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Motivation and Table of Content
• What we have learned so far for ranking and 

classification
– Decision trees: entropy-based, or regression 
– Ensembles, boosting, and  bagging. Random 

forests

• Focus of this slide set
– Stochastic  gradient descent (SGD) for  general 

optimization
– Derive weights for minimizing a loss function in  a 

large network-based classification
– Example of neural nets and optimization 

• Why?
– Successful in neural classification tasks for image 

and audio processing with machine learning 
– Effective for text oriented document classification 

and ranking
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Partial Derivatives and Gradient
Multi-variable functionsSingle-variable functions

Gradient
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SGD training  for Binary Classifier  

• Start with weights = 0
• For each training instance:

– Classify with current weights
– f (x) is feature vector of x

– If correct (i.e.,  predicted y=target y*), 
no change!

– If wrong: adjust the weight vector by 
adding or subtracting the feature 
vector. Subtract if y* is -1.

Why?

Figure out the weight vector from training instances

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...
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• ”yi” is the classification label for a training instance
• “w” is the set of parameters to be found through training

• What does prediction function h() look like?

• How to find parameters involved in h()  that minimize an 
objective function?

Optimization Problem for Classification 
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• How to find parameters that minimize a 
loss function J with parameter vector 
w? 

How to find parameters that minimize 
the loss function? 

• Gradient Descent Method  (SGD) 
for Optimization
–Start somewhere
–Repeat:  Take a step in the 

steepest descent direction

Learning rate

w is θ1
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Q: What is the trajectory along which we converge towards 
the minimum with SGD?

Illustration of gradient descent to 
refine multiple parameters
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards 
the minimum with SGD?
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards 
the minimum with Gradient Descent? very slow progress 
along flat direction, jitter along steep one
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Generally, Steepest Direction with n 
parameters 

• Given loss function g and learning rate ⍺
• Steepest Direction = direction of the gradient
• Parameter vector ѡ=(ѡ1, w2,…, ѡn)

rg =

2

6664

@g
@w1
@g
@w2

· · ·
@g
@wn

3

7775

• Init: 

• For i = 1, 2, …
w  w � ↵ ⇤ rg(w)

§ Gradient Descent:  Update 
weight vector ѡ by using a 
sequence of training 
instance i

1. Stop after a fixed 
number of iterations.

2. Or when loss is close 
to a lower bound or 
has not improved 
much in a long tme.

3. Or when the 
validation error has 
not improved in a 
long time. 
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Start with Simple Binary Text Classifier

Hello,

Do you want free printr 
cartriges?  Why pay more 
when you can get them 
ABSOLUTELY FREE!  Just

# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

SPAM
or
+

PIXEL-7,12  : 1
PIXEL-7,13  : 0
...
NUM_LOOPS   : 1
...

“2”

S
f1
f2
f3

w1

w2
w3

>0?

Result classification:
Positive, output +1
Negative, output -1

Also called perceptron

Positive dot product            means 
the positive class
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SGD training  for Binary Classifier  

• Start with weights = 0
• For each training instance:

– Classify with current weights
– f (x) is feature vector of x

Figure out the weight vector from training instances
# free      : 2
YOUR_NAME   : 0
MISSPELLED  : 2
FROM_FRIEND : 0
...

# free      : 0
YOUR_NAME   : 1
MISSPELLED  : 1
FROM_FRIEND : 1
...

# free      : 4
YOUR_NAME   :-1
MISSPELLED  : 1
FROM_FRIEND :-3
...

SGD with learning rate 1:
Do until satisfied:
- For each training example (y*, f) 
1. Compute the gradient ∇E where E is squared error
2. Update w = w - ∇E

Namely no change with correct prediction
Otherwise  w= w+ y* · f

E=0.5( y*- ѡ f(x))2

∇E = ∂E/ ∂ѡ = -(y*-y)f
=0 if y*=y
else  -y*   f
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Example of SGD Learning from 
training data 

• Classifier model:

Instance Size Color Shape Category

x1 Small 0 Red 0 Circle 0 Positive 1
x2 Large 2 Red 0 Circle 0 Positive 1

x3 Small 0 Red 0 Triangle 1 Negative -1

x4 Large 2 Blue 1 Circle 0 Negative -1

f(x) =  Size *w1+color *w2 +shape*w3
Use sign of f(x) to classify 

Initially w1=w2 =w3 =0

With Instance 1:  sign(f(x1))=sign(0)=1. No weight change

With Instance 2:  sign(f(x2))=sign(0)=1. No weight change.
With Instance 3:  sign(f(x3))=sign(0)=1. Wrongly classified

w= w+(-1) *(0,0,1) =(0,0,-1)
With Instance 4:  sign(f(x4))=sign(0)=1. Wrongly classified

w= w+(-1) *(2,1,0) =(-2,-1,-1)
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Incremental vs Batch Mode in SGD

SGD in a batch or minibatch mode:
Update  weights by a (mini-) batch of instances (subset D)
Do until satisfied:

][  2.
gradient   theCompute .1
wEww

]w[E

D

D
!!!

!

Ñ-¬
Ñ

h

SGD in an incremental mode:
Update weights instance by instance 
Do until satisfied:
- For each training example d in D

][  2.
gradient   theCompute .1
wEww

]w[E

d

d
!!!

!

Ñ-¬
Ñ

h

2
2
1 )(][ d

Dd
dD otwE -º å

Î

!

2
2
1 )(][ ddd otwE -º

!

Training instances are divided and utilized by batches.
Each batch can be executed fast with GPU or a parallel platform
#epoch is #passes to work through the entire training dataset

∇E = ∂E/ ∂ѡ = -(td-od)x
x is a feature vector
td is the judgement label
od = ѡ x
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Other Classification Prediction or 
Loss Functions

• Score for y=1:

• Score for y=-1: 

• Probability of label:

• Maximize: 

– Equivalently maximize log likelihood: 

l(w) =
mY

i=1

p(y = y(i)|f(x(i));w)

ll(w) =
mX

i=1

log p(y = y(i)|f(x(i));w)

w>f(x)

�w>f(x)

p(y = 1|f(x);w) = ew
>f(x(i))

ew>f(x) + e�w>f(x)

p(y = �1|f(x);w) = e�w>f(x)

ew>f(x) + e�w>f(x)

Softmax for binary classification
Logistic regression

z ∈[-∞ ,∞ ]

ez/(ez+e-z) ∈[0,1 ]  
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Multi-class Softmax

• 3-class softmax – classes A, B, C
– 3 weight vectors:

• Probability of label A:   (similar for B, C)

• Loss function: 

• Equivalently maximize log likelihood: 

wA, wB , wC

p(y = A|f(x);w) = ew
>
Af(x)

ew
>
Af(x) + ew

>
Bf(x) + ew

>
Cf(x)

l(w) =
mY

i=1

p(y = y(i)|f(x(i);w)

ll(w) =
mX

i=1

log p(y = y(i)|f(x(i);w)
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Multi-class Two-Layer Neural Network 
with SoftMax
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Activation Function: tanh(x)
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Other Activation Functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU
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N-Layer Neural Network

S

f1

f2

f3

>0?

S >0?

S >0?

S

S >0?

S >0?

S >0?

S >0?

S >0?

S >0?…

…

…
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The whole CNN

Fully Connected 
Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

A new image

A new image
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How to Calculate Partial Derivatives for 
SGD through a Computer Algorithm
• Graph representation of a loss function can be huge with 

thousands or even millions of parameters.
• How to compute partial derivatives of a computational

graph

Example: Given a function f(x,y,z)= (x+y)z, what is the 
partial derivative of f with respect to x, y, z?

• What is the partial derivative of f with respect to x, y, 
z, given x = -2, y = 5, z = -4 from a training instance?

• Computer has to do it symbolically. Not easy in general

Easier to do by focusing on the given training instance
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Knowing x = -2, y = 5, z = -4

Example of Algorithmic Derivative 
Computation
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x = -2, y = 5, z = -4, f(x,y,z)=-12

Now we conduct a backward propagation in 
this graph to compute

Get local derivates for each node
Get the final value f via forward computation

Get local derivates for each node
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Want: 

Backward to get the derivative of last node 

x = -2, y = 5, z = -4, f(x,y,z)=-12
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Want: 

=1  as local derivative. It is trivial

x = -2, y = 5, z = -4, f(x,y,z)=-12
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Want: 

Need to get derivative 

x = -2, y = 5, z = -4, f(x,y,z)=-12
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Want: 

Derive 3 as derivative  because ∂f/ ∂z= q=3  

x = -2, y = 5, z = -4, f(x,y,z)=-12
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Want: 

Need to get derivative 

x = -2, y = 5, z = -4, f(x,y,z)=-12
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Want: 

is found because ∂f/ ∂q= z=-4 

x = -2, y = 5, z = -4, f(x,y,z)=-12
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Want: 

How to compute ∂f/ ∂y ?

x = -2, y = 5, z = -4, f(x,y,z)=-12
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Want: 

Chain rule:

Use the chain rule locally to compute ∂f/ ∂y = (-4)· 1 =-4 

x = -2, y = 5, z = -4, f(x,y,z)=-12
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Want: 

Use the chain rule locally to compute ∂f/ ∂x

x = -2, y = 5, z = -4, f(x,y,z)=-12
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Want: 

Chain rule:

Use the chain rule locally to compute ∂f/ ∂x = (-4)· 1 =-4 

x = -2, y = 5, z = -4, f(x,y,z)=-12



Slide 34
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

34

z=f(x,y)

Activation

How to use  the chain rule locally ?
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z=f(x,y)

“local gradient”

Compute the local gradients first
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f

“local gradient”

gradients

Get  the  incoming gradient
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f

gradients

“local gradient”

Apply the chain rule to compute the gradient
Then propagate backward to one direction
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z=f(x,y)

gradients

“local gradient”

Apply the chain rule to compute the gradient
Propagate backward to another direction



Slide 39
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

39

z=f(x,y)

Incoming gradients

“local gradient”

Incoming*Local 
gradient

Summary of backward flow
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Another example:

Green- forward computation 
Red – backward derivatives
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Another example:

X=1.37

Green- forward computation 
Red – backward derivatives
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Another example:

X=1.37

Green- forward computation 
Red – backward derivatives



Slide 43
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 2016

43

Another example:

X=1.37

Green- forward computation 
Red – backward derivatives
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Another example:

Green- forward computation 
Red – backward derivatives
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Another example:

Green- forward computation 
Red – backward derivatives
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Another example:

Green- forward computation 
Red – backward derivatives
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Another example:

Green- forward computation 
Red – backward derivatives
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Another example:

Green- forward computation 
Red – backward derivatives
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Another example:

(-1) * (-0.20) = 0.20

Green- forward computation 
Red – backward derivatives
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Another example:
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Another example:

[local gradient] x [its gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2  (both inputs!)

Green- forward 
Red – backward
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Another example:

Green- forward computation 
Red – backward derivatives
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Another example:

[local gradient] x [its gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2
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sigmoid function

sigmoid gate



Slide 55
Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 5 - 20 Jan 201655

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2

Green- forward computation 
Red – backward derivatives
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Gradients add at branches

+

x(t)

y(t)



Slide 57

Summary
•SGD

–Simple linear classifier
–Complex classification prediction functions

•Computing partial derivates algorithmically
– Forward propagation to compute intermediate function values
– Backward propagation to compute derivates

•Deep learning
–New direction for text data processing given its 

success in image/audio processing
–Frameworks and software

• TensorFlow (Google).
• Others: Theano, Torch, CAFFE, computation 

graph toolkit (CGT)


