most likely
answers the question.

Segment

N e e e e e S O BN Em - Embeddings

+ + + + + + + + + +
B o | | | I | | | | | |
[CLS] How many have ? [SEP] BERT - large
- Y S S
Question Reference
Question: How many parameters does BERT-large have?
Reference Text: BERT-large is really big... it has 24 layers

and an embedding size of 1,024, for a total
of 340M parameters! Altogether it is 1.34GB,
so expect 1t to take a couple minutes to
download to your Colab instance.

' BERT for Question Answering

Start/End Span

Question Paragraph

BERT for Question Answering: Find the

bedinmi ! end.of

____-J_l_-_____
0000000‘

o | | | | | | | | | | | | | | | see

V% classifier.

/ The same weights are
applied to every position.

Transformer Layer 12

BERT

large has 340 M

params total !

https://mccormickml.com/2020/03/10/question-
answering-with-a-fine-tuned-BERT/

This length 768 vector is the
weights for the start token

Transformer Layer 12

BERT

large

has 340 M params total

BERT Performance for QA

Standford Question
Answering Dataset
(SQUAD) is a
collection of 100k
crowdsourced
guestion/answer
pairs

Given a question and
a paragraph from
Wikipedia containing
the answer, predict
the answer text span
In the paragraph.

System Dev Test
EM FlI EM FlI
Leaderboard (Oct 8th, 2018)
Human - - 823 91.2
#1 Ensemble - nlnet - - 86.0 91.7
#2 Ensemble - QANet - - 845 90.5
#1 Single - nlnet - - 83,5 90.1
#2 Single - QANet - - 825 893
Published
BiDAF+ELMo (Single) - 858 - -
R.M. Reader (Single) 789 86.3 79.5 86.6
R.M. Reader (Ensemble) 81.2 87.9 82.3 88.5
Ours
BERTBASE (Smgle) 80.8 88.5 - -
BERTLARGE (Single) 84.1 90.9 - -
BERTLarGe (Ensemble) 858 91.8 - -
BERT arce (Sgl.+TriviaQA) 84.2 91.1 85.1 91.8
BERTLarGE (Ens.+TriviaQA) 86.2 92.2 87.4 93.2

SQuAD 1,1 results from Google 2019 BERT paper

by Jacob Devlin et al.

EDR (MacAvaney et al., SIGIR'19) -

Integrate BERT contextual embedding with interaction based
—NeuralRankers

Key techniques:

¢ End_to_end tralnlng An interactive based ranking model such as KNRM

9
e Use the BERT’s (Querv Translation Matrix Kernels Soft-TF Ranking
. .) nwords)\ Mnxm Features
intermediate outputs) B
to represent words T, . Final
: °H 300 |) — '@ Ranking
in query and oo A i@ ~ Score
Documen : .:\ﬂ.-
(m words) L N Rt
document tokens g e —9
I || W 9w,
| NiNi—i@
et
C— BERT R ’ o , ‘
Embedding Translation Kernel Learning-To-Rank
BERT _uncased_base Layer Layer Pooling

Inject BERT embeddings to
KNRM and Conv-KNRM

Integrate BERT with KNRM and ConvKNRM
for Document Rankina

Robust04 WebTrack 2012-14

Ranker Input Representation P@20 nDCG@20 nDCG@20 ERR@2
BM25 n/a 0.3123 0.4140 0.1970 0.147
SDM [13] n/a 0.3749 0.4353 -

TREC-Best n/a 0.4386 0.5030 0.2855 0.253
ConvKNRM GloVe 0.3349 0.3806 [B] 0.2547 [B] 0.183
Vanilla BERT BERT (fine-tuned) [BC] 0.4042 [BC] 0.4541 [BC] 0.2895 [BC] 0.221
PACRR GloVe 0.3535 [C] 0.4043 0.2101 0.160
PACRR ELMo [C] 0.3554 [C] 0.4101 [BG] 0.2324 [BG] 0.188
PACRR BERT [C] 0.3650 [C] 0.4200 0.2225 0.181
PACRR BERT (fine-tuned) [BCVG] 0.4492 [BCVG] 0.5135 [BCG] 0.3080 [BCG] 0.233
CEDR-PACRR BERT (fine-tuned) [BCVG] 0.4559 [BCVG] 0.5150 [BCVGN] 0.3373 [BCVGN] 0.265i
KNEM GloVe 0.3408 0.3871 [B] 0.2448 0.175
KNEM ELMo [C] 0.3517 [CG] 0.4089 0.2227 0.168
KNEM BERT [BCG] 0.3817 [CG] 0.4318 [B] 0.2525 [B] 0.194
KNEM BERT (fine-tuned) [BCG] 0.4221 [BCVG] 0.4858 [BCVG] 0.3287 [BCVG] 0.255
CEDR-KNRM BERT (fine-tuned) [BCVGN] 0.4667 [BCVGN] 0.5381 [BCVG] 0.3469 [BCVG] 0.277:
DRMM GloVe 0.2892 0.3040 0.2215 0.160
DRMM ELMo 0.2867 0.3137 [B] 0.2271 0.176
DRMM BERT 0.2878 0.3194 [BG] 0.2459 [BG] 0.197
DRMM BERT (fine-tuned) [CG] 0.3641 [CG] 0.4135 [BG] 0.2598 [B] 0.185
CEDR-DRMM BERT (fine-tuned) [BCVGN] 0.4587 [BCVGN] 0.5259 |[BCVGN] 0.3497 [BCVGN]0.262

BERT’s Limitations

Token

Embeddings [CLS] ts tz tz ty ts te t; [SEP]
seoment + + + + + + + + +
EEﬁQZZMgs Ea Ea Ea Ea Ea Ea Ea Ea Ea
N + + O+ O+ O+ ¥ O+ o+
Position Po P1 P2 P; Pq Ps Ps P7 Pg

Embeddings

‘ need separate embedding for every possible position
=> restricted to indices 0-511

Cannot input entire
documents

e what do we input?

e & how do we label it?

21

BERT’s Limitations

Token
Embeddings

Segment
Embeddings

Position
Embeddings

o 4 4 4 4 4 4 4 O
[CLS] tq t2 t3 t4 ts te t7 [SEP]
+ L L JL ¢ L3 JL ¢ T ¢ JL 4 1 4
Ea Ea E Ea Ea E E Ea Ea
+ O+ o+ o+ o+ o+ o+ o+ 4
Po P1 P2 P3 Pa Ps Ps P7 Ps

Computationally
expensive layers

- e.g., 110+ million

| learned weights
=

(later: Beyond BERT & Dense Representations)

Multi-stage ranking

pipeline

e Identify candidate
documents

e Rerank

22

How to Rank Long Documents?

1. Score aggregation
a. Over passage scores. (Dai and Callan,

SIGIR’19).
*
BERT-MaxP,
s1 S2 S3 Fi r St P, S u m P RObust04
nDCG @20
Model Title Description
(1) BOW 0.417 0.409
(2) SDM 0.427 0.427
(3) LTIR 0.427 0.441
(4a) —BERTEirstP 04441 04911
(4b)__BERT-MaxP__ 0.469" _ 0.529" |

(4c) BERT-SumP 0.467T 0.524f

1. Over passage scores. Dai, Callan. Deeper Text Understanding for IR with Contextual
Neural Language Modeling. SIGIR 20189.

2. Over sentence scores. Yilmaz, Yang, Zhang, Lin. Cross-Domain Modeling of Sentence-
Level Evidence for Document Retrieval. EMINLP '19.

Long Documents - Representation Aggregation

CNN and -Transformer perform well,
(significant improvement over other

PARADE (Li et al., 2020) aggregation)

Robust04 Title
MAP P@20 nDCG@20
BM25 0.25317 0.36317 0.42407
BM25+RM3 0.30337 0.39747 0.4514%
Birch 0.3763 0.47497 0.5454F
ELECTRA-MaxP 0.31837 0.43377 0.49597

T5-3B (from [57]) - -
ELECTRA-KNRM 0.36737 0.47557 0.54707
CEDR-KNRM (Max) | 0.37017 0.4769" 0.5475%

fffff o PARADE-Avg 033527 0.44647 0.51247
1.'*. PARADE-Sum 0.3526" 047117 0.53857

(e PARADE-Max 037117 0.47237 0.5442%

‘e PARADE-Attn 034627 0.4576" 0.52667

_ e PARADE-CNN 0.3807 0.48217 0.5625

(a) Max, Avg, Max, and Attn Aggregators (b) CNN Aggregator (c) Transformer Aggregator {P ARADE'TI' an Sfornl er O 3 803 0- 4920 0. 5659]

' Summary

« Empirical results from BERT are very impressive for various
NLP tasks

« With contextual pretraining in a big dataset, bigger == better

= Good results on pre-training is >1,000x to 100,000 more
expensive than supervised training.

« Challenges
= Extremely expensive to run BERT

= Active research for ad-hoc search queries

25

