Ranking and Learning

293S UCSB, Tao Yang, 2023 Partially based on Manning, Raghavan, and Schütze's text book.

Table of Content

- Weighted scoring for ranking
 - Ranking Features
- Learning to rank:
 - A simple example
 - Generalization
 - Type of learning-to-rank methods
- Learning to ranking as classification
 - Iearning-to-rank strategies
- Training process and evaluation

Aspects of Ranking Marching User Intent

Relevance

- Documents need to be relevant to a user query.
- Authoritativeness.
 - High quality content is normally preferred since users rely on trustful information to learn or make a decision.
- Freshness.
 - Latest information is desired for time-sensitive queries.
- Preference
 - Personal or geographical preference can impact the choices

Weighted Scoring

- Scoring with weighted features
 - Consider each document/query is a vector of features
 - Dot-product similarity of query and document vectors
- Example:
 - A simple weighted scoring method: use a linear combination of subscores:
 - E.g.,

Score = 0.6*< <u>Title score></u> + 0.3*<<u>Abstract score></u> + 0.1*<<u>Body score</u>>

Example with binary subscores

Query term "ucsb admission" appears in title, and "ucsb" appears in body. Document score: $(0.6 \cdot 2) + (0.1 \cdot 1) = 1.3$.

Simple Model of Ranking with Similarity [Croft, Metzler, Strohman's textbook slides]

Document features are topical or quality-based

Simple Model of Ranking with Similarity [Croft, Metzler, Strohman's textbook slides]

Aspects of Ranking Marching User Intent

Ranking Features used in Web Search

- Modern systems especially on the Web use a great number of features:
 - Major web search engines use "hundreds" of such features – and they keep refinement
 - Text features: Query word frequency, Highlighted on page.
 - Document features: URL length, URL contains "~", Page length, Page freshness

- Categories of ranking signals
 - Query-dependent
 - Query-independent

Ranking Signals: Query Dependent

- Text score
 - Document text.
 - -Text frequency: TFIDF, BM25
 - -Text proxmity:
 - Closeness of keywords that appear in a document
 - Sum of 1/distance²(w₁,w₂) for all keyword pairs
 - Query word span window
 - Anchor text
 - URL text
 - http://www.microsoft.com/en-us/download/

Ranking Signals: Query Dependent

- Historical queries that yield document clicks
 - www.marriott.com for mariott, marriot
- Query classification and preference
 - Local, commerical products, news, image, video
 - Geo-location
- Link citation from documents that match the same query
 - # citations from documents relevant to a query
 - Hub authority analysis

Ranking Signals: Query independent

- Document specific:
 - Link analysis: Page Rank
 - #incoming links to a URL
 - Quality of documents:
 - Spam analysis
 - Page classification and properties
 - Geo location
 - Country/language classification
 - Homepage/personal page classification
 - Freshness

Site specific

- Site quality:
 - Well-known sites
- Site classification: e.g. Country classification

Table of Content

- Weighted scoring for ranking
 - Ranking Features
- Learning to rank:
 - A simple example
 - Generalization
 - Type of learning-to-rank methods
- Learning to ranking as classification
 - Iearning-to-rank strategies
 - Convert ranking as SVM based classification
- Training process and evaluation

Machine learning for ranking

- How do we combine these signals into a good ranker?
 - How to derive weights if linear combination is used
 - What are other machine-learned models?
- Learning to rank
 - Learning from examples (called training data)

Learning weights: Methodology

- •Given a set of training examples,
 - each contains (query q, document d, relevance score r).
 - r is relevance judgment for d on q
 - Simplest scheme
 - relevant (1) or nonrelevant (0)
 - More sophisticated: graded relevance judgments
 - 1 (bad), 2 (Fair), 3 (Good), 4 (Excellent), 5 (Perfect)

 Learn weights from these examples, so that the learned scores approximate the relevance judgments in the training examples

Simple example of learning-to-rank

- Each doc has two zones: <u>Title</u> and <u>Body</u>
- For a chosen $w \in [0,1]$, score for doc d on query q

$$score(d,q) = w \cdot s_T(d,q) + (1-w)s_B(d,q)$$

where:

- $s_T(d, q) \in \{0, 1\}$ is a Boolean denoting whether q matches the <u>Title</u> and
- $s_B(d, q) \in \{0, 1\}$ is a Boolean denoting whether q matches the <u>Body</u>

Examples of Training Data

Example	DocID	Query	s_T	s_B	Judgment
Φ_1	37	linux	1	1	Relevant
Φ_2	37	penguin	0	1	Non-relevant
Φ_3	238	system	0	1	Relevant
Φ_4	238	penguin	0	0	Non-relevant
Φ_5	1741	kernel	1	1	Relevant
Φ_6	2094	driver	0	1	Relevant
Φ_7	3191	driver	1	0	Non-relevant

From these 7 examples, learn the best value of w.

- For each example Φ_t we can compute the score based or score(d_t, q_t) = w ⋅ s_T(d_t, q_t) + (1 − w)s_B(d_t, q_t).
- We quantify Relevant as 1 and Non-relevant as 0
- Would like the choice of w to be such that the computed scores are as close to these 1/0 judgments as possible
 - Denote by $r(d_t, q_t)$ the judgment for training instance Φ_t
- Then minimize total squared regression error $\sum_{\Phi_t} (r(d_t, q_t) - score(d_t, q_t))^2$

Optimize the selection of weights

- There are 4 kinds of training examples
- Thus only four possible values for score
 - And only 8 possible values for error (relevant vs irrelevant)
- Let n_{01r} be the number of training examples for which *title score* 0, *body score* 1, judgment = *Relevant*.
- Similarly define n_{00r} , n_{10r} , n_{11r} , n_{00i} , n_{01i} , n_{10i} , n_{11i}

Error:

$$[1 - (1 - \omega)]^2 n_{01r} + [0 - (1 - \omega)]^2 n_{01i}$$

Add up contributions from various cases to get total error

 $(n_{01r} + n_{10i})w^2 + (n_{10r} + n_{01i})(1 - w)^2 + n_{00r} + n_{11i}$

• Now differentiate with respect to *w* to get optimal value of *w* as:

$$\frac{n_{10r} + n_{01i}}{n_{10r} + n_{10i} + n_{01r} + n_{01i}}.$$

Learning-based Web Search

- Given features $x_1, x_2, ..., x_M$ for each document, learn a ranking function $f(x_1, x_2, ..., x_m)$ that minimizes the loss function *L* under a query
- f*=min L(f(x₁,x₂,...,x_M), GroundTruth)
- Some related issues
 - The functional space
 - linear/non-linear? continuous? Derivative?
 - The search strategy
 - The loss function

Table of Content

- Weighted scoring for ranking
 - Ranking Features
- Learning to rank:
 - A simple example
 - Generalization
- Learning to ranking as classification
 - Convert ranking as SVM based classification
- Training process and evaluation

Relationship to Classification Problem: An example

- Collect a training corpus of (q, d, r) triples
 - Relevance r is still binary for now
 - Document is represented by a feature vector
 - $\mathbf{x} = (\alpha, \omega)$ α is cosine similarity, ω is minimum query window size
 - ω is the shortest text span that includes all query words (Query term proximity in the document)
- Train a machine learning model to predict the class r of a document-query pair

example	docID	query	cosine score	ω	judgment
Φ_1	37	linux operating system	0.032	3	relevant
Φ_2	37	penguin logo	0.02	4	nonrelevant
Φ_3	238	operating system	0.043	2	relevant
Φ_4	238	runtime environment	0.004	2	nonrelevant
Φ_5	1741	kernel layer	0.022	3	relevant
Φ_6	2094	device driver	0.03	2	relevant
Φ_7	3191	device driver	0.027	5	nonrelevant

Window-based text span score

- Query text span in a document is the minimum length of word interval that covers all query words
- Example document:

Fred's tropical fish shop is the best place to find tropical fish at low price

- Span for query "tropical fish": 2
- Span for query "Fred's fish shop": 4

Using classification for deciding relevance

Summary: Ranking vs. Classification

- Classification
 - Well studied: Bayesian, Neural network, Decision tree, SVM, Boosting, ...
 - Training data: points: Positive: x1, x2, x3, Negative: x4, x5

Ranking

- Two ways to transform ranking problem to classification:
 - Assign a document to a class (relevant/nonrelevant)

Or assign to multiple classes such as perfect, excellent, good, fair, bad)

2. Classify the relationship of two documents in answering a query

Classification Algorithms in Machine Learning

- Bayes
- Decision trees
- SVM (Supporting Vector Machines)
- Learning ensembles with many classifiers
 - Random Forest
 - Boosting regression trees
- Neural networks
 - Simple linear classifier (perceptron)
 - Deep multi-layer neural networks

- E.g. Convolution neural network

Training learns parameters involved in a network. A popular learning algorithm: SGD

Given a feature vector $\mathbf{x}=(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$

$$o(x_1,...,x_n) = \begin{cases} 1 \text{ if } w_0 + w_1 x_1 + ... + w_n x_n > 0\\ -1 \text{ otherwise} \end{cases}$$

Sometimes we will use simpler vector notation :

n+1 weight parameters are learned during training

UMN CS 5751 Machine Learning

Strategies for "learning to rank"

- Point-wise learning
 - Given a query-document pair, predict a score (e.g. relevancy score)
 - Map f(x) to one of relevance vaules 0,1,2...
- Pair-wise learning
 - the input is a pair of results for a query, and the classification target is the relevance ordering relationship between them
 - Correct Order: f(x₁) >f (x₂) if x₁ is more relevant than x₂
 - Otherwise incorrect.
- List-wise learning
 - Directly optimize the ranking metric (e.g. NDCG) for each query with a list of ranked results

Point-wise learning: Example

- Goal is to learn a threshold to separate each rank
- Assume 3 relevance levels: 1, 2, 3

Pair-wise Learning

- A ranking should correctly classify the order of documents based on their relevance score:
 - Assume query q has matched documents ordered as x1, x2, x3, x4, x5

- Correct order

(x1, x2), (x1, x3), (x1, x4), (x1, x5), (x2, x3), (x2, x4) ...

- Other orders are incorrect

Convert ranking into binary classification

Learning to Rank – Example of Loss Functions

Given 3 documents for Query $q: d_1, d_2, d_3$, a ranker f_{θ} , define loss *L*:

Pointwise:

 $L(f_{\theta}, q, d_1, d_2, d_3) = L(f_{\theta}, q, d_1) + L(f_{\theta}, q, d_2) + L(f_{\theta}, q, d_3)$

Pairwise:

 $L\left(f_{\theta}, q, d_{1}, d_{2}, d_{3}\right) = L\left(f_{\theta}, q, d_{1}, d_{2}\right) + L\left(f_{\theta}, q, d_{1}, d_{3}\right) + L\left(f_{\theta}, q, d_{2}, d_{3}\right)$

Listwise: $L(f_{\theta}, q, d_1, d_2, d_3) = L(f_{\theta}, q, d_1, d_2, d_3)$

Pretrained Transformers for Text Ranking: BERT and Beyond, 2021, Andrew Yates, Rodrigo Nogueira, and Jimmy Lin

Types of Losses: Application Example

$\operatorname{Rel}(d_1) > \operatorname{Rel}(d_2) > \operatorname{Rel}(d_3), f_{\theta} = a \text{ neural network that outputs a probability}$

Pretrained Transformers for Text Ranking: BERT and Beyond, 2021, Andrew Yates, Rodrigo Nogueira, and Jimmy Lin

Modified example for multi-class mapping with pair-wise learning

- Collect a training corpus of (q, d, r) triples
 - Relevance label r has 4 values
 - Perfect, Relevant, Weak, Nonrelevant
- Train a machine learning model to predict the class r of a document-query pair

example	docID	query	cosine score	ω	judgment
Φ_1	37	linux operating system	0.032	3	Perfect
Φ_2	37	penguin logo	0.02	4	Nonrelevant
Φ_3	238	operating system	0.043	2	Relevant
Φ_4	238	runtime environment	0.004	2	Weak
Φ_5	1741	kernel layer	0.022	3	Relevant
Φ_6	2094	device driver	0.03	2	Perfect
Φ_7	3191	device driver	0.027	5	Nonrelevant

The Ranking SVM : Pairwise Learning [Herbrich et al. 1999, 2000; Joachims et al. KDD 2002]

- Aim is to classify training instance pairs as
 - correctly ranked
 - or incorrectly ranked
- This turns an ordinal regression problem back into a binary classification problem
- We want a ranking function *f* such that *c_i* is ranked before *c_k* :

 $c_i < c_k \text{ iff } f(\psi_i) > f(\psi_k)$

• Suppose that *f* is a linear function

 $f(\Psi_i) = \mathbf{w} \cdot \Psi_i$

• Thus

 $c_i < c_k \text{ iff } w(\psi_i - \psi_k) > 0$

How many training examples formed for Ranking SVM?

example	docID	query	cosine score	ω	judgment
Φ ₁	37	linux operating system	0.032	3	 Perfect
Φ_2	37	penguin logo	0.02	4	Nonrelevant
Φ_3	238	operating system	0.043	2	Relevant
Φ_4	238	runtime environment	0.004	2	Weak
Φ_5	1741	kernel layer	0.022	3	Relevant
Φ_6	2094	device driver	0.03	2	Perfect
Φ_7	3191	device driver	0.027	5	Nonrelevant

1 training case formed:

Query: device driver Order: Doc 2094, 3192

How to derive (a, b, c) based on the training examples? $Score(d, q) = a\alpha + b\omega + c$ $Score(Doc 2094, q) \ge 1 + Score(Doc 3192, q)$ $0.03a + 2b + c \ge 1 + 0.027a + 5b + c$

Classification vs. Regression

Classification

- Data in the form (x,y), where x is input vector. y is a category label
- Goal is to find indicator function estimation f. $(0 \text{ if } v = f(\mathbf{x}))$

• Loss: L(y, ...)

$$y, f(\mathbf{x}) = \begin{cases} 0 & \text{if } y = f(\mathbf{x}) \\ 1 & \text{if } y \neq f(\mathbf{x}) \end{cases}$$

Regression

- Data in the form (x,y), where x is input vector. y is real-valued output
- Goal is to find function estimation f.
- Example loss: $L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2$

Classification vs. regression for learning to rank

Regression

- Find relative rank scores. E.g. Score = af₁+bf₂, what is weight a and b?
- Not just classification labels.
- Classification isn't the best model for rank score learning:
 - Classification: Map to an unordered set of classes
 - Regression: Map to a real value
- This regression formulation gives extra power:
 - Relations between relevance levels are modeled
 - Fine grain scoring from highly relevant to irrelevant
 - Not an absolute scale of goodness

Popular Benchmarks for Relevance Evaluation

ClueWeb 09 (Web pages) TREC Robust04 (News articles) MS MARCO Dev. Set (Question/answers based on web pages) MS MARCO Passage/Document Ranking TREC Deep Learning 2019-2021 based on MS MARCO

Dataset	Domain	# Query	# Doc	Quer y Lengt h	Doc Lengt h	# judgement s per query	Graded relevance
ClueWeb09	Web	150	50M	1-5	857	90	yes
Robust04	News	250	0.5M	1-4	479	70	yes
MS MARCO passages - Dev	Q&A, Web	6980	8.8M	2-15	57	1	no
TREC DL 19		43				95	yes
TREC DL 20		54				66	yes
MSMARCO Documents - dev		5193	3.2M	2-15	1131	1	no

Evaluation Metrics for Relevance

- Given a query and a ranked list of documents, how to measure relevance? Each document is marked as relevant or nonrelevant.
- Compute the mean values for the following metrics for all queries. 1 is the best and 0 is the worst.
 - MRR (mean reciprocal rank) at Position P

$$\mathbf{RR}(R,q) = \frac{1}{\mathrm{rank}_i}$$
Inverse of the rank of first relevant document up to position P

- Mean Precision@P: %relevant results up to Position P
- Mean Recall@P: %relevant results appeared up to Position
 P out of ALL known relevant results in the data collection.

Relevance metric for multi-level judgement labels

- Each doc is judged in multiple levels. E.g. bad, good, excellent, perfect.
- nDCG: the total discounted cumulative gain (DCG) up to position p scaled by the ideal DCG by perfect ranking

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

or
$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{\log(1+i)}$$

Compute the mean values for all queries. 1 is the best and 0 is the worst

Training and Evaluation: How to Evaluate Accuracy with Training Data

- The accuracy/error estimates on the training data: good or bad?
 - Not good
 - Because new data will probably not be **exactly** the same as the training data!
 - The algorithms do well on the training data may overfit, may not do well for future data

Evaluation with Independent Test Data

 Estimation with independent test data is used when we have plenty of data and there is a natural way to forming training and test data.

• For example: reported experiments for which the classifiers were trained on data from 2017 and tested on data from 2018.

Hold-out Method

• The hold-out method splits the data into training data and test data (usually 2/3 for train, 1/3 for test). Then we build a classifier using the train data and test it using the test data.

 The hold-out method is usually used when we have a sufficient large dataset for training and testing separately

Classification with two training/test datasets

- A labeled dataset is divided into two sets
 - Training set is used to form a classifier that fits data
 - Test set is used to report classification errors with no bias
 - Test metric:
 - Binary classification. Accuracy is the percentage of cases that the derived classifier prdicts correctly.
- How to compute the error with more than 2 classes?
 - For example, 3 Classes: class 1, class 2, class 3.
 - Sqaured error sum
 - Sum (predicted class value target value)^2
 - Normalized by dividing the number of cases
 - Another way: Measure # of cases classified correctly for Class 1, and # of cases classifed correctly for Case 2 etc. Then compute average, or weighted average.

Divide a dataset into 3 sets: Training set, validation set, and test set

- For more advanced setting, a labeled dataset is divided into 3 sets
 - Training set is used to form a tree under some parameters (e.g. when to stop tree growing)
 - Validation set is used to assess the accuracy of the derived classifier, and then readjust training parameters, and reassess again for the best validation performance
 - Test set is used to report accuracy/error of the final classifier with no bias

Classification: Train, Validation, Test Split

The test data can't be used for parameter tuning!

Making the Most of Available Data

- Difficult to obtain training/testing data
- Importance of more data
 - Generally, the larger the training data the better the classifier (but returns diminish).
 - The larger the test data the more accurate the error estimate.
 - *Can we use all data* to build the final classifier.

k-Fold Cross-Validation

- Select a subset for training and another subset for testing without overlapping.
 - data is split into k subsets of equal size; select one testing
- Repeat above process for k times
 - each subset in turn is used for testing and the remainder for training or training/validation
- The estimates are averaged to <u>Classifier</u> yield an overall estimate.

- Weighted scoring for ranking
 - Example: linear combination
 - Ranking features for web search
- Learning to rank: A simple example
 - Generalization to a general machine learning problem
- Learning to ranking as classification
 - Point-wise, pair-wise, & list-wise learning
 - Classification vs. regression for ranking
- How to train and evaluate