
System Support and Design Issues in
Online Query Processing

•Tao Yang 293S, 2022

1

Content

• System support and design tradeoffs in online
query processing
§ Objective: fast response, high throughput,

and high availability
• Example of online architecture
• Building/running services on the cloud

§ Elastic computing. Software as services

2

Online Data for Search: Inverted Index
and Auxiliary Structures

• Inverted lists usually stored together in a single file for
efficiency
§ Term statistics stored at start of inverted lists

• Vocabulary or lexicon
§ Contains a lookup table from index terms to the byte

offset of the inverted list in the inverted file
§ Either hash table in memory, key-value stores, or B-tree

for larger vocabularies
• Document-oriented information

§ E.g. Document quality score, freshness indicator, page
text content

§ In-memory hashtable, key-value stores
• Other information

§ Collection statistics. Web host information
3

Design Consideration of Query
Processing for Large Datasets

• Estimate I/O cost
• Memory cache for storing frequently accessed

items
§ Cache size requirement: Is there enough memory?
§ Does program exhibit cache locality?

• Distribute data to multiple machines for parallel
processing
§ Distribute disk data to p machines evenly
§ Distributed memory data to p machines evenly

Query Processing

RankingQuery match§ Go through all postings of
queries words

§ Conduct matching & ranking

4

11/8/22 5

System Challenges for Online Services

• Challenges/requirements for online services:
§ Each system needs tens or hundreds of subservices,

running on hundreds or thousands of machines if not more.
§ Low response time, high throughputs
§ Data intensive, need to consider impact of cache, memory,

disk I/O
§ Huge amount of data, requiring

– Large-scale clusters.
– Incremental scalability.

§ 7´24 availability with fault tolerance:
– Operation errors, Software bugs, Hardware failures

§ Resource management, QoS for load spikes.
• Careful design planning in architecture and system support

choices for reliable/scalable online services

Response Time vs Concurrency for
Search Query Processing

• Backend response time requirement: ~200 ms per request
• Throughput requirement: number of requests second per

machine
§ 100 Requests/second per machines
§ à 10 machines 1000 requests à86 million requests/day

• Rules of thumb
§ Writes are expensive. Reads are cheap (Search engine

does read most of time)
§ Access HDD is expensive and a few are allowed per

query. Access SSD is better. More are allowed per query
§ Minimize disk I/O by combing small I/O accesses

• Distributed processing/parallel processing is feasible
§ But watch cost of network communication/latency

6

Numbers Every
Engineer
Should Know
(Approximately)

• L1 cache reference 0.5 ns
• L2 cache reference 7 ns
• Memory Main memory reference 100 ns
• Read 1 MB sequentially from memory 0.25ms

• HDD Disk seek 8ms while SSD takes 0.1ms for reading 4KB
• Read 1 MB sequentially from disk 10ms-1ms

• Round trip within same datacenter 0.5ms
§ The part of transferring 1K bytes over 1 Gbps network 10μs

• Read 1 MB sequentially from network 10ms
• Send packet CA->Europe->CA 150ms

CPU

Memory

Disk

Network

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Remote
device

Caching

ms=10-3s
μs=10-6s
ns=10-9s

Jeff Dean

7

Modeling of Response Time for Query
Processing

Query response time ≈
+#instruction*CPUCost

+#MemoryAccess*MemoryCost
+#NetworkOPs * NetworkCost

+ #IO-OPs*IOCost

NetworkCost = Startup latency + DataSize/TransferRate

IOCost = Startup latency+ DataSize/TransferRate

Components of time cost

Query

8

What do we learn from these numbers?

• 1 cache reference 0.5 ns
• L2 cache reference 7 ns
• Memory Main memory reference 100 ns
• Read 1 MB sequentially from memory 0.25ms

• HDD Disk seek 8ms while SSD takes 0.1ms for
reading 4KB

• Read 1 MB sequentially from disk 10ms-1ms

• Round trip within same datacenter 0.5ms
§ Transmitting 1K bytes over 1 Gbps network 10μs

• Read 1 MB sequentially from network 10ms
• Send packet CA->Europe->CA 150ms

Bad for each query
Poor L1/L2 locality
for compute-intensive core

Scan 1000MB list

Access disk 10,000 times

Remote hash
table lookup
for 5,000 times

9

Parallelism Management in a Cluster of
Machines for Search

• Basic steps for parallel processing
§ All queries sent to a coordination machine
§ The coordinator then sends messages to many index

servers
§ Each index server does some portion of the query

processing
§ The coordinator organizes the results and returns

them to the user
• Two main approaches

§ Document distribution
– by far the most popular

§ Term distribution

Index serverIndex serverIndex serverIndex server

coordinator

10

Document-based distribution

• Document distribution
§ Each index server acts as a search engine for a small

fraction of the total collection
§ A coordinator sends a copy of the query to each of

the index servers, each of which returns the top-k
results

§ Results are merged into a single ranked list by the
coordinator

Index serverIndex serverIndex serverIndex server

Document
s

Index serverIndex serverIndex serverIndex server

Query
Offline Online

11

Term-based distribution

• Single index is built for the entire cluster
• Each posting list of a term is assigned to one index

server
• During query processing,

§ One of the index servers is chosen to process the query
§ Usually the one holding the longest inverted list
§ Other index servers send information to that server
§ Final results sent to director

Index serverIndex serverIndex serverIndex server

Term posting lists

Index serverIndex serverIndex serverIndex server

Query
Offline Online

12

Layout of inverted index impacted by online
algorithms

• Early termination of faster query processing
§ Ignore lower priority documents at end of lists
§ Fast (but unsafe) optimization

• Ordering of inverted posting lists
§ Impact sorted index: high score documents first
§ Document sorted index: increasing order of doc IDs
§ How to combine the advantages?

Term Sort by IDs Sort by IDs Sort by IDs

Sort layers by impact, and then sort documents by IDs within each group

Impact layer 1 Impact layer 2 Impact layer 3
13

Exercise: Design options for fast query
processing

Assume 3 word
queries

#I/O Operations Time cost Design
options/strategies

Query word
intersection of
postings

3 random I/O
operations to read
3 posting lists
List length upto
100MB

1 or few seconds

Rank top 1000
results

1000 random I/O
operations to
access features

1000bytes/doc

1000*HHD
access=10
seconds
1000*SSD =100ms

Generate 10
snippets

10 random I/O
operations to read
docs

Each doc -2KB

10 *HHD =100ms

10*SSD=1ms

14

Exercise: Strategies for fast query processing

Assume 3 word
queries

#I/O Operations Time cost Design
options/strategies

Query word
intersection of
postings

3 random I/O
operations to read
3 posting lists.
Posting list length
upto 100MB

1 or few seconds • Cache postings

• Place the entire
index in memory

Rank top 1000
results

1000 random I/O
operations to
access features

1000bytes/doc

1000*HHD
access=10
seconds
1000*SSD =100ms

• Cache features,
limited locality

• Place all in
memory

• Use SSD

Generate 10
snippets

10 random I/O
operations to read
docs

Each doc -2KB

10 *HHD =100ms

10*SSD=1ms

Use SSD

15

Exercise: Data distribution for parallel computing
Assume p
machines for each
service

Key datasets and sizes Method/design options
How to assign data to p
machines?

Query match

n documents
m terms

Posting lists of terms

Space cost O(n ln m)
2KB/document
100M docs à 200GB

Rank top K results Features of documents

100B/document
100M docsà10GB

Generate 10 snippets Document text

4KB/document
100Mà400GB

16

Exercise: Data distribution for parallel computing
Assume p
machines for each
service

Key datasets and
sizes

Design options

Query match Posting lists of
terms

2KB/document
100M docs à
200GB

Document-oriented: Divide/map
documents into p machines

Term oriented: Divide terms into p
machines

Rank top K results Features of
documents
100B/document
100M docsà10GB

Distribute feature vectors by
documents to p machines?
Or maybe just use one machine

Generate 10 snippets Document text

4KB/document
100Mà400GB

Distribute documents to p machines

17

11/8/22 18

Ask.com Search Engine

Neptune

Document
Abstract

Cache

Frontend

Client queriesTraffic load balancer

CacheCacheCache

FrontendFrontendFrontend

Aggregator

Tier 1
Retriever

Document
Abstract
Document
Abstract
Document
description

RankingRankingRankingRankingRankingRank
Server

Click/logging

Suggestion
XML
Cache

PageInfoAggregator

PageInfo (HID)

XML
Cache

XML
Cache

Tier 2
Retriever

Inverted index

Key-value store

Key-value store

Multi-tier aggregation for query stream
processing

Match

Aggregator

Aggregator

Aggregator

Match

Aggregation
switchRack

switch
Cluster architecture

Aggregator controls
degree of fan-out
parallelism

19

Online Architecture:
Frontends and Cache

20

Zipf distribution
of popular queries

• Front-ends
§ Receive web queries

§ Spawn a thread to handle a

request

– Use cache if possible

– Otherwise call index matching/ranking

§ Then present results to clients

(XML).

• XML cache :
§ Save previously-answered search

results (dynamic Web content).

§ Use these results to answer new

queries.

• Result cache
§ Contain all matched URLs for a

query.

– It does not contain the description of

these URLs

Clustering
Cache

Client
queriesFrontend

Aggregator

Tier 1
Retriever

RankingRankingRankingRanking

XML
Cache

Tier 2
Retriever

21

Online Architecture: Index Matching
and Ranking

• Snippet aggregators
§ Combine descriptions of URLs

• Dynamic snippet servers
§ Extract proper description for a given URL.

Clustering

Snippet

Frontend

Client
queriesFrontendFrontend

Aggregator

Snippet

RankingRankingRanking

PageInfoAggregator

• Retriever aggregators
(Index match coordinator)
• Gather results from online

database partitions.
• Index retrievers

• Match pages relevant to
query keywords

• Ranking server
• Classify pages into

topics & Rank pages

Index
retriever

Index
retriever

11/8/22 22

Distributed Coordination on Service
Availability

• Making a remote service call is possible, but how to
coordinate information sharing?
§ How does a machine know there are multiple copies of

the same remote service available?
§ How does a machine know a remote service is down?

Clustering
Cache

Client
queriesFrontend

Aggregator

Tier 1
Retriever

RankingRankingRankingRanking

XML
Cache

Tier 2
Retriever

23

The Neptune Clustering Middleware

• Neptune: Clustering middleware for aggregating and
replicating application modules with persistent data.

• A simple and flexible programming model to shield
complexity of service discovery, load scheduling,
consistency, and failover management

• www.cs.ucsb.edu/projects/neptune for code, papers,
documents.
§ K. Shen, et. al, OSDI 2002. PPoPP 2003.

Programming challenges/requirements for online services:
Data intensive, requiring large-scale clusters.
Incremental scalability. 7´24 availability.
Resource management, QoS for load spikes.

Lack of programming support for reliable/scalable online network
services and applications.

http://www.cs.ucsb.edu/projects/neptune

11/8/22 24

Example: a Neptune Clustered Service:
Index match service

Snippet
generation

Index
matchFront-end

Web Servers

Ranking
Local-
area

Network

HTTP
server

Neptune Client

Neptune
server

Client

Neptune
server

App

11/8/22 25

Neptune architecture for cluster-based
services

• Symmetric and decentralized:
§ Each node can host multiple services, acting as a service

provider (Server)
§ Each node can also subscribe internal services from other

nodes, acting as a consumer (Client)
– Advantage: Support multi-tier or nested service architecture

• Neptune components at each node:
§ Application service handling subsystem.
§ Load balancing subsystem.
§ Service availability subsystem.

Client requests Service provider

11/8/22 26

Inside a Neptune Server Node
(Symmetry and Decentralization)

N
etw

ork to the rest of the cluster

Service
Access Point

Service
Providers

Service Runtime

Service Handling
Module

Service
Availability
Directory

Service
Availability
Publishing

Service
Availability
Subsystem

Polling
Agent

Load
Index Server

Service
Load-balancing

Subsystem

Service
Consumers

11/8/22 27

Availability and Load Balancing

• Availability subsystem:
§ Announcement once per second through IP

multicast;
§ Availability info kept as soft state, expiring in 5

seconds;
§ Service availability directory kept in shared-

memory for efficient local lookup.
• Load-balancing subsystem:

§ Challenging: medium/fine-grained requests.
§ Random polling with sampling.
§ Discarding slow-responding polls

Online/Offline Processing on the Cloud
• Building an online/offline service on the cloud can be cost-effective

§ Many services run on AWS, Microsoft Azure, Google Cloud
§ Netflix is built with AWS and runs on AWS

• AWS (Amazon Web Services) is a programmable collection of remote
computing services as building blocks for development and deployment:
§ Elastic Compute Cloud (EC2): virtual private servers using Xen.
§ SimpleDB: query processing with core functionality of a database
§ DynamoDB – key-value stores
§ Elastic search – document search with inverted index
§ AElastic MapReduce supports Map Reduce programming with Hadoop
§ Much more

2
9

Amazon Elastic Compute Cloud (EC2)

• An EC2 instance appears as physical HW, provides users full
control over nearly entire sw stack, from the kernel upwards

• On-Demand: Pay for capacity without long-term commitment

3
0

Storage Options for EC2

3
1

1. Amazon EBS
Essentially hard disks for the majority of use cases with persistent and
block-level storage (e.g. useful for a database or file system)

.

2. Instance Store
Inexpensive

temporary
storage. This
doesn't persist if
the instance is
stopped or
terminated.
3. Amazon S3

An internet
storage with a
simple web
service interface
for storage and
backup.

Self-Scaling Online Applications with AWS

www www www

Load monitor
To EC2

provisioning
system

Load-balancing DNS frontend

S3 backing store for
common data vault

End-user
requests

worker
worker

worker
worker

worker

Examples of building blocks for online query processing

Example: Online photo processing service

• Photo operation
§ Red eye reduction/cropping/customization/re-coloring/teeth

whitening, etc

• Architecture design with AWS
§ Web server receive request
§ Put request message in the queue
§ Pictures stored in S3
§ Multiple EC2 instances run photo processing
§ Put back in the queue
§ Return

3
3

Self-Scaling Long-Job Processing with
AWS

Hadoop
master

Job launcher
To EC2

provisioning
system

Work queue

S3 output bucket

(many worker
nodes)

S3 input bucket

Data collection
processes

Front-end nodes

Example building blocks for handling long jobs
such as offline data processing using Hadoop

Case study:
Grep the web

• Crawling the web
• Large web crawl data

is stored in S3
• Users can submit

regular expression to
the “search” program
– “Grep the web”
§ uses Hadoop to

search for data
§ Puts your results

in an output bucket
and notifies you
when it’s ready

3
5

AWS Lambda
• Lambda is a compute

service that runs
custom function code
and return response to
events.

• Serverless event-
driven microservices:
No need to provision
or manage servers

• Most AWS services
generate events for
communicating each
other. They are event
sources for Lambda.

3
6

AWS Lambda: Event-driven Architecture
• AWS Lambda can be used for serverless event-driven

microservices such as e-commerce applications

3
7

11/8/22

38

Considerations in choosing a web service

• AWS has over 100 services as building blocks. What to
consider?

• Functionality: operations supported.
• Service limit:

§ Number of provisioned resources available
§ Access latency: typical response time
§ Throughput: # concurrent Lambda executions, EFS

read/write speed Gb/s)
§ Payload size (Queue message size, Key-value DB item size)
§ Storage requirement or serverless

• Cost of services. Autoscaling vs. manual scaling
• Availability degree, redundancy options, monitoring tools
• Supported programming languages
• Easy degree to integration with other services

11/8/22

39

Portability of design and code in using
cloud services

• Some services can be used without doing any design or
code updates. But some requires significant changes

AWS

11/8/22

40

Takeaways for Online Query Processing

• A complex system can use tens or hundreds of services
running on thousands of machines

• Performance consideration in algorithm/architecture
§ Data scalability: what happens data size increases by 100x

Also software/machine/human scalability
§ Interaction of response time and throughput with high traffic

• Strategies for faster performance
§ Caching in memory hierarchy
§ Parallel processing of query matching and ranking

§ Different distribution: Documents vs terms
§ Building/running services on the cloud (e.g. AWS) is

popular
§ Elastic computing
§ Software as a service (SaaS)

