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Content

• System support and design tradeoffs in online  
query processing
§ Objective: fast response, high throughput, 

and high availability
• Example of online architecture
• Building/running services on the cloud

§ Elastic computing. Software as services

2



Online Data for Search: Inverted Index 
and Auxiliary Structures

• Inverted lists usually stored together in a single file for 
efficiency
§ Term statistics stored at start of inverted lists

• Vocabulary or lexicon
§ Contains a lookup table from index terms to the byte 

offset of the inverted list in the inverted file
§ Either hash table in memory, key-value stores,  or B-tree 

for larger vocabularies
• Document-oriented information

§ E.g. Document quality score, freshness indicator, page 
text content

§ In-memory hashtable, key-value stores
• Other information

§ Collection statistics. Web host information
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Design Consideration of Query 
Processing for Large Datasets

• Estimate I/O cost
• Memory cache for storing frequently accessed 

items
§ Cache size requirement: Is there enough memory?
§ Does program exhibit cache locality?

• Distribute data to multiple machines for parallel 
processing
§ Distribute disk data to p machines evenly
§ Distributed memory data to p machines evenly

Query Processing

RankingQuery match§ Go through all postings of 
queries words

§ Conduct  matching & ranking
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System Challenges for Online Services

• Challenges/requirements for online services: 
§ Each system needs tens or hundreds of subservices, 

running on hundreds or thousands of machines if not more.
§ Low response time, high throughputs
§ Data intensive, need to consider impact of cache, memory, 

disk I/O
§ Huge amount of data, requiring

– Large-scale clusters.
– Incremental scalability.

§ 7´24 availability with fault tolerance: 
– Operation errors, Software bugs, Hardware failures

§ Resource management, QoS for load spikes.
• Careful design planning in architecture and system support 

choices for reliable/scalable online services



Response Time vs Concurrency for 
Search Query Processing

• Backend response time requirement: ~200 ms per request
• Throughput requirement: number of  requests second per 

machine 
§ 100 Requests/second per machines 
§ à 10 machines 1000 requests à86 million requests/day

• Rules of thumb
§ Writes are expensive. Reads are cheap  (Search engine 

does read most of time)
§ Access HDD is expensive and a few are allowed per 

query. Access SSD is better. More are allowed per query
§ Minimize disk I/O by combing small I/O accesses

• Distributed processing/parallel processing is feasible
§ But watch cost of network communication/latency
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Numbers Every 
Engineer 
Should Know 
(Approximately)

• L1 cache reference 0.5 ns
• L2 cache reference 7 ns
• Memory Main memory reference 100 ns
• Read 1 MB sequentially from memory 0.25ms

• HDD Disk seek 8ms while SSD takes 0.1ms for reading 4KB
• Read 1 MB sequentially from disk 10ms-1ms

• Round trip within same datacenter 0.5ms
§ The part of transferring 1K bytes over 1 Gbps network 10μs

• Read 1 MB sequentially from network 10ms
• Send packet CA->Europe->CA 150ms
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Modeling of Response Time for Query 
Processing

Query response time ≈  
+#instruction*CPUCost 

+#MemoryAccess*MemoryCost
+#NetworkOPs  * NetworkCost 

+ #IO-OPs*IOCost

NetworkCost = Startup latency + DataSize/TransferRate

IOCost = Startup latency+ DataSize/TransferRate

Components of time cost

Query
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What do we learn from these numbers?

• 1 cache reference 0.5 ns
• L2 cache reference 7 ns
• Memory Main memory reference 100 ns
• Read 1 MB sequentially from memory 0.25ms

• HDD Disk seek 8ms while SSD takes 0.1ms for 
reading 4KB

• Read 1 MB sequentially from disk 10ms-1ms

• Round trip within same datacenter 0.5ms
§ Transmitting 1K bytes over 1 Gbps network 10μs

• Read 1 MB sequentially from network 10ms
• Send packet CA->Europe->CA 150ms

Bad for each query
Poor L1/L2 locality
for compute-intensive core

Scan 1000MB list

Access disk 10,000 times

Remote hash 
table lookup
for 5,000 times
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Parallelism Management in a Cluster of 
Machines for Search

• Basic steps for parallel processing
§ All queries sent to a coordination machine
§ The coordinator then sends messages to many index 

servers
§ Each index server does some portion of the query 

processing
§ The coordinator organizes the results and returns 

them to the user
• Two main approaches

§ Document distribution
– by far the most popular

§ Term distribution

Index serverIndex serverIndex serverIndex server

coordinator
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Document-based distribution

• Document distribution
§ Each index server acts as a search engine for a small 

fraction of the total collection
§ A coordinator sends a copy of the query to each of 

the index servers, each of which returns the top-k 
results

§ Results are merged into a single ranked list by the 
coordinator

Index serverIndex serverIndex serverIndex server

Document
s

Index serverIndex serverIndex serverIndex server

Query
Offline Online
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Term-based distribution

• Single index is built for the entire cluster 
• Each posting list of a term is assigned to one index 

server
• During query processing,

§ One of the index servers is chosen to process the query
§ Usually the one holding the longest inverted list
§ Other index servers send information to that server
§ Final results sent to director

Index serverIndex serverIndex serverIndex server

Term posting lists 

Index serverIndex serverIndex serverIndex server

Query
Offline Online
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Layout of  inverted index impacted by online 
algorithms

• Early termination of faster query processing
§ Ignore lower priority documents at end of lists 
§ Fast (but unsafe) optimization  

• Ordering of  inverted posting lists 
§ Impact sorted index: high score documents first
§ Document sorted index:  increasing order of doc IDs 
§ How to combine the advantages?

Term Sort by IDs Sort by IDs Sort by IDs

Sort layers by impact, and then sort documents by IDs within each group

Impact layer 1 Impact layer 2 Impact layer 3
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Exercise: Design options for fast query 
processing

Assume 3 word
queries

#I/O Operations Time cost Design 
options/strategies

Query word 
intersection of 
postings

3 random I/O 
operations to read 
3 posting lists
List length upto 
100MB

1 or few seconds

Rank top 1000 
results

1000 random I/O 
operations to 
access features

1000bytes/doc

1000*HHD
access=10 
seconds
1000*SSD =100ms

Generate 10 
snippets 

10 random I/O 
operations to read 
docs

Each doc -2KB

10 *HHD =100ms

10*SSD=1ms
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Exercise: Strategies for fast query processing

Assume 3 word
queries

#I/O Operations Time cost Design 
options/strategies

Query word 
intersection of 
postings

3 random I/O 
operations to read 
3 posting lists.
Posting list length 
upto 100MB

1 or few seconds • Cache postings

• Place the entire 
index in memory

Rank top 1000 
results

1000 random I/O 
operations to 
access features

1000bytes/doc

1000*HHD
access=10 
seconds
1000*SSD =100ms

• Cache features, 
limited  locality

• Place all in 
memory

• Use SSD

Generate 10 
snippets 

10 random I/O 
operations to read 
docs

Each doc -2KB

10 *HHD =100ms

10*SSD=1ms

Use SSD
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Exercise: Data distribution for parallel computing
Assume p 
machines for each 
service

Key datasets and sizes Method/design options
How to assign data to p 
machines?

Query match

n documents
m terms

Posting lists  of terms

Space cost  O(n ln m)
2KB/document
100M docs à 200GB

Rank top K results Features of documents

100B/document
100M docsà10GB

Generate 10 snippets Document text

4KB/document
100Mà400GB
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Exercise: Data distribution for parallel computing
Assume p 
machines for each 
service

Key datasets and 
sizes

Design options

Query match Posting lists  of 
terms

2KB/document
100M docs à
200GB

Document-oriented: Divide/map 
documents into p machines

Term oriented: Divide  terms into p 
machines

Rank top K results Features of 
documents
100B/document
100M docsà10GB

Distribute feature vectors by 
documents to p machines?
Or maybe just use one machine

Generate 10 snippets Document text

4KB/document
100Mà400GB

Distribute documents to p machines
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Ask.com Search Engine

Neptune 
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Client queriesTraffic load balancer

CacheCacheCache

FrontendFrontendFrontend

Aggregator
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Retriever
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Document
Abstract
Document
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RankingRankingRankingRankingRankingRank 
Server
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Cache
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Multi-tier aggregation for query stream 
processing

Match

Aggregator

Aggregator

Aggregator

Match

Aggregation 
switchRack 

switch
Cluster architecture

Aggregator controls
degree of fan-out 
parallelism
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Online Architecture:
Frontends and Cache

20

Zipf distribution
of popular queries

• Front-ends 
§ Receive web queries 

§ Spawn a thread to handle a 

request

– Use cache if possible

– Otherwise call index matching/ranking

§ Then present results to clients 

(XML).

• XML cache :
§ Save previously-answered search 

results (dynamic Web content).

§ Use these results to answer new 

queries. 

• Result cache
§ Contain all matched URLs for a 

query.

– It does not contain the description of 

these URLs

Clustering
Cache

Client 
queriesFrontend

Aggregator

Tier 1
Retriever

RankingRankingRankingRanking

XML
Cache

Tier 2
Retriever
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Online Architecture: Index Matching 
and Ranking

• Snippet aggregators
§ Combine descriptions of URLs

• Dynamic snippet servers
§ Extract proper description for a given URL.

Clustering

Snippet

Frontend

Client 
queriesFrontendFrontend

Aggregator

Snippet

RankingRankingRanking

PageInfoAggregator

• Retriever aggregators  
(Index match coordinator)
• Gather results from online 

database partitions.
• Index retrievers

• Match pages relevant to 
query keywords

• Ranking server
• Classify pages into 

topics & Rank pages

Index 
retriever

Index 
retriever
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Distributed Coordination on Service 
Availability

• Making a remote service call is possible, but how to 
coordinate information sharing?
§ How does a machine know there are multiple copies of 

the same remote service available?
§ How does a machine know a remote service is down?

Clustering
Cache

Client 
queriesFrontend

Aggregator

Tier 1
Retriever

RankingRankingRankingRanking

XML
Cache

Tier 2
Retriever
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The Neptune Clustering Middleware

• Neptune: Clustering middleware for aggregating and 
replicating application modules with persistent data.

• A simple and flexible programming model to shield 
complexity of service discovery, load scheduling, 
consistency, and failover management

• www.cs.ucsb.edu/projects/neptune for  code, papers, 
documents.
§ K. Shen, et. al,  OSDI 2002. PPoPP 2003.

Programming challenges/requirements for online services: 
Data intensive, requiring large-scale clusters.
Incremental scalability. 7´24 availability.
Resource management, QoS for load spikes. 

Lack of programming support for reliable/scalable online network 
services and applications.

http://www.cs.ucsb.edu/projects/neptune
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Example: a Neptune Clustered Service: 
Index match service

Snippet 
generation

Index 
matchFront-end

Web Servers

Ranking
Local-
area

Network

HTTP 
server

Neptune Client 

Neptune 
server

Client 

Neptune 
server

App
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Neptune architecture for cluster-based 
services

• Symmetric and decentralized:
§ Each node can host multiple services, acting as a service 

provider (Server)
§ Each node can also subscribe internal services from other 

nodes, acting as a consumer (Client)
– Advantage: Support multi-tier or nested service architecture

• Neptune components at each node: 
§ Application service handling subsystem.
§ Load balancing subsystem.
§ Service availability subsystem.

Client requests Service provider
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Inside a Neptune Server Node
(Symmetry and Decentralization)

N
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ork to the rest of the cluster

Service
Access Point

Service
Providers

Service Runtime

Service Handling  
Module

Service
Availability
Directory

Service
Availability
Publishing

Service
Availability
Subsystem

Polling
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Load
Index Server

Service
Load-balancing
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Service
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Availability and Load Balancing

• Availability subsystem:
§ Announcement once per second through IP 

multicast;
§ Availability info kept as soft state, expiring in 5 

seconds;
§ Service availability directory kept in shared-

memory for efficient local lookup.
• Load-balancing subsystem: 

§ Challenging: medium/fine-grained requests. 
§ Random polling with sampling. 
§ Discarding slow-responding polls



Online/Offline Processing on the Cloud
• Building an online/offline service on the cloud can be cost-effective 

§ Many services  run on AWS, Microsoft Azure, Google Cloud
§ Netflix  is built with AWS and runs on AWS

• AWS (Amazon Web Services) is a programmable collection of remote 
computing services as building blocks for development and deployment:
§ Elastic Compute Cloud (EC2): virtual private servers using Xen.
§ SimpleDB:    query processing with core functionality of a database
§ DynamoDB – key-value stores
§ Elastic search – document search with inverted index
§ AElastic MapReduce supports Map Reduce programming  with Hadoop
§ Much more

2
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Amazon Elastic Compute Cloud (EC2)

• An EC2 instance appears as physical HW,  provides users full 
control over nearly entire sw stack, from the kernel upwards

• On-Demand: Pay for capacity without long-term commitment

3
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Storage Options for EC2

3
1

1. Amazon EBS
Essentially hard disks for the majority of use cases with persistent and 
block-level storage (e.g. useful for a database or file system)

. 

2. Instance Store
Inexpensive 

temporary 
storage. This  
doesn't persist if 
the instance is 
stopped or 
terminated.  
3. Amazon S3

An internet 
storage with a 
simple web 
service interface  
for storage and 
backup.



Self-Scaling  Online Applications with AWS

www www www

Load monitor
To EC2 

provisioning 
system

Load-balancing DNS frontend

S3 backing store for 
common data vault

End-user 
requests

worker
worker

worker
worker

worker

Examples of building blocks for  online query processing 



Example: Online photo processing service

• Photo operation
§ Red eye reduction/cropping/customization/re-coloring/teeth 

whitening, etc

• Architecture design with AWS 
§ Web server receive request
§ Put request message in the queue
§ Pictures stored in S3
§ Multiple EC2 instances run photo processing
§ Put back in the queue
§ Return

3
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Self-Scaling Long-Job Processing with 
AWS  

Hadoop 
master

Job launcher
To EC2 

provisioning 
system

Work queue

S3 output bucket

(many worker 
nodes)

S3 input bucket

Data collection 
processes

Front-end nodes

Example building blocks for handling long jobs 
such as offline data processing using Hadoop



Case study: 
Grep the web

• Crawling the web
• Large web crawl data 

is stored in S3
• Users can submit 

regular expression to 
the “search” program 
– “Grep the web”
§ uses Hadoop to 

search for data
§ Puts your results 

in an output bucket 
and notifies you 
when it’s ready

3
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AWS Lambda
• Lambda is a compute 

service that runs 
custom function code 
and return response to 
events.

• Serverless event-
driven microservices:
No need   to provision 
or manage servers  

• Most AWS services 
generate events for 
communicating each 
other. They are event 
sources for Lambda.

3
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AWS Lambda: Event-driven Architecture
• AWS Lambda can be used for serverless event-driven 

microservices such as e-commerce applications

3
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Considerations in choosing a web service 

• AWS has over 100 services as building blocks. What to 
consider?

• Functionality: operations supported.
• Service limit:

§ Number of provisioned resources available
§ Access latency: typical response time
§ Throughput: # concurrent Lambda executions, EFS 

read/write speed Gb/s)
§ Payload size (Queue message size, Key-value DB item size)
§ Storage requirement or serverless

• Cost of services. Autoscaling vs. manual scaling
• Availability degree, redundancy options, monitoring tools
• Supported programming languages
• Easy degree to integration with other services
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Portability of  design and code in using 
cloud services

• Some services can be used without doing any design or 
code updates. But some requires significant changes  

AWS
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Takeaways for Online Query Processing

• A complex system can use tens or  hundreds of services 
running on  thousands of machines

• Performance consideration in algorithm/architecture  
§ Data scalability:  what happens data size increases by 100x 

Also software/machine/human scalability
§ Interaction of response time and throughput with high traffic

• Strategies for faster performance
§ Caching in memory hierarchy
§ Parallel processing of query matching and ranking

§ Different distribution: Documents vs terms  
§ Building/running  services on the cloud (e.g. AWS) is 

popular
§ Elastic computing
§ Software as a service (SaaS)


