
Search with Inverted Index

UCSB 293S, Tao Yang 2022

1

Table of Content

• Overview
§ Sparse vs dense representation of

documents
§ Sparse à inverted index

• Advanced index for fast query
processing

• Index size estimation
• Compression

2

Overview: Document/Query Representations
in Search

Documents
Query

Sparse Vector
Representation

Dense Vector
Representation

Inverted
Index

Online
Search

Online
search

Slow while good for semantic matching
Approximation such as
nearest neighbor search is needed

Fast. More enhancement
needed for semantic matching

Every document/query is a vector

Two-tier Search Pipeline with Sparse Retrieval

Lightweight
and fast

Eg. BM25

More
comprehensive

Term Posting list

"chair" [text #83, text #743, ...]

"store" [text #1003, text #50, ...]

... ...

Inverted Indexing: Table of Content

• Inverted index
• Compression
• Advanced index for fast query processing

5

Indexing Process

Indexes

• Indexes are data structures to make search faster
• Most common data structure is inverted index

§ “inverted” because documents are associated with
words, rather than words with documents

• Inverted index: Each index term is associated with an
inverted list
§ Contains lists of documents, or lists of word

occurrences in documents, and other information
§ Each entry is called a posting or postings
§ Lists are usually document-ordered (sorted by

document number)

6

Simple inverted index for example “Collection”

4 documents:

What other information
can be added in index to help
ranking?

• Inverted Index
with word counts

• May use/add more
ranking features. For
example, learned
neural scores per
(term, doc) pair.

8

Word Positions for Proximity Matches

• Matching phrases or words within a window
explicitly or implicitly.
§ e.g., "tropical fish", or “find tropical within 5

words of fish”
• Word positions in inverted lists make these types

of query features efficient
§ e.g., Fish appears at Positions 2 and 4 of Document 1

9

Expensive storage space for a large collection with long documents

Storage structure for posting lists

• For a large dataset, the a posting list for a term is
divided by blocks and compressed separately.
§ Each posting record contains document ID and its

term-specific features
§ Online search decompresses a block when needed

during retrieval

10

32-128 posting records per block

Fast Search with Inverted Index

• Index traversal during online query processing
• Skip pointers for conjunctive queries
• Earlier termination for top K disjunctive query

processing
• Search with dynamic index pruning: MaxScore,

WAND, BMW
11

Advanced Indexing for Fast Query
Processing

• Search engines commonly separate the ranking process into two
or more phases.
§ In the first phase, a simple and fast ranking function such as

using BM25 or learned score to get top K documents
– Query type

§ Conjunctive (all query terms are required)
§ Disjunctive (some of terms are required)
§ Phrase or proximity

– Significant amount of computation is still spent in the first
phase. Index design is critical.

§ Then in the second and further phases, increasingly more
complicated ranking functions with more and more features
are applied to documents that pass through the earlier
phases.

12

Top k Document Retrieval with Inverted
Index

• Simple rank formula score (d) = ∑ TermScore(t, d) for all
terms t in the query. E.g. TFIDF, BM25, learned neural scores

• Data traversal during online query processing
§ Term-at-a-Time (TAAT) query processing

– reads posting lists for query terms successively
– maintains an accumulator for each result document with value

§ Document-at-a-time (DAAT) approach
13

…

…

First term posting list

Second term posting list

Third term posting list

Document-at-a-time (DAAT)

§ Assumes document-ordered posting lists
§ Reads posting lists for query terms concurrently
§ Computes score when same document is seen in one or more

posting lists
§ Always advances posting list with lowest current document

identifier

Start from doc d1

15

Advance to doc d4

…
Advance to d7

…

Advance to d8

…

Advance to d9 16

Intersection of posting lists for
conjunctive queries

• All query terms are required for a matching document
• Walk through the two postings simultaneously, in time

linear in the total number of postings entries

128

31

2 4 8 16 32 64

1 2 3 5 8 17 21

Brutus
Caesar2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes, if index isn’t changing too fast.

17

Augment postings with skip pointers (at
indexing time)

• Why?
• To skip postings that will not be part of the

search results.

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

18

Query processing with skip pointers

1282 4 8 16 32 64

311 2 3 5 8 17 21
318

16 128

Suppose we’ve stepped through the lists until we process 8 on
each list.

When we get to 16 on the top list, we see that its
successor is 32.
But the skip successor of 8 on the lower list is 31, so
we can skip ahead past the intervening postings.

19

Skip Pointers

• A skip pointer (d, p) contains a document number d
and a byte (or bit) position p
§ Means there is an inverted list posting that starts at

position p, and the posting before it was for
document d

skip pointers Inverted list

• Example for inverted list

§ D-gaps
§ Skip pointers

20

How many skip pointers?

• Tradeoff:
§ More skips ® shorter skip spans Þ more likely to

skip. But lots of comparisons to skip pointers.
§ Fewer skips ® few pointer comparison, but then long

skip spans Þ few successful skips.

• Simple heuristic: for postings of length L, use sqrt(L)
evenly-spaced skip pointers.
§ Easy if the index is relatively static; harder if L keeps

changing because of updates.
21

Earlier Termination for Fast Query Processing

• Exhaustive Search vs Earlier Termination
§ Search algorithm is exhaustive if it fully evaluates all

documents that satisfy the Boolean condition
§ Otherwise it is called earlier termination

• Earlier termination strategies
§ Stopping early, where each inverted list is arranged

from most to least promising posting and traversal is
stopped once enough good results are found,

§ Skipping, where inverted lists are sorted by document
IDs, and thus promising documents spread out over the
lists, but we can skip over uninteresting parts of a list

§ Partial scoring, where candidate documents are only
partially or approximately scored.

22

Types of Index Organization

• Document-Sorted Indexes: the postings in each inverted list are sorted by
document ID.
§ Popular. Good for DAAT traversal, skip pointer optimization, delta

encoding based compression.
§ WAND/BMW top-K algorithms for disjunctive queries

• Impact-Sorted Indexes: Postings in each list are sorted by their impact,
that is, their contribution to the score of a document.
§ Good for stopping early strategy where each inverted list is arranged

from most to least promising posting and traversal is stopped once
enough good results are found.

§ TAAT traversal is often used
§ Not easy for delta-encoding based compression

• Impact-Layered Indexes: partition the postings in each list into a number
of layers, such that all postings in layer i have a higher impact than those in
layer i + 1, and then sort the postings in each layer by document IDs.

23

Safe Earlier Termination withMaxScore
Algorithm for Disjunctive Queries

• Safe earlier termination allows faster processing while
having the same result as exhaustive top-K search.

§ Only need top k documents with the highest scores
• Simple rank formula score (d) = ∑ TermScore(t, d) for all

terms t in the query

§ Skip documents impossible to be in top K: score(d) ≤ θ
§ Each posting list of t maintains max score of documents

in this list: m(t) =max TermScore(t, d)
• Example: Assume m(cat) <m(dog)<m(mouse)<m(squirrel)

§ m(cat)+m(dog) ≤ top K thresold θ
§ Document d with no word mouse / squirrel: score(d) ≤ θ
§ This document can be eliminated safely

24

MaxScore algorithm [Turtle&Flood, 1995] became popular
again due to [Mallia et al. ECIR19]

Query Example: cat dog mouse squirrel

● Posting lists are divided into essential and non-essential groups.
● Assume m(cat) <m(dog)<m(mouse)<m(squirrel)
● m(cat)+m(dog) < top K threshold θ
● Non-essential group: cat, dog
● Essential group: mouse, squirrel

● Documents contain no essential words cannot be in top K
● Search flow is driven by scanning minimum unvisited document IDs

in the essential posting lists

Essential

Non-
essential

MaxScore Algorithm
● Documents in each posting list are sorted in an increasing order of IDs
● Keep a current document point at each search term’s posting list
● Conduct a sequence of steps when traversing an inverted index
● Each step contains two phrases

t1
t2

t3
t4

Non-essential terms

Essential terms
d4

d6

d4

d2

Current doc
position at the
posting list of
each term

Phrase 1: Partition terms
and select minimum doc
position d4 from essential
terms among their
current pointer positions

Phrase 2: Check if further
scoring of selected doc d4 can
be skipped

d6

d7

d7

Visitation wave of index traversal

d8

Phrase 2 of MaxScore Algorithm
● Once the min current position in essential terms’ lists are selected: d4
● Move current pointer at each list to document ≥ d4
● Gradually tighten the upper bound of rank score (d4) as visiting

current posting records of term posting lists
● Skip d4 If upper bound of core() ≤top K threshold θ

t1
t2

t3
t4

Non-essential terms

Essential terms
d4

d6

d4

d2

Visit posting one by one

If ∑1≤i ≤j MaxScore(ti)
+∑ j+11≤i ≤4 TermScore(ti) ≤ θ

skip scoring of d4

For j=3 to 1
d6

WAND

• Maintain a current document ID pointer at each posting list of
term t: cdid(t). Assume document-ordered posting lists.

• MaxScore(t) is the maximum term score in term t’s posting list.
• Dynamically maintain θ as minimum score to be in top K.

28

t1
t2

t3
t4

d3

d5

d1

d3 d5

MaxScore(t1) =1
MaxScore(t2)=1
MaxScore(t3)=1
MaxScore(t4)=1

cdid(t1) =d1
cdid(t2)=d3
cdid(t3)=d3
cdid(t4)=d5

• Sort posting lists in ascending order of
cdid()’s document IDs and focus on these
hot documents

• Pivot doc is smallest jth document
in the above sorted hot list:
• Any document between 1th

and (j-1)th positions of the
hot list cannot qualify for top
K results due to low score

• jth document satisfies: ∑1≤i ≤j
MaxScore(ti) > θ

A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Y. Zien. Efficient query
evaluation using a two-level retrieval process. ACM CIKM, 2003.
.

WAND: Example
• Assume θ=2 as minimum score to be in top K.
• Hot list: d1, d3, d3, d5

29

t1
t2

t3
t4

d3

d5

d1

d3 d5

MaxScore(t1) =1
MaxScore(t2)=1
MaxScore(t3)=1
MaxScore(t4)=1

cdid(t1) =d1
cdid(t2)=d3
cdid(t3)=d3
cdid(t4)=d5

• MaxScore(t1) > θ
d1, d3, d3, d5

• MaxScore(t1)+MaxScore(t2) > θ
d1, d3, d3, d5

• MaxScore(t1)+MaxScore(t2)
MaxScore(t2)> θ
d1, d3, d3, d5

• The pivot is t3 and pivot doc is d3

• d1 cannot be in top K

Posting lists may be blocked or
may not be blocked.

WAND: Skipping low scoring doc
Another example

MaxScore(a) =1
MaxScore(b)=1
MaxScore(c)=1

cdid(a) = d7
cdid(b)=d9
cdid(c)= d3

θ =1.5
Only top 1 result is
needed

30

• Sort posting lists in ascending order of cdid()’s document IDs
and focus on these hot documents
§ Hot list d3, d7, d9 for term order c, a, b

How to Skip Low-score Documents in WAND
§ Hot list d3, d7, d9 for term order c, a, b

• Define the pivot be jth document in the above sorted hot list:

§ Any document between 1th and (j-1)th positions of the hot list

cannot qualify for top K results due to low score

§ jth document satisfies: ∑1≤i ≤j MaxScore(ti) > θ

– j=1. MaxScore(c)=1 < 1.5 d3 is not possible to score higher than 1.5

– j=2. MaxScore(c)+ MaxScore(a) =2 > 1.5

– d7 is possible to score higher than 1.5. Thus it is the pivot for current hot

list. Advance the current lowest doc pointer to the pivot

31

Block-MAX WAND (BMW)
• S. Ding and T. Suel. Faster top-k document retrieval using

block-max indexes. SIGIR 2011.
• Use WAND to select pivot term/document. Difference:

§ Max impact score in a term posting list can be much larger
than the average individual doc score

§ Splits the inverted lists into blocks of, say, 64 or 128 docIDs
such that each block can be compressed/decompressed
separately

• Create metadata for each block
§ The max/min docID, Maximum score for each block
§ Also maintain maximum score per term posting list

• Leverage more accurate per-block max score while skipping
blocks of documents quickly

• Recently it is a good choice for short queries (<6 words) of top k
retrieval where k is small also .

32

Illustration of Key Ideas in BMW

• Maintain piece-wise upper-
bound approximation of the
impact scores in the lists.

Block max scores for posting list
blocks of dog, monkey, kangaroo.

∑1≤i ≤j BlockMax(ti) > θ

• Naive use of block max
score is incorrect

• As the current block position
does not contain this document
#4866
• Still use WAND idea to find a

candidate pivot.
• Once a candidate pivot is found,

dynamically locate the block in
each term posting list that may
own this pivot document

Which blocks contain doc #4866 in cat&dog?

How to skip low-score documents in BMW

• Still use WAND idea to find a
pivot candidate

• Once a candidate pivot d is
found, skip any document
before d in the focused hot
list.

∑1≤i ≤j MaxScore(ti) > θ

• Dynamically locate the block Bi in each term posting list that may
own doc d
• Use the next block max/min IDs to filter unnecessary blocks that

cannot contain d in each term posting list.

∑1≤i ≤j BlockMax(ti, Bi) > θ
• Double check if d is a real candidate by using

Doc d=4866 is pivot candidate

• If d does not satisfy, find the next minimum doc ID to move forward
34

A Comparsion of Sparse Retrieval Methods
[Mallia et al., SIGIR22]

Model Retrieval Time
(ms)

Relevance
(MRR@10)

BM25 6 0.18

DeepCT N/A 0.24

DeepImpact 20 0.33

DeepImpact - GT 5 0.33

UniCOIL 38 0.35

SpladeV2 220 0.37

● Dataset: MS MARCO Passage Dev
● Retrieval using MaxScore algorithm

MaxScore is a good
choice for long queries

• Order by relevance
effectiveness:

SpladeV2> uniCOIL
>DeepImpact

6.6 unique tokens

●BM25 with MaxScore is
fast and can skip many
documents during
retrieval
●Doc skipping in retrieval
with BERT generated
scores is less effective.

Guided Traversal (GT) for Learned Sparse
Retrieval [Mallia et al., SIGIR22]

Model Retrieval Time
(ms)

Relevance
(MRR@10)

BM25 6 0.18

DeepCT N/A 0.24

DeepImpact 20 0.33

DeepImpact - GT 5 0.33

UniCOIL 38 0.35

SpladeV2 220 0.37

● Keep two top k queues for accumulating
visited documents

● Uses BM25 scores and top k BM25-based
threshold to skip low-scoring documents

● Do not use learned neural scores to guide
skipping

● DeepImpact with guided
traversal is 4x faster than
orginal DeepImpact using
MaxScore (with no BM25
skipping guidance)

Compression of Inverted
Index

Inverted index size estimation
Compression

37

Zipf’s law on term distribution

• Study the relative frequencies of terms.
§ there are a few very frequent
terms and very many rare terms.

• Zipf’s law: The i-th most frequent term has
frequency proportional to 1/i .

• cfi is collection frequency: the number of
occurrences of the term ti
§ cfi ∝ 1/i
§ cfi = c/i where c
is a normalizing constant
log(cfi)+ log(i) = log(c)

Zipf distribution for search query traffic

39

Analyze index size with Zipf distribution

• Number of docs = n = 40M. Number of terms = m = 1M

• A posting record: document ID and its term frequency.

§ No positional information

§ How to estimate the size of inverted index?

§ Assume each posting record:
– 16-byte (4+8+4) records (term, doc, freq).

§ Can you use Zipf to estimate number of postings entries?

Use Zipf to estimate number of postings entries:
Most popular term appears in all n documents.
Second most popular term appears in n/2 documents.
n + n/2 + n/3 + …. + n/m ≈n ln m = 560M entries
560M*16B ≈ 9GB

40

Positional index size

• Need an entry for each occurrence, not just once
per document

• Index size depends on average document size
§ Average web page has <1000 terms
§ SEC filings, PDF files, … easily 100,000 terms

• Rules of thumb for English languages
§ Positional index size factor of 2-4 over non-positional

index
§ Positional index size 35-50% of volume of original text

41

Index Compression

• Motivation: Inverted lists are very large
§ Much higher if n-grams are indexed

• Compression of indexes saves disk and/or memory space
§ Los less compression – no information lost
§ Best compression techniques have good compression ratios

and are easy to decompress
• Basic idea: Common data elements use short codes while

uncommon data elements use longer codes
• Example: coding number sequence: 0, 1, 0, 2,0,3,0

§ Possible binary encoding:

Store 0 with a single 0: 0 01 0 10 0 11 0
How about this binary bit sequence: 0 1 0 10 0 11 0

Can you convert back to decimal numbers: 0, 1, 0, 2, 0, 3, 0?
42

Compression with unambiguous encoding

• Ambiguous encoding – not clear how to decode
when scanning a sequence of bits
§ 0 1 0 10 0 11 0
§ Can mean 0, 1, 0, 2, 0, 3, 0
§ Or another decoding: 0, 2, 2, 0, 3, 0

• unambiguous code:

– “0 1 0 1 0” uniquely gives 0, 1, 0

Another takeaway: Small numbers à use a small number of bits

43

Delta Encoding: encoding differences between
consecutive numbers

• Encode differences between consecutive numbers
§ Word count data is good candidate for compression with

many small numbers and few larger numbers
§ For a sequence of document IDs, delta encoding may also

be effective with an ordered list.

• Example:
• Delta encoding:

• Differences for a high-frequency word are easier to
compress, e.g.,

• Differences for a low-frequency word may be large, and
compression is not easy

44

Compression with Bit-Aligned Codes

• Treat compressed data as a sequence of bits and breaks
between encoded numbers can occur after any bit position
§ Pro: optimization to a bit level
§ Cons: more time cost

• Unary code
§ Encode k by k 1s followed by 0
§ 0 at end makes code unambiguous

• Unary is efficient for small numbers such as
0 and 1, but quickly becomes expensive
§ 1023 can be represented in 10 binary bits,

but requires 1024 bits in unary
• Binary representation is more efficient for

large numbers, but it may be ambiguous 45

Elias-γ Code: Combine binary/unary
representations

• To encode a number k,
decompose k into two parts.
Compute

– kd is number of binary digits,
encoded in unary

– kr is the remainder, encoded in binary

46

Cost Analysis and Elias-δ Code

• Elias-γ code uses no more bits than unary, many
fewer for k > 2
§ 1023 takes 19 bits instead of 1024 bits using unary
§ In general, takes 2⌊log2k⌋+1 bits

• To improve coding of large numbers, use Elias-δ
code
§ Apply Elias-γ recursively to the first component
§ Instead of encoding kd in unary, we encode kd + 1

using Elias-γ
§ Takes approximately 2 log2 log2 k + log2 k bits

47

Example of Elias-δ Code

• Split the first component kd into:

§ encode kdd in unary, kdr in binary, and kr in binary

48

Byte-Aligned Codes

• Variable-length bit encodings can be too complex on
processors that are more effective in handling bytes

• v-byte is a popular byte-aligned code
§ Similar to Unicode UTF-8
§ Shortest v-byte code is 1 byte
§ Numbers are 1 to 4 bytes, with high bit 1 in the last

byte, 0 otherwise

49

V-Byte Encoding

50

V-Byte Encoder and Decoder in C++

51

Compression Example with v-bye after
delta-encoding

• Given invert list with positions:
§ (Doc ID, #occurrence, positions)

• Delta encoding of document numbers and positions:

• Compress using v-byte:

52

Word-Aligned Simple-9 Code (Anh/Moffat 2004)

Can we store more numbers in a byte?
Try to pack several numbers into one word (32 bits)
• each word has 4 control bits and 28 data bits
• Assume each number requires at most 28 bits.
9 cases of data represented by 28 bits:
• - 1 28-bit number - 2 14-bit numbers
• - 3 9-bit numbers (1 bit wasted) - 4 7-bit numbers
• - 5 5-bit numbers (3 bits wasted) - 7 4-bit numbers
• - 9 3-bit numbers (1 bit wasted) - 14 2-bit numbers
• - 28 1-bit numbers
4 Control bits indicate which of these 9 cases is used

53

Word-Aligned Simple-9 Code
Selector-based algorithm with 9 cases:
• do the next 28 numbers fit into one bit each?
• if no: do the next 14 numbers fit into 2 bits each?
• if no: do the next 9 numbers fit into 3 bits each?
• …
Fast decoding: only one if-decision for every 32 bits
Decent compression ratio: can use < 1 byte for small numbers

54

“Simple family” of compression:
Simple9, Simple16 [Zhang et al. 2008], Simple8b [Anh& Moffat 2010]

SIMD-BP128:
Use fast Intel SIMD instructions on 128 bits (16 bytes)
Packs 128 consecutive integers into as few 128-bit words as possible.
The 16-byte selectors are stored in groups of 16 to fully utilize 128-bit
SIMD instruction reads and writes.

Compression Performance [WWW08,
Zhang/Long/Suel]

55

Advancement in Compression for
Inverted Indices

• Variable Byte Methods:
§ VarintGB [Dean 2009]
§ Varint-G8IU [Stepanov et al. 2011] using Intel 128-bit SIMD

instruction : Consecutive numbers are grouped in 8-byte blocks,
preceded by a 1-byte descriptor containing unary-encoded lengths
(in bytes) of the integers in the block. If the next integer cannot fit in a
block, the remaining bytes are unused.

§ StreamVByte [Lemire et al. 2018]
• Word-Aligned Methods:

§ Simple9, Simple16, Simple8b. SIMD-BP128 [Lemire&Boytsov 2015]
§ QMX [Trotman and Lin 2016]

• Top choices in index space/query time [Mallia et al.
ECIR 2019].
§ SIMD-BP128
§ Retrieval source code: PISA https://github.com/pisa-

engine 56

A Comparison of Index Compression Methods

57

50M webpages. 92M terms. 15.9B postingsDifferent doc sorting methods

Compression
method

Index size

Query speed
vs. index size

SIMD-BP12:
good tradeoff in
time/space

Summary

• Inverted index with positional information
• Advanced indexing for fast query processing

§ Skip pointers
§ TAAT or DAAT order for online index traversal
§ MaxScore, WAND, Block MAX WAND for safe earlier

termination in top K ranking
• Zipf distribution for storage estimation
• Compression with delta encoding

§ Bit aligned methods: Elias-γ, Elias-δ
§ Byte aligned methods: V-Byte, Simple-9
§ Latest advancement in compression:

– Good choice in balanced space/time cost: SIMD-
BP128

58

