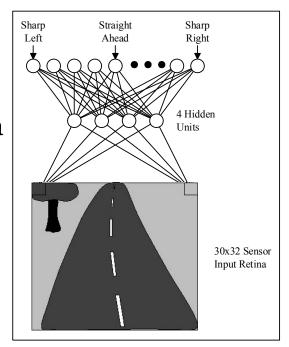
SGD and Deep Learning for Classification

UCSB CS293S, 2022, T. Yang

Motivation and Table of Content

- What we have learned so far for ranking and classification
 - Decision trees: entropy-based, or regression
 - Ensembles, boosting, and bagging. Random forests
- Focus of this slide set
 - Stochastic gradient descent (SGD) for general optimization
 - Derive weights for minimizing a loss function in a large network-based classification
 - Example of neural nets and optimization
- Why?
 - Successful in neural classification tasks for image and audio processing with machine learning
 - Effective for text oriented document classification and ranking



Partial Derivatives and Gradient

Single-variable functions

Notation for the Derivative

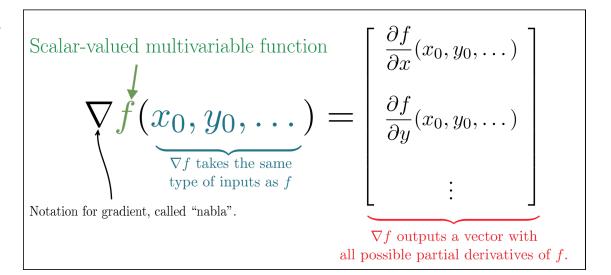
$$\begin{cases} f'(x) \\ y' \\ \frac{dy}{dx} \end{cases} \int \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Multi-variable functions

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Gradient



SGD training for Binary Classifier

Figure out the weight vector from training instances

- Start with weights = o
- For each training instance:
 - Classify with current weights
 - f(x) is feature vector of x

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

```
f(x_1) \left[egin{array}{cccc} \# & {	t free} & {	t : 2} \ {	t YOUR\_NAME} & {	t : 0} \ {	t MISSPELLED} & {	t : 2} \ {	t FROM\_FRIEND} & {	t : 0} \ {	t ...} \end{array}
ight]
```

```
f(x_2) # free : 0 YOUR_NAME : 1 MISSPELLED : 1 FROM_FRIEND : 1
```

- If correct (i.e., predicted y=target y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Optimization Problem for Classification

```
Given training set \{(x_1, y_1), ...(x_n, y_n)\}

Given a loss function \ell(h, y) (hinge loss, logistic,...)

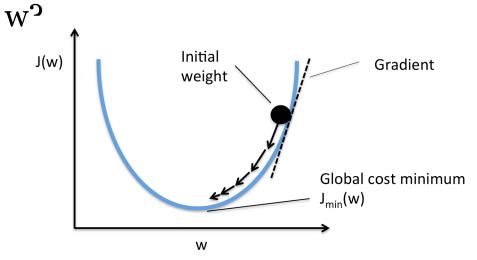
Find a prediction function h(x; w) (linear, DNN,...)
```

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i; w), y_i)$$

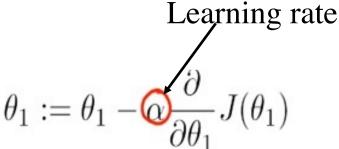
- "y_i" is the classification label for a training instance
- "w" is the set of parameters to be found through training
- What does prediction function h() look like?
- How to find parameters involved in h() that minimize an objective function?

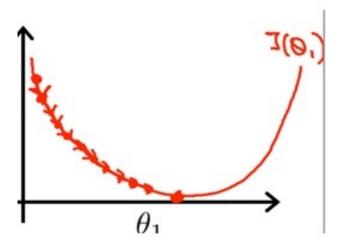
How to find parameters that minimize the loss function?

• How to find parameters that minimize a loss function J with parameter vector



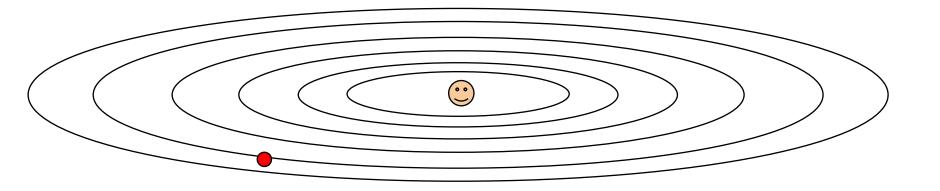
- Gradient Descent Method (SGD) for Optimization
 - -Start somewhere
 - Repeat: Take a step in the steepest descent direction





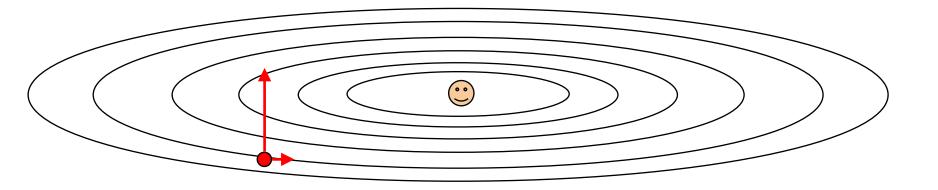
w is θ_1

Illustration of gradient descent to refine multiple parameters



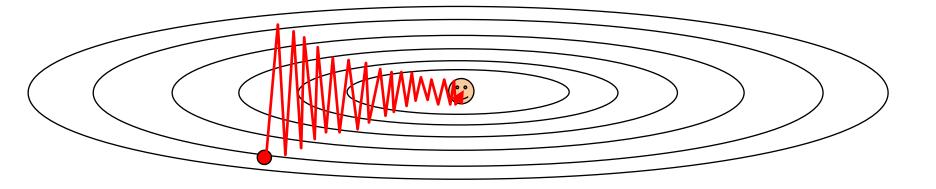
Q: What is the trajectory along which we converge towards the minimum with SGD?

Suppose loss function is steep vertically but shallow horizontally:



Q: What is the trajectory along which we converge towards the minimum with SGD?

Suppose loss function is steep vertically but shallow horizontally:



Q: What is the trajectory along which we converge towards the minimum with Gradient Descent? very slow progress along flat direction, jitter along steep one

Generally, Steepest Direction with n parameters

- Given loss function g and learning rate α
- Steepest Direction = direction of the gradient
- Parameter vector $w=(w_1, w_2, ..., w_n)$
- **Gradient Descent: Update** weight vector w by using a sequence of training instance i
 - Init:
 - For i = 1, 2, ... $w \leftarrow w \alpha * \nabla g(w)$

- ne gradient $\nabla g =$ 1. Stop after a fixed
- number of iterations.
- 2. Or when loss is close to a lower bound or has not improved much in a long tme.
- 3. Or when the validation error has not improved in a long time.

Start with Simple Binary Text Classifier

Also called perceptron

 \mathcal{X}

f(x)

Result classification:

Positive, output +1 Negative, output -1

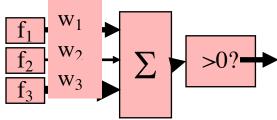
Hello,

Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just

free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0

SPAM or

PIXEL-7,12 : 1 PIXEL-7,13 : 0 ... NUM_LOOPS : 1



$$\operatorname{activation}_{w}(x) = \sum_{i} w_{i} \cdot f_{i}(x) = \overline{w} \cdot f(x)$$

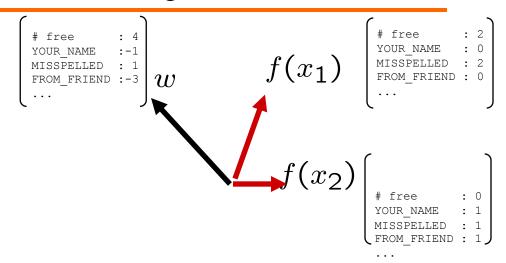
Positive dot product $w \cdot f$ means the positive class

SGD training for Binary Classifier

Figure out the weight vector from training instances

- Start with weights = o
- For each training instance:
 - Classify with current weights
 - f(x) is feature vector of x

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$



SGD with learning rate 1:

Do until satisfied:

- For each training example (y^*, f)
- 1. Compute the gradient ∇E where E is squared error
- 2. Update $w = w \nabla E$

Namely no change with correct prediction Otherwise $w = w + y^* \cdot f$

E=0.5(
$$y^*$$
- w f(x))²

$$\nabla E = \partial E / \partial w = -(y^*-y)f$$

$$= 0 \text{ if } y^* = y$$

$$else - y^* \text{ f Slide 11}$$

Example of SGD Learning from training data

• Classifier model:

 $f(x) = Size *w_1+color *w_2 +shape*w_3$ Use sign of f(x) to classify

Initially $w_1 = w_2 = w_3 = 0$

Instance	Size	Color	Shape	Category
\mathbf{x}_1	Small 0	Red 0	Circle 0	Positive 1
X_2	Large 2	Red 0	Circle 0	Positive 1
X ₃	Small 0	Red 0	Triangle 1	Negative -1
X_4	Large 2	Blue 1	Circle 0	Negative -1

With Instance 1: $sign(f(x_1))=sign(0)=1$. No weight change

With Instance 2: $sign(f(x_2))=sign(0)=1$. No weight change.

With Instance 3: $sign(f(x_3))=sign(0)=1$. Wrongly classified w=w+(-1)*(0,0,1)=(0,0,-1)

With Instance 4: $sign(f(x_4))=sign(0)=1$. Wrongly classified w=w+(-1)*(2.1.0)=(-2.-1.-1)

Incremental vs Batch Mode in SGD

SGD in an incremental mode:

Update weights instance by instance

Do until satisfied:

- For each training example *d* in *D*
 - 1. Compute the gradient $\nabla E_d[\vec{w}]$
 - $2. \vec{w} \leftarrow \vec{w} \eta \nabla E_d[\vec{w}]$

$$E_d[\vec{w}] \equiv \frac{1}{2} (t_d - o_d)^2$$

$$\nabla E = \partial E / \partial w = -(t_d - o_d)x$$

x is a feature vector t_d is the judgement label

$$o_d = \boldsymbol{w} x$$

SGD in a batch or minibatch mode:

Update weights by a (mini-) batch of instances (subset D)

Do until satisfied:

1. Compute the gradient $\nabla E_D[\vec{w}]$

$$2. \vec{w} \leftarrow \vec{w} - \eta \nabla E_D[\vec{w}]$$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

Training instances are divided and utilized by batches.

Each batch can be executed fast with GPU or a parallel platform

#epoch is #passes to work through the entire training dataset

Other Classification Prediction or Loss Functions $e^{z/(e^z+e^{-z})} \in [0,1]^{0.5}$

Softmax for binary classification Logistic regression

- Score for y=1: $w^{\top}f(x)$
- Score for y=-1: $-w^{\top}f(x)$
- Probability of label:

$$p(y = 1|f(x); w) = \frac{e^{w^{\top} f(x^{(i)})}}{e^{w^{\top} f(x)} + e^{-w^{\top} f(x)}}$$

 $Z \in [-\infty, \infty]^{-1}$

$$p(y = -1|f(x); w) = \frac{e^{-w^{\top} f(x)}}{e^{w^{\top} f(x)} + e^{-w^{\top} f(x)}}$$

• Maximize:
$$l(w) = \prod_{i=1}^{m} p(y = y^{(i)} | f(x^{(i)}); w)$$

Equivalently maximize log likelihood:

$$ll(w) = \sum_{i=1}^{m} \log p(y = y^{(i)}|f(x^{(i)}); w)$$

Multi-class Softmax

- 3-class softmax classes A, B, C
 - 3 weight vectors: w_A, w_B, w_C
- Probability of label A: (similar for B, C)

$$p(y = A|f(x); w) = \frac{e^{w_A^{\top} f(x)}}{e^{w_A^{\top} f(x)} + e^{w_B^{\top} f(x)} + e^{w_C^{\top} f(x)}}$$

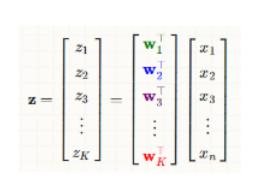
• Loss function: $l(w) = \prod_{i=1}^{m} p(y = y^{(i)} | f(x^{(i)}; w)$

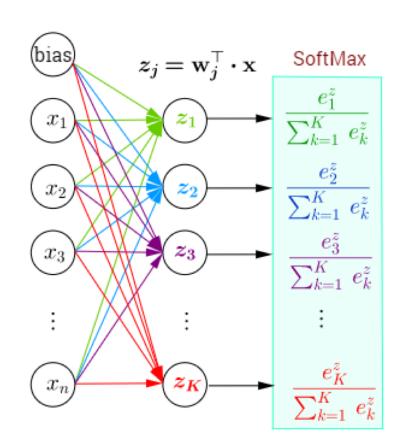
• Equivalently maximize log likelihood:

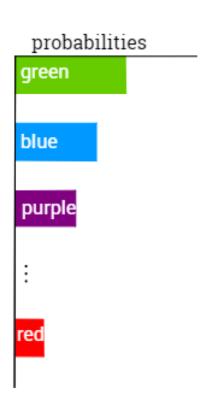
$$ll(w) = \sum_{i=1}^{m} \log p(y = y^{(i)}|f(x^{(i)}; w)$$

Multi-class Two-Layer Neural Network with **SoftMax**

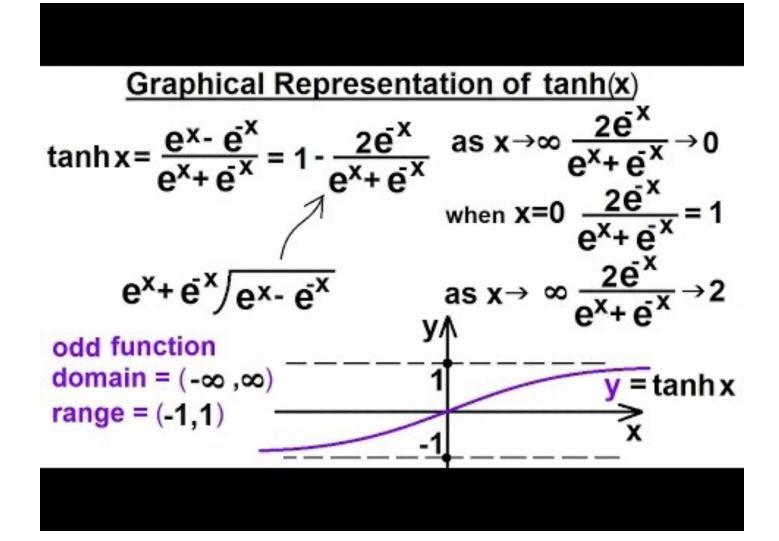
Multi-Class Classification with NN and SoftMax Function







Activation Function: tanh(x)



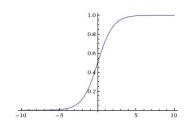
Other Activation Functions

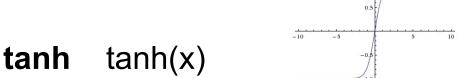
Leaky ReLU

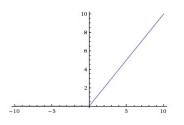
max(0.1x, x)

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

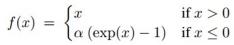


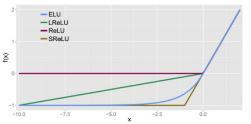




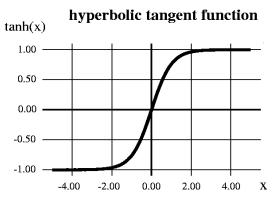
ELU

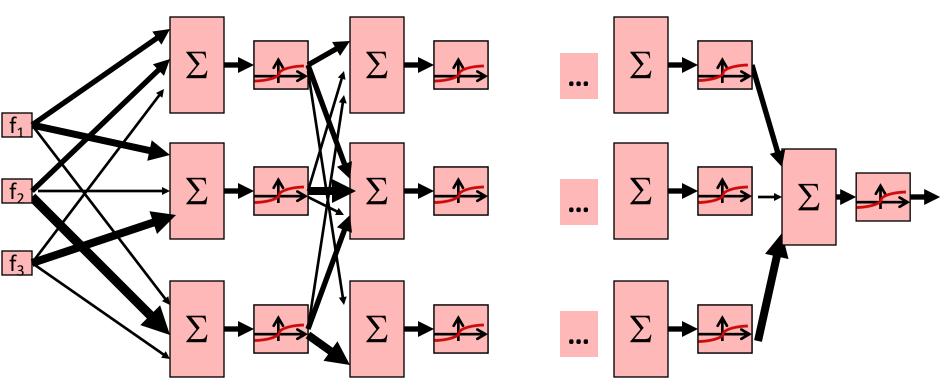
$$\max(w_1^Tx+b_1,w_2^Tx+b_2)$$





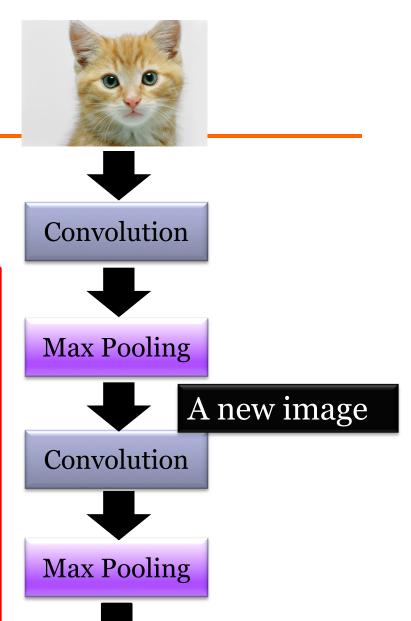
N-Layer Neural Network

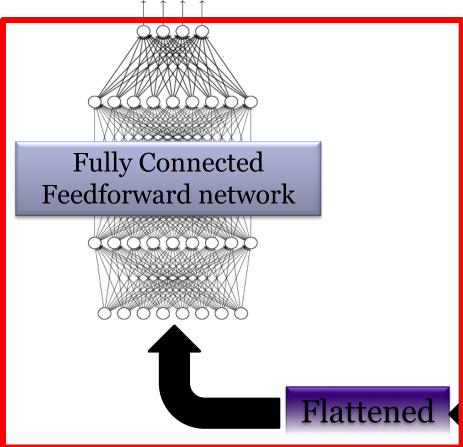




The whole CNN

cat dog





A new image

How to Calculate Partial Derivatives for SGD through a Computer Algorithm

- Graph representation of a loss function can be huge with thousands or even millions of parameters.
- How to compute partial derivatives of a computational graph

Example: Given a function f(x,y,z)=(x+y)z, what is the partial derivative of f with respect to x, y, z?

- Computer has to do it symbolically. Not easy in general
- What is the partial derivative of f with respect to x, y,
 z, given x = -2, y = 5, z = -4 from a training instance?

Easier to do by focusing on the given training instance

Example of Algorithmic Derivative Computation

$$f(x,y,z) = (x+y)z$$
Knowing x = -2, y = 5, z = -4

x -2

+ 3

x -12

x -2

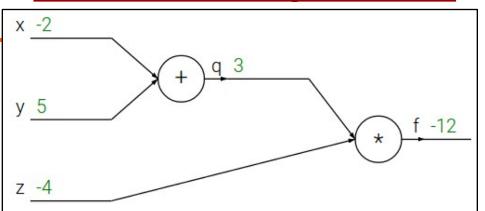
x -12

Get local derivates for each node Get the final value f via forward computation

$$f(x, y, z) = (x + y)z$$

x = -2, y = 5, z = -4, f(x,y,z)=-12

Get local derivates for each node



$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Now we conduct a backward propagation in this graph to compute $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

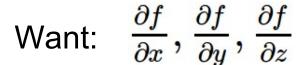
Backward to get the derivative of last node

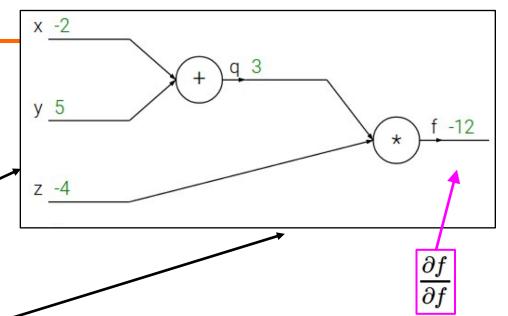
$$f(x, y, z) = (x + y)z$$

x = -2, y = 5, z = -4, f(x,y,z)=-12

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$





$\frac{\partial f}{\partial f}$ = 1 as local derivative. It is trivial

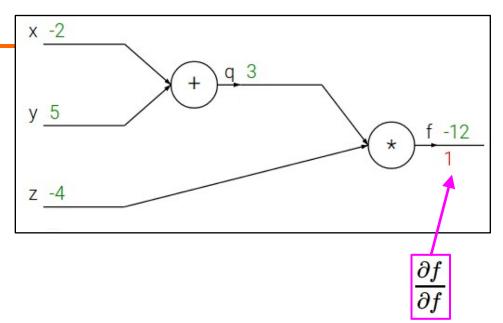
$$f(x,y,z)=(x+y)z^{-1}$$

$$x = -2$$
, $y = 5$, $z = -4$, $f(x,y,z)=-12$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



Need to get derivative

$$\frac{\partial f}{\partial z}$$

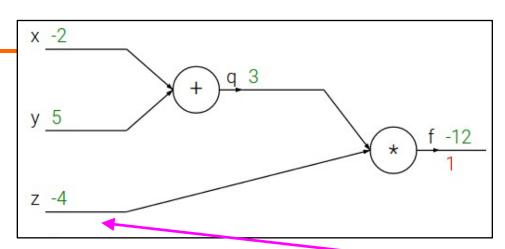
$$f(x,y,z)=(x+y)z$$

$$x = -2$$
, $y = 5$, $z = -4$, $f(x,y,z)=-12$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



 $\frac{\partial f}{\partial z}$

Derive 3 as derivative

$$\frac{\partial f}{\partial z}$$

because $\partial f / \partial z = q = 3$

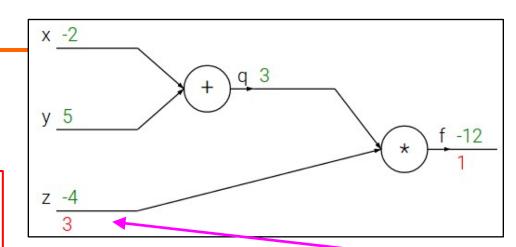
$$f(x,y,z) = (x+y)z^{\mathsf{T}}$$

$$x = -2$$
, $y = 5$, $z = -4$, $f(x,y,z)=-12$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



 $\frac{\partial f}{\partial z}$

Need to get derivative

$$\frac{\partial f}{\partial q}$$

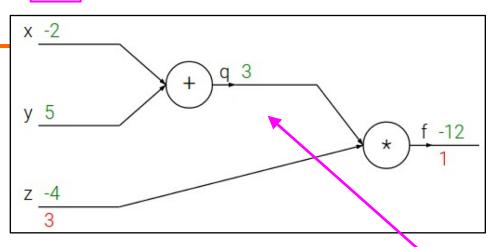
$$f(x,y,z) = (x+y)z^{\mathsf{T}}$$

$$x = -2$$
, $y = 5$, $z = -4$, $f(x,y,z)=-12$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



$\frac{\partial f}{\partial q}$ is found because $\partial f / \partial q = z = -4$

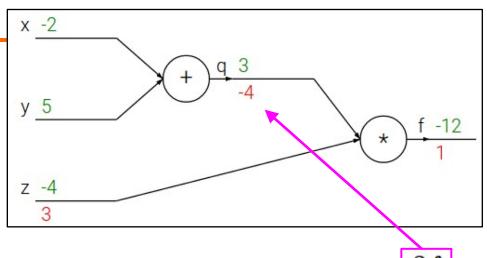
$$f(x,y,z) = (x+y)z^{-1}$$

$$x = -2$$
, $y = 5$, $z = -4$, $f(x,y,z)=-12$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



 $\frac{\partial f}{\partial q}$

How to compute $\partial f / \partial y$?

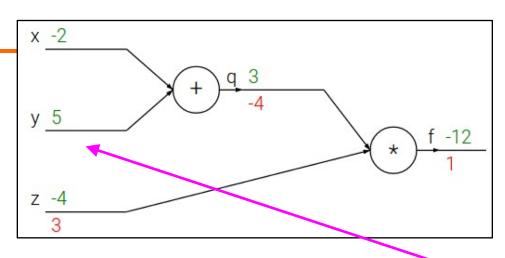
$$f(x,y,z) = (x+y)z^{\mathsf{T}}$$

$$x = -2$$
, $y = 5$, $z = -4$, $f(x,y,z)=-12$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



 $\frac{\partial f}{\partial y}$

Use the chain rule locally to compute $\partial f/\partial y = (-4)\cdot 1 = -4$

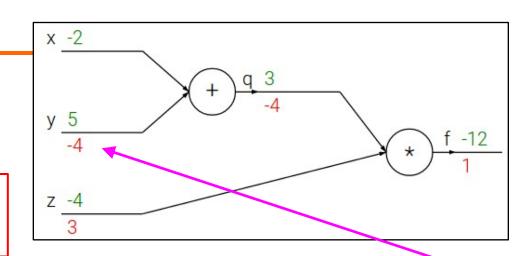
$$f(x, y, z) = (x + y)z^{-}$$

$$x = -2$$
, $y = 5$, $z = -4$, $f(x,y,z)=-12$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz \qquad \quad rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

Use the chain rule locally to compute $\partial f/\partial x$

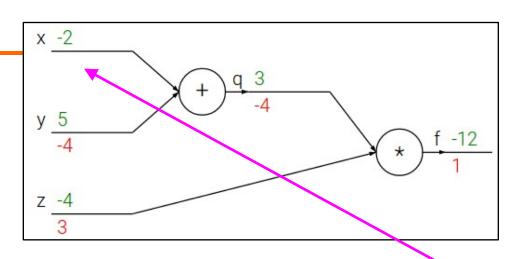
$$f(x,y,z)=(x+y)z^{-1}$$

$$x = -2$$
, $y = 5$, $z = -4$, $f(x,y,z)=-12$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



 $\frac{\partial f}{\partial x}$

Use the chain rule locally to compute $\partial f/\partial x = (-4)\cdot 1 = -4$

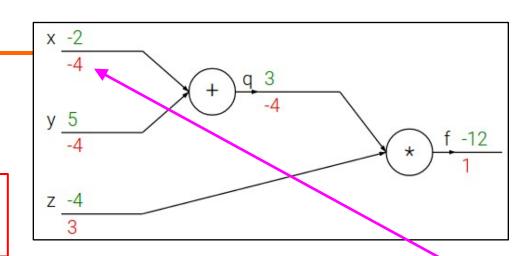
$$f(x, y, z) = (x + y)z^{-}$$

$$x = -2$$
, $y = 5$, $z = -4$, $f(x,y,z)=-12$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

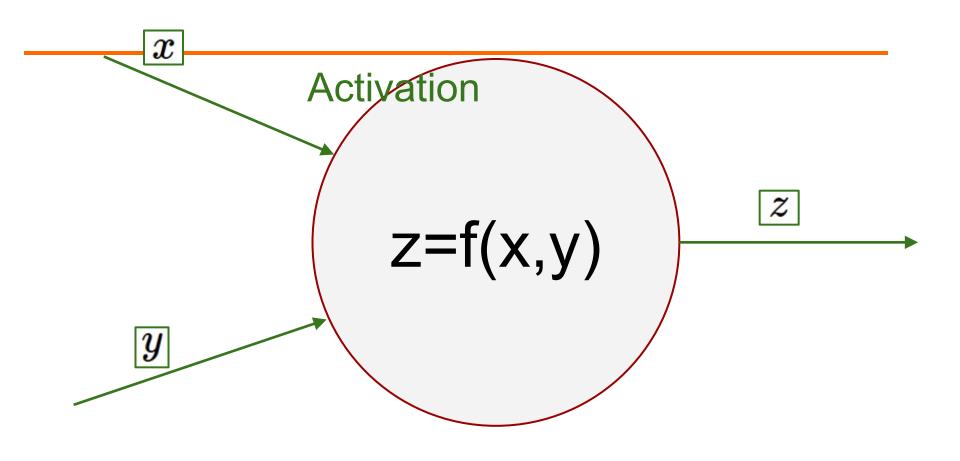
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



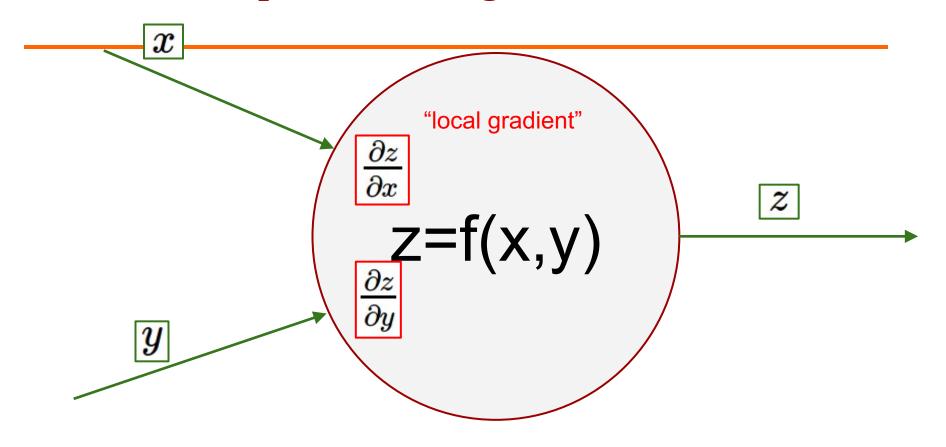
Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

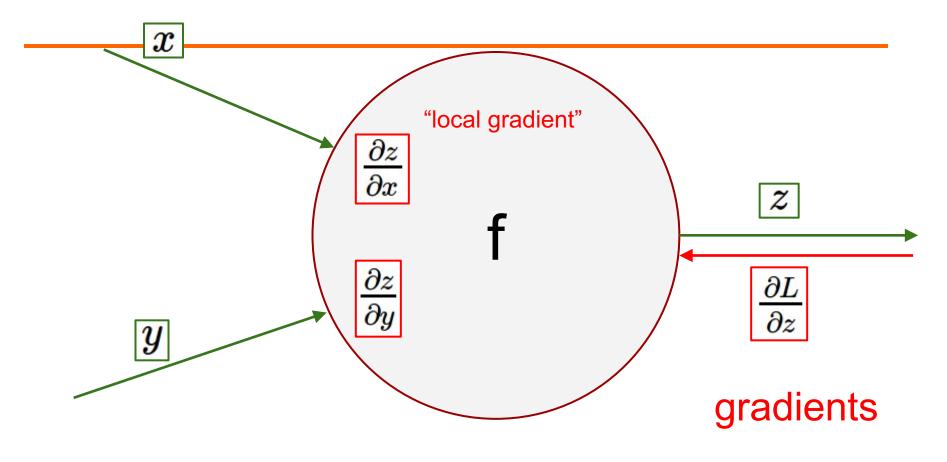
How to use the chain rule locally?



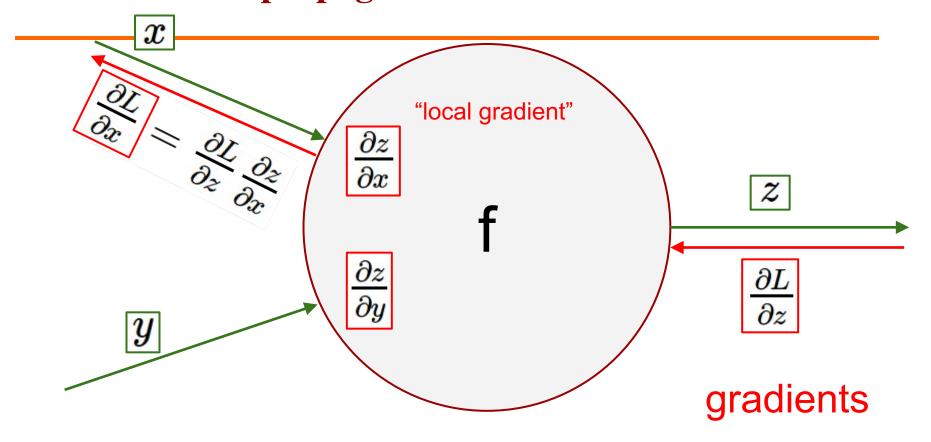
Compute the local gradients first



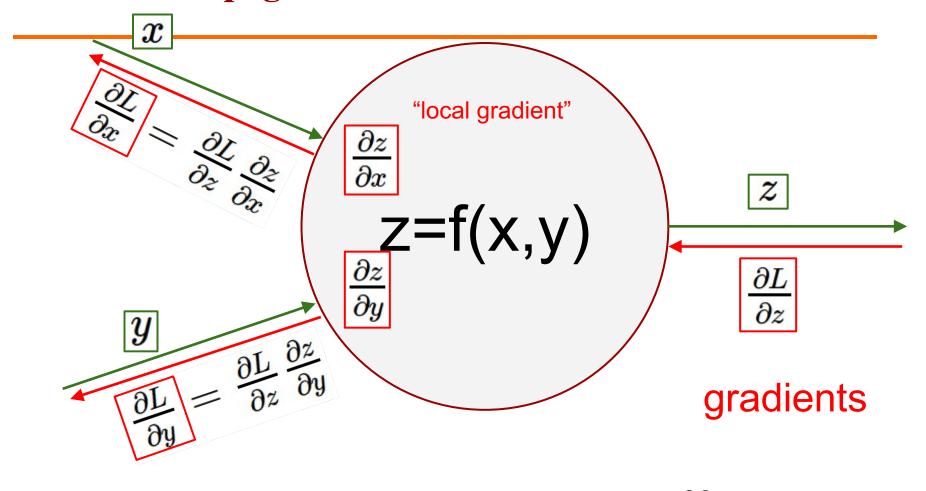
Get the incoming gradient

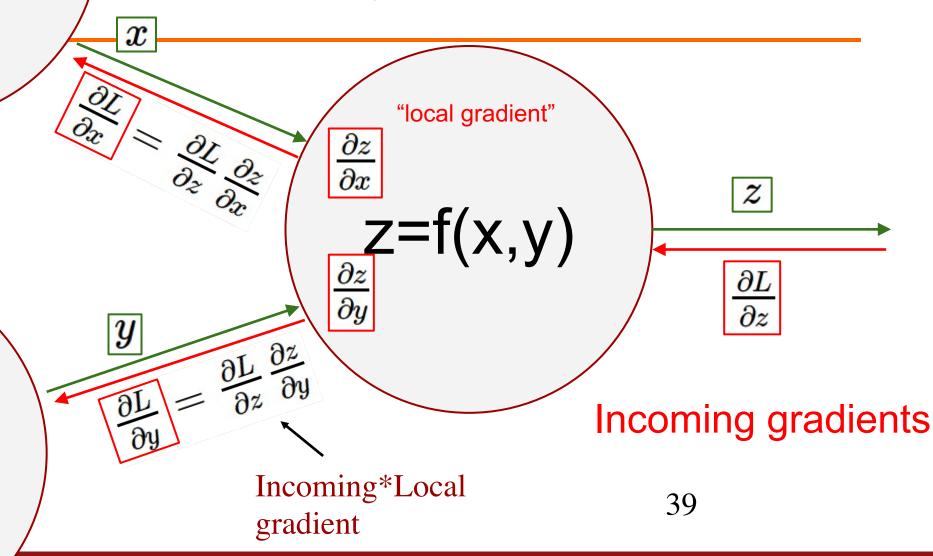


Apply the chain rule to compute the gradient Then propagate backward to one direction

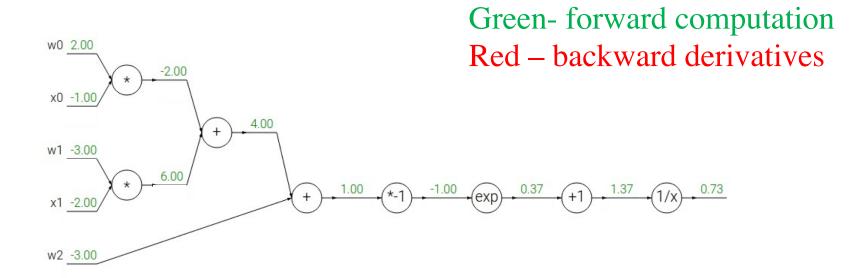


Apply the chain rule to compute the gradient Propagate backward to another direction



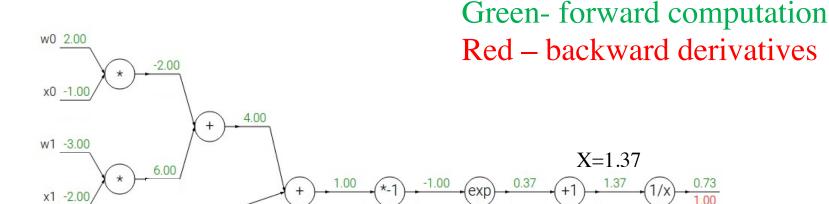


$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

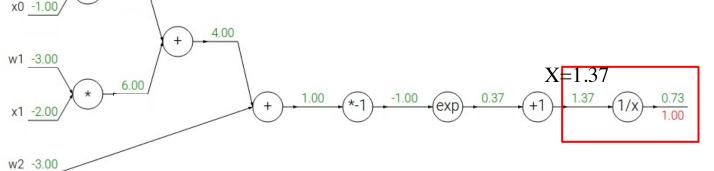


w2 -3.00

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

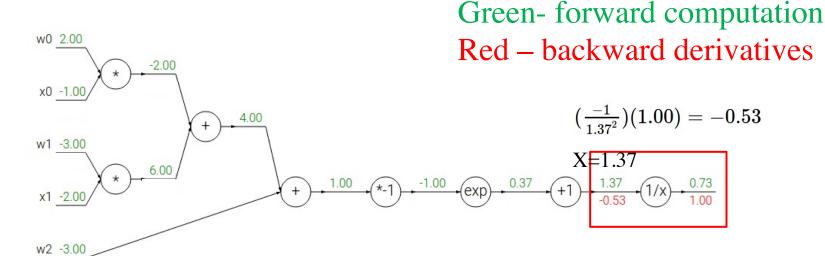


$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$



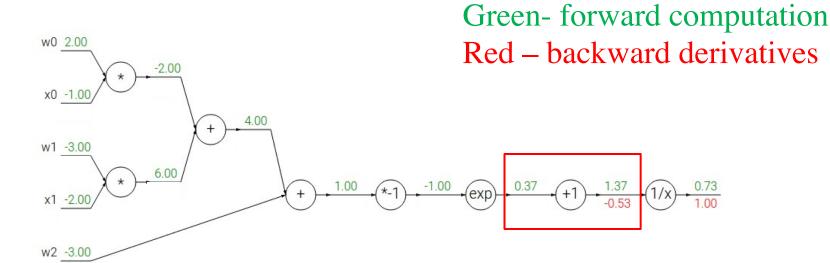
$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

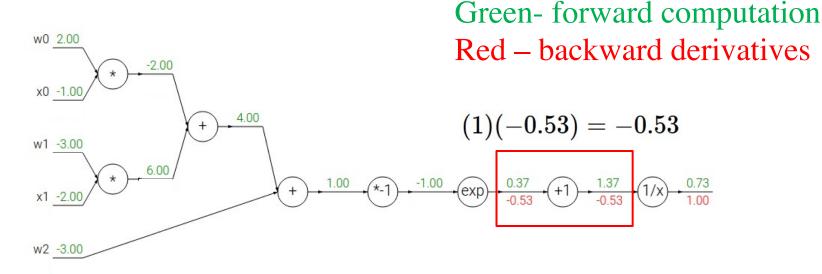


$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \ \$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

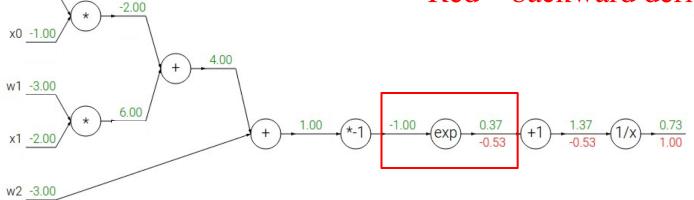


$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



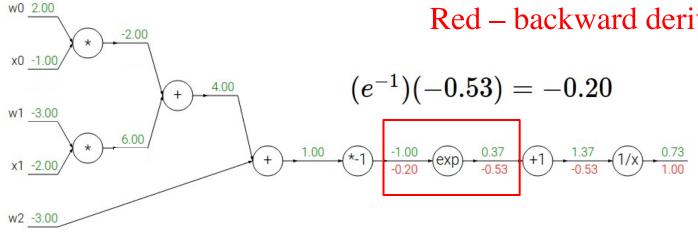
$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f_c(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

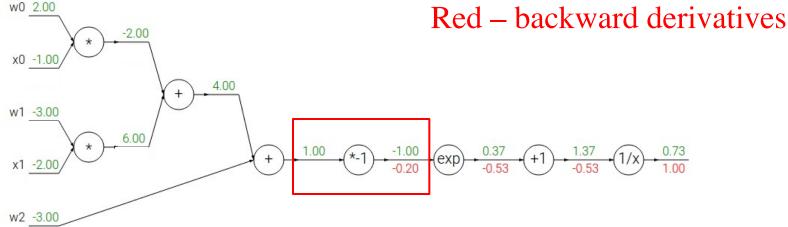
Green- forward computation Red – backward derivatives



$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ & f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ & f_c(x) = c + x &
ightarrow & rac{df}{dx} = -1/x^2 \ & rac{df}{dx} = 1 \ & rac{df$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

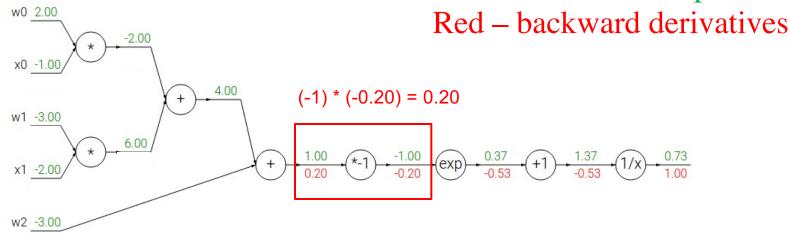
Green- forward computation



$$rac{df}{dx} = -1/x^2 \ rac{df}{dx} = 1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

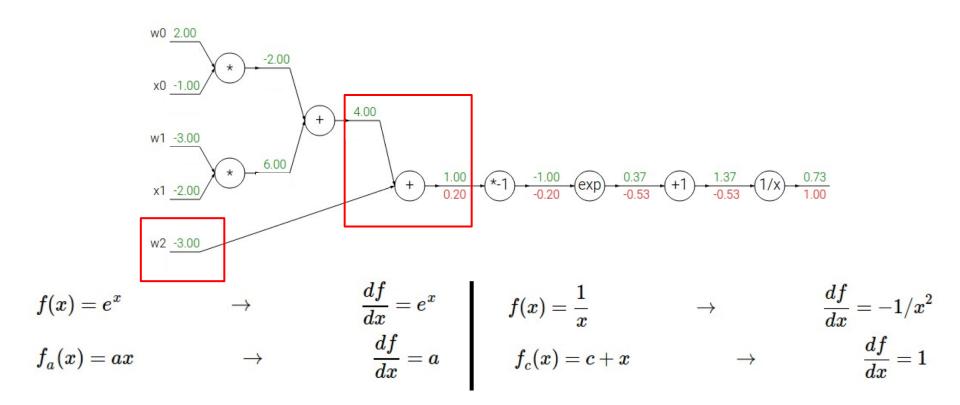
Green- forward computation Red – backward derivatives



$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \$$

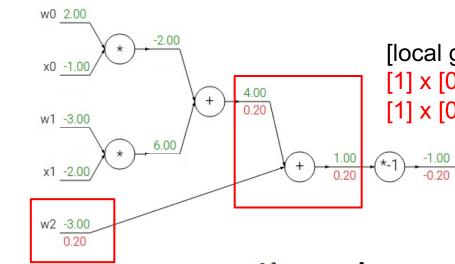
$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Green- forward Red – backward



[local gradient] x [its gradient]

$$[1] \times [0.2] = 0.2$$

 $[1] \times [0.2] = 0.2$ (both inputs!)

$$+$$
 $+$ 1.00 $+$ $+$ 1.37 $+$ 1.37 $+$ 1.00 $+$ 1.00 $+$ 1.00

$$f(x)=e^x \qquad \qquad o \qquad rac{d_x}{dx}$$

$$f_a(x)=ax$$

$$egin{aligned} rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow \ rac{df}{dx} = a & f_c(x) = c + x &
ightarrow \end{aligned}$$

$$\frac{df}{dx} = a$$

$$f(x) = \frac{1}{x}$$

$$f_c(x)=c+c$$

$$\rightarrow$$

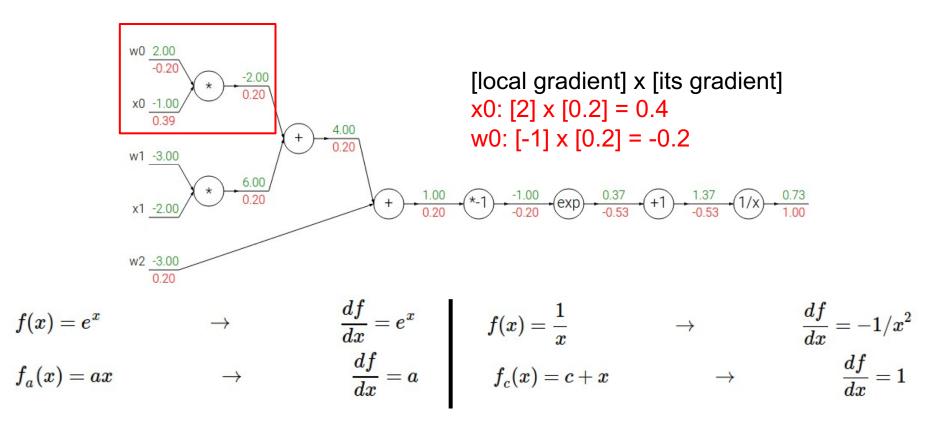
$$\frac{df}{dx} = -1/x$$

$$\frac{dx}{df} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



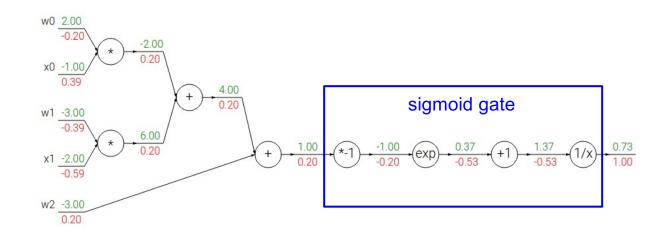
$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$



$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$
 sigmoid function

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight)\sigma(x)$$

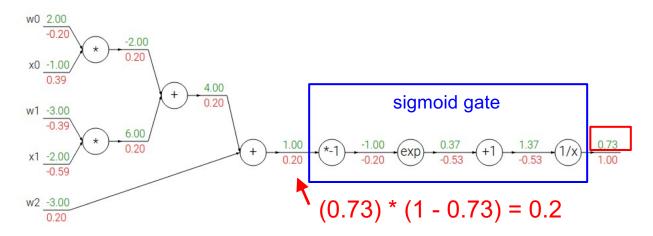


$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

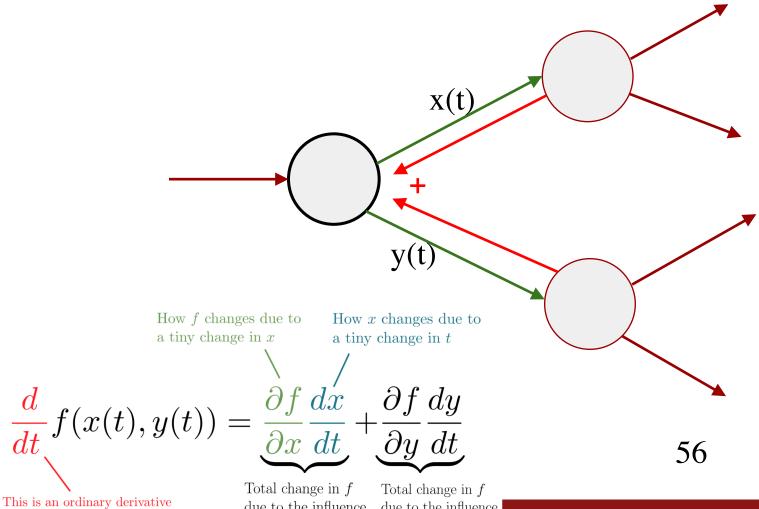
sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$



Green- forward computation Red – backward derivatives

Gradients add at branches



not a partial derivative $\frac{\partial}{\partial t}$, because the total composition has one input and one output. due to the influence t has on x

due to the influence t has on y

Summary

•SGD

- -Simple linear classifier
- Complex classification prediction functions
- Computing partial derivates algorithmically
 - Forward propagation to compute intermediate function values
 - Backward propagation to compute derivates

Deep learning

- New direction for text data processing given its success in image/audio processing
- -Frameworks and software
 - TensorFlow (Google).
 - Others: Theano, Torch, CAFFE, computation graph toolkit (CGT)